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Preface

This diploma thesis was written at the Faculty of Information Technology, Math-
ematics and Electrical Engineering for the dept. of Mathematical Sciences at the
Norwegian University of Science and Technology (NTNU). The thesis was done
in cooperation with Sintef Unimed, which is part of Sintef, The Foundation for
Scientific and Industrial Research. The Sintef group is the largest independent
research organization in Scandinavia.

The author of this thesis is Bjørn Hanch Sollie. Supervisor from the dept. of
Computer and Information Science was Associate Professor Ketil Bø. Supervisor
from the dept. of Mathematical Sciences was Associate Professor Harald Hanche-
Olsen. External supervisors at Sintef Unimed were Frank Lindseth and Jon Harald
Kaspersen.

I started the work on this thesis with no prior knowledge of image processing or
medicine in general or medical imaging in particular. This work has been very
exploratory in the sense that none of my supervisors or I had any prior experience
with the in-development medical imaging tool used, the Insight Segmentation and
Registration Toolkit (ITK). The ability to learn and use known and unknown ele-
ments from the sciences of mathematics, programming, medicine and image pro-
cessing, has been essential. Additionally, achieving a firm grasp of both the basics
and some more complex components of medical imaging from the bottom up, has
also required a lot of learning. In hindsight I can safely say that it has been both a
fun and rewarding experience.

Lastly, the way I got involved with this work is a matter of funny and bizarre
coincidence, so much as to be worth mentioning here: When the time came to
start the work on my diploma thesis I still hadn’t managed to decide what I wanted
to work with, despite a considerable search. Time continued to pass by, and by
late fall last year the issue of finding an appealing topic was starting to become
a matter of worrisome inconvenience. This was underlined by the fact that all I
really knew about what I wanted to do was that it preferably include some practical



and immediately useful work. Then, one evening, when I was flipping through the
channels on my TV, and this very matter was occupying my mind, there was one
program on that caught my attention. It was a report about Sintef Unimed and
their recent innovations and work in the field of medical imaging. Here was the
potential for something to do which was both practical, interesting and useful
and which could possibly even carry the reward of being fun. I jotted down a
few names, as they appeared in the interviews on the TV screen. The next day I
contacted the people at Sintef Unimed with the hopes of appointing a meeting on
the matter, the eventual result of which is described on the next one hundred or so
pages.

Trondheim, August 20, 2002

Bjørn Hanch Sollie



Abstract

The goal of this project was to perform automatic segmentation and registration
of the inner and outer aortic wall in abdominal aortic aneurysm as seen in post-
operative CT and US images. These tasks were performed by using the existing
framework provided by the Insight segmentation and registration toolkit (ITK),
a new in-development software toolkit for performing segmentation and registra-
tion. An evaluation is to be provided of the current usefulness of ITK to perform
the cited tasks.

The methods explored for segmentation include use of the watershed algorithm,
fuzzy connectedness and level sets, while for registration, the use of mutual infor-
mation was investigated.

The achieved results are mixed. A scheme to perform segmentation of the inner
and outer aortic walls with minimal user intervention has been presented. The
segmentation is performed automatically after manual selection of only four initial
values. The spatial extent of the segmented structure includes a region from below
the renal arteries to the top of the iliac arteries, below the aortic bifurcation point
in the lower abdomen. Searches indicate that no such scheme has previously been
presented. The use of watershed and fuzzy connectedness algorithms respectively
are also discussed. Using using mutual information to automatically register CT
and US images, with the use of two different image alignment optimizers, did not
produce satisfactory results.

The achieved results of the segmentation indicate that ITK is a medical imaging
tool with great potential. The achieved results of the registration indicate that it is
a bit too early to make full use of the toolkit in clinical applications. The current
limitations of the ITK framework are thought to have been met for both of our
specific problems, and thus the goals of the project were achieved.
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1 Introduction

In this chapter we present a brief introduction and explanation for some important
terms and concepts essential to understand and to solve the tasks at hand. Starting
with our motivations and definition of the problem, we continue by explaining the
basics of computer tomography (CT) and ultrasound (US) imaging, abdominal
aortic aneurysm (AAA), image segmentation and image registration.

1.1 Motivation

The interest for segmentation and registration of medical images has greatly in-
creased over the past decades. Our knowledge of the causes and treatment of
medical conditions has increased by orders of magnitude. With the advances
in computer technology in general, and processing power and image acquisition
techniques in particular, the amount of research in the field of medical imaging
has grown dramatically.

The introduction of x-ray computer tomography (CT) 25 years ago revolutionized
medical imaging. CT provided the first clear cross sectional images of the human
body with substantial contrast between different types of soft tissues. Since then,
medical imaging has increasingly become a more important tool in all stages of
patient treatment. Today, surgeons and radiologists commonly use complex visu-
alization software to plan, simulate and monitor complicated surgery.

Image segmentation denotes the process of subdividing an image into its con-
stituent parts or objects [RCEGW-93], while image registration denotes the pro-
cess of bringing the involved pictures into spatial alignment [VIERG-97]. An
imaging modality refers to a specific way of acquiring images, such as CT or
ultrasound (US) for example. Multimodal registration refers to registration of
images acquired through different image acquisition techniques (such as CT and
US).
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Accurate and reproducible segmentation and registration schemes are becoming
more important in view of the rapid increase in the use of three-dimensional imag-
ing modalities. An accurate segmentation allows for accurate quantitative and
morphological analysis and is indispensable for proper visualization and inter-
pretation of images, for preoperative planning and for postoperative assessment.
Manual segmentation and registration of, especially three-dimensional, images
are time-consuming and hence expensive tasks. Manual segmentation is also sub-
jective and thus cannot be reproduced, and often a high level of expertise is re-
quired.

Minimally invasive endovascular surgery on the abdominal aorta and postopera-
tive assessment after such surgery are areas in which the use of automation and
multimodal imaging is becoming a promising, realistic and viable possibility. The
abdominal aorta is a delicate and crucial part of the human body, and developing
new and effective procedures to reduce the risks of treatment is therefore essential.
This is also true in the treatment of abdominal aortic aneurysm, a disease which
will commonly lead to serious impairment or death, if left untreated.

CT is the primary tool for patient followup assessment today. By employing ultra-
sound equipment instead, patients may be spared from going through up to several
CT sessions, thereby reducing health risks from x-ray radiation considerably, as
ultrasound equipment is non-radiating. In this context, development of an auto-
matic segmentation and registration scheme for CT and US has the potential to
contribute to both safer and better treatment.

Software development is generally both time-consuming and costly. With the de-
velopment of ITK, the Insight segmentation and registration toolkit, the medical
community will receive a new tool, freely available to anyone, specifically de-
signed for segmentation and registration of images in medical settings. ITK has
the potential to make development of software for medical imaging applications
easier, faster and more cost-effective. Its potential makes it well worth for the
medical imaging communities to make use of the new software and assess how
well it performs for the specific need of each community; in this case segmenta-
tion and registration of abdominal aortic aneurysm as seen in CT and US images.
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1.2 Problem definition

1.2.1 Background

The tools used to implement the software are the C++ programming language and
the Insight segmentation and registration toolkit (ITK). As the central problems
are segmentation and registration, and not developing ITK, the focus has been
kept on using the ITK package as-is. Extra functionality was only implemented
when strictly necessary, or when the time-cost of adding needed features was not
critical.

Although focusing strictly on either segmentation or registration would have been
possible, there was agreement between all supervisors and the candidate from the
beginning that the study include both a segmentation problem and a registration
problem. This choice was made to test and evaluate both of the two main branches
of functionality in ITK. The segmentation problem is presented in the most detail.

1.2.2 Segmentation of the CT images

We seek to extract the structures of the inner and outer aortic walls in postoperative
CT images of patients with abdominal aortic aneurysm. The extracted structures
should contain all parts of the abnormally dilated aortic tissue and the inner and
outer aortic wall in the height of the surgically inserted stent graft. Thus, the
segmented structures will represent the aorta from below the renal arteries to the
top of the iliac arteries, including the aortic bifurcation point. See figures 1.1 and
1.2 for illustrations.

1.2.3 Registration of the CT and US images

We seek to register the postoperative CT images with postoperative followup US
images using rigid registration techniques only. Although the CT and US images
are initially registered using a marker and positioning system, this initial registra-
tion contains inaccuracies, and the objective is to improve it.
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1.2.4 Evaluation of ITK

A conclusive evaluation of the current usefulness of ITK for solving the segmen-
tation and registration problems described is provided.

1.3 Abdominal Aortic Aneurysm (AAA)

1.3.1 Introduction to AAA

Abdominal aortic aneurysm (AAA) denotes the disease in which the infrarenal
abdominal aorta tends to increase in size, either slowly or suddenly, resulting from
weakened arterial walls. Aneurysms may occur in any blood vessel in the body,
but the most common place in the abdomen is on the aorta between the renal
arteries and the aortic bifurcation point in the lower abdomen. An illustration of
this can be seen in figure 1.1.

Figure 1.1: Abdominal aortic aneurysm.

An AAA is usually diagnosed when an increase of more than 50 % of the aortic
diameter is detected relative to a normal healthy diameter [RAVHO-98], or when
the diameter is bigger than 50-55mm and increasing. Once present, AAAs may
continue to enlarge and, if left untreated, become increasingly susceptible to rup-
ture, usually resulting in lethal hemorrhage [MAGEE-00]. AAA is the 13th major
cause of death in the United States [BELKI-94], and occurs in up to seven percent
of people of age 60 and older.
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1.3.2 Repair surgery

Worldwide, approximately 100,000 interventions for AAA repair are performed
each year, of which around 30 % are endovascular [ECALL-97]. An AAA ex-
panding at a faster rate than 5mm over a period of six months is perceived to be at
a high risk for imminent rupture, usually prompting surgical repair [BROWN-92].
During the endovascular repair surgery, a synthetic stent graft is positioned inside
the aortic lumen to correct the blood flow and to reduce stress on the aortic walls.
See figure 1.2 for an illustration.

Figure 1.2: Treatment of abdominal aortic aneurysm. To the left, a healthy
aorta. In the middle, a diseased aorta prior to surgery. To the right, an aorta
after endovascular surgery, repaired with a stent graft.

Progressing aneurysmal disease after surgery and damage to or fatigue of the graft
material may result in leakage, curling, twisting and migration of the graft. Com-
plications of this nature may eventually result in rupture or occlusion [BRUIN-01].
As a consequence of this, careful and frequent patient followup is required. A
patient is imaged every three to twelve months, depending on the state of the
aneurysm.

After surgery, the volume in the aneurysm between the graft and the aortic wall
is usually filled with thrombus. In the remainder of this text, the outer aortic wall
will, for the sake of simplicity, often be referred to as the thrombus region, or just
the thrombus. Also, the inner aortic wall, which includes the stent graft and the
region inside the aorta with unobstructed blood flow, will regularly be referred to
as the lumen region or just the lumen, unless otherwise noted.

The surgically inserted stent graft is made up of a woven polyester tube (usually
gore-tex) covered by a tubular metal mesh (usually stainless steel). An example
of what such a graft may look like can be seen in figure 1.3.
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Figure 1.3: A stent graft for surgical repair of abdominal aortic aneurysm.

1.3.3 Detection and condition assessment

Ultrasound is the imaging modality most frequently used to determine if a pa-
tient has an abdominal aortic aneurysm [BLANK-00]. The most widely used
method for further AAA planning and condition assessment is computer tomogra-
phy (CT). Intravenous injection of contrast during CT image acquisition provides
good enhancement of the abdominal aorta.

The followup examination procedure usually includes some form of aneurysm
delimitation. As of today, this procedure is most commonly performed with some
degree of manual intervention. As previously mentioned, the problems with this
is that performing this task manually is time consuming, thus expensive, and it is
subject to different radiologists producing different results.

To reduce analysis time, reduce variability and to increase reproducibility, auto-
matic segmentation of the abdominal aorta and the aneurysm would be of great
value. Unfortunately, CT images of AAA are difficult to segment, because the
outer aortic boundary is often obscured by surrounding tissue of similar density.
There are also lot of other structures close in proximity to the aortic wall, which
will frequently reduce the visibility of edges.

The radius of the aneurysm may also vary greatly over a short distance, and vari-
ations in size and shape may be large between patients as well as in one patient
over time. This can make the boundary difficult to detect even when surrounding
structures are absent. Lumen and thrombus texture and grayvalue can vary with
the presence of calcifications, graft metal, intravenous contrast and differences
between individual CT scanners.
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Figure 1.4: Examples of abdominal aortic aneurysms. The outer aortic wall
(thrombus region) has been manually delimited by a solid white line.
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1.4 Computer tomography (CT) imaging

Computer tomography (CT), also referred to as computer assisted tomography
(CAT), is a method of obtaining image data from different angles of different
parts of the body using x-rays. With the help of a computer, this information is
processed to create a cross sectional view of body tissues and organs.

CT imaging is a powerful imaging tool because it can show several types of tissues
and materials, fluids, bone, blood vessels and internal organs with great clarity
compared to most other imaging techniques. For this reason, CT is one of the best
tools today for studying the abdomen. Using specialized equipment and expertise
to create and interpret CT scans of the body, radiologists can more easily diagnose
problems such as cancers, infectious diseases, cardiovascular disease and, in our
case, abdominal aortic aneurysm.

Figure 1.5: Example of a CT image.

CT imaging works by passing small controlled amounts of x-ray radiation through
the body [RSNAW-02]. Different materials and tissues inside the body absorb
variable amounts of radiation, and the differences in the level of radiation emerg-
ing on the other side is recorded by an array of detectors, which measure the x-ray
profile. This is in contrast to conventional x-ray radiology, where the x-rays pass-
ing through the imaged object are instead captured on a special film.

A rotating gantry inside the CT scanner has an x-ray tube mounted on one side
and an arc-shaped detector on the opposite side. An x-ray beam is emitted in a
fan-shape as the x-ray tube and detector rotates around the patient. Each time the
tube and detector makes one full rotation, the image of a thin section is acquired.
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During each rotation, the detector records about 1,000 profiles of the expanded
x-ray beam. Each profile is then reconstructed by a dedicated computer into a two
dimensional cross-sectional image, or slice, of the section that was scanned.

When this is done multiple times in succession, while moving the patient’s body
a small distance relative to the frame for each time, the result is a set of multiple
images which may be assembled to give a detailed three-dimensional view of the
interior of the patient’s body.

Advantages:

• CT examinations are fast and simple and can quickly reveal internal injuries
and bleeding.

• CT imaging has been shown to be a cost-effective tool for a wide range of
clinical problems.

• CT imaging offers detailed views of many different kinds of tissues.

• CT imaging is painless, noninvasive and accurate.

• Through use of CT scanning, it is possible to identify both normal and abnor-
mal structures. This makes it a useful tool for guiding radiotherapy, needle
biopsies and other minimally invasive procedures. In many cases this can
eliminate the need for invasive surgery.

Disadvantages:

• CT involves exposure to radiation in the form of x-rays. The typical radia-
tion dose from a CT exam is equivalent to the natural background radiation
received over a year’s time. Special care must be taken during x-ray examina-
tions and the patient’s abdomen and pelvis should normally be shielded by a
lead apron. In Norway alone, it is estimated that 40-50 patients develop fatal
cancer every year, due to exposure to x-rays from CT scanners [TNRPA-02].

• CT exams are generally not recommended for pregnant women.

Limitations:

• Very fine details in soft tissue cannot always be seen with CT imaging. In
some situations, soft tissues may be obscured by bone structures. In these
cases, magnetic resonance (MR) imaging may be preferable.

• Using CT imaging as a means of guidance during patient surgery is inconve-
nient, as the patient will have to be moved in and out of the CT scanner each
time an updated image is needed.
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1.5 Ultrasound (US) imaging

Ultrasound (US) imaging, also referred to as sonography, is a method of obtaining
images of the inside of the body through the use of high frequency sound waves.
Ultrasound imaging is based on the same principles involved in the sonar used for
navigation by ships at sea. As a controlled sound bounces against an object, the
echoing waves can be used to identify how far away the object is, how big it is,
and how uniform it is.

In preparation for the procedure, the skin of the area to be examined is exposed
and coated with a special gel. This gel serves to ensure that there is no air between
the ultrasound transducer and the skin during the time of image acquisition, thus
reducing noise and providing a clearer picture.

Figure 1.6: Example of an ultrasound image.

An ultrasound transducer functions as both a loudspeaker (to create the sounds)
and a microphone (to record them) [RSNAW-02]. When the transducer is pressed
against the skin, it directs a stream of inaudible, high-frequency sound waves into
the body. As the sound waves echo from the tissues and structures inside the body,
the microphone in the transducer records small changes in the direction, intensity,
frequency and wavelength in the reflected sound [SHOLM-98]. These signature
waves are measured by a computer, which converts them into a real-time moving
picture. Still frames of the moving picture may be captured to produce a series of
images, or slices. Figure 1.6 shows an example. By moving the transducer along
the skin, while at the same time measuring its physical position, it is possible to
create a three-dimensional view of the inside of the patient’s body.
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Advantages:

• Unlike CT, ultrasound does not use x-rays or any other kinds of potentially
harmful radiation.

• Ultrasound equipment can produce moving images in real-time.

• Ultrasound has been used for abdominal examinations for about 40 years, and
for standard diagnostic ultrasound there are no known risks or harmful effects
to humans.

• Ultrasound is a cost-effective means of image acquisition in medicine.

Disadvantages:

• The patient has to undergo a slightly more intrusive session than is the case
with a CT session, including the removal of clothes and application of the gel.

• The quality of the recorded images is dependent on the operator’s skill of
handling the equipment.

Limitations:

• Ultrasound imaging produces images that are far inferior in quality to CT.
Proper identification of structures and regions in the finalized ultrasound im-
ages generally requires personnel with expertise and training to do so.

1.6 Image segmentation

1.6.1 General image segmentation

Image segmentation denotes the process of subdividing an image into its con-
stituent parts or objects [RCEGW-93]. The amount of subdivision performed is
dependent of the problem, so that the segmentation should stop when the struc-
tures of interest have been isolated.

In general, autonomous segmentation is one of the most difficult tasks in image
processing [RCEGW-93]. This step in the process determines the eventual success
or failure of the image analysis. In fact, effective segmentation rarely fails to lead
to a successful solution. For this reason, considerable care should be taken to
improve the probability of getting a segmentation output of high quality.
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1.6.2 Image segmentation in medicine

In medical sciences, image segmentation allows us to do volume measurements,
generate 3D models for visualizing complex structures, see the placement of struc-
tures in relation to each other, and to perform better preoperative planning, inter-
operative guidance and postoperative control.

The objective of segmentation of medical images is generally to find regions
which represent single anatomical structures. Segmentation is a crucial step in
building systems for the further analysis of an image.

The availability of regions which represent single anatomical structures makes
tasks such as interactive visualization and automatic measurement of clinical pa-
rameters directly feasible. In addition, segmented images can be further processed
with computers to perform higher-level tasks such as shape analysis and compar-
ison, recognition and other kinds of decision-making.

Unfortunately, automatic segmentation of medical images is a very difficult task.
This is due to noise, masking of structures, individual variations in biological
shape, tissue inhomogeneity and more. Completely automated methods that are
fool-proof and that have been demonstrated to work correctly routinely in trials
involving a large number of patient studies do not seem to have been constructed
yet [UDUPA-00].

1.7 Image registration

1.7.1 General image registration

Image registration denotes the process of bringing the involved pictures into spa-
tial alignment [VIERG-97]. In other words, image registration denotes the process
of matching two images so that corresponding coordinate points in the two images
correspond to the same physical region of the scene being imaged. This is done
by calculating an optimal transformation matrix between the two images.

To do this, one image is selected as the fixed image and the other as the moving
image. Following the definitions of the terms, as they are used in ITK, the fixed
image is then moved relative to the moving image, guided by an optimization
function which measures how well some predefined features of the images corre-
spond to each other. Thus, the method generally works by minimizing an error
function or maximizing a suitable quality function.
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The registration process basically takes pixels from the fixed image (or voxels,
which are the equivalents of pixels in three dimensions) and map their spatial
location through a transform into the geometric space of the moving image. This
means that the moving image should be the image of greater resolution and extent,
as the time to compute the optimal transformation will be shorter.

Once an acceptable registration has been calculated, image data may be trans-
formed (or resampled) into the coordinate system of the other image, or combined
with the other image.

1.7.2 Image registration in medicine

In medical imaging registration is necessary primarily in four different situations
[UDUPA-00]. In the first case, images are acquired for the same body region from
different modalities, for example CT and US. By combining images from differ-
ent modalities, registration can help improve the visual accuracy of the imaged
region. In the second case, images are acquired for the same body region using
the same modality at different points in time. The distance in time may be small
for studying the motion or displacement of a structure inside the body, or bigger
for studying the growth or change of a structure. In the third case, in certain in-
terventional procedures, information derived from acquired image data is used to
provide navigational aid for the devices used in the procedure. In these situations
it becomes necessary to register the body region, and the scene. In the fourth and
final case, images acquired for a given body region are matched to a computer-
ized model of the same body region. This is often helpful for studying statistical
variations in structures in a population, as well as in scene segmentation.

With the increasing use of imaging in medicine, automated registration of im-
ages has become a very important field of research. A wide range of registration
techniques has been developed for many different types of applications and data.
Given the diversity of the data, it is unlikely that a single registration scheme will
work satisfactorily for all different applications.
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In this chapter, a brief overview of previous work regarding segmentation and
registration of AAA images is presented. The methods regarding works about seg-
mentation include vessel axis and border estimation approaches, neural network
approaches, active shape models (ASMs), watershed approaches, region growing
approaches and level set-based approaches. The studied works about registration
reported the use of intensity and gradient information and mutual information.
The chapter is concluded with a summary of our findings.

2.1 Segmentation of abdominal aortic aneurysm

2.1.1 Background

Compared to the number of people affected by AAA, there has been relatively
little effort and funding for research to explore and develop new methods of treat-
ment for the disease [TILSO-02]. While a lot of lot of different approaches have
been researched in the area of segmenting vessels in general, [JENSE-01], rela-
tively few works deal with segmentation of AAA. Out of the works that deal with
AAA, several deal with segmenting the inner aortic wall or the stent graft only,
while the much more difficult problem of segmenting the outer aortic wall and the
aneurysm is only relatively scarcely covered, in comparison. We wish to find out
what approaches have been attempted for segmentation of AAA in the past, and
implement a scheme based on the current framework for segmentation in ITK.
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2.1.2 Vessel axis extraction and border estimation
approaches

A method for automated central vessel axis extraction and border estimate is pre-
sented in [OWINK-00]. In [VERDO-96], a method to determine the lumen bound-
ary is established through dynamic programming using slices reformatted to be
perpendicular to that axis.

According to [BRUIN-01], these methods work best in cases where the patient
has received a graft with radiopaque markers sewn onto the outside of the graft,
which produce artifacts in the image, signaling the position of the graft. Also, the
strategy as presented suffers from the drawback of being unable to satisfactorily
handle bifurcated vessels.

2.1.3 Neural network approaches

The method outlined in [SMADA-95] uses a neural network to learn thresholds for
multilevel thresholding and a constraint-satisfaction neural network to smooth the
boundaries of labeled segments. After segmentation, a small number of images
are edited manually, before a connectivity procedure automatically selects corre-
sponding segments from other sections by comparing adjacent voxels within, and
across, sections for label identity.

The results suggest that automated segmentation followed by manual editing is a
promising approach to segmentation of CT images of AAA. The biggest problem
with this approach with regard to our motivations however, is that ITK at present
has no tools for neural network segmentation at all.

2.1.4 Active shape model (ASM) approaches

[BRUIN-01] presents a method for segmentation the outer aortic wall of abdom-
inal aortic aneurysms, based on active shape models (ASMs), as put forward by
Cootes and Taylor in [TAYLO-95], [TAYLO-00] and [TAYLO-01]. Active shape
models combine statistical knowledge of object shape and shape variation with
local appearance models near object contours. A model generated from grayvalue
profiles in training images is used to fit the shape model to the image. Subsequent
fitting in sequential slices is performed, using the contour obtained in one slice
to initialize the contour in the adjacent slice. Two significant modifications with
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respect to the conventional ASM approach are reported. The first involves the cor-
relation with grayvalue profiles of adjacent slices, rather than grayvalue profiles
obtained from the training set. The second involves the extension of the scheme
with a penalty function for inclusion of low-intensity tissue and a refinement step
to locally adjust the position of the landmark points to points with maximum gra-
dient. The results are reported to outperform the conventional ASM significantly
with these extensions. Further improvements and results to this approach are pre-
sented in [BRUIN-02], again confirming its promising potential.

Although accurate and robust, the slice-by-slice scheme outlined contains no de-
tails on how to handle bifurcated vessels, as the method described is specifically
devised to segment the outer wall of the aneurysm region only. Also, the method
requires extensive manual initialization, and may require some user intervention
underway.

2.1.5 Watershed-based approaches

No previous work has been found on using the watershed algorithm for segmenta-
tion of abdominal aortic aneurysm. However, the algorithm is well implemented
in ITK, and the supervisors at Sintef Unimed considered this as an interesting
approach with good potential.

2.1.6 Region growing approaches

Region growing algorithms build on the principle of allowing a number of seed
points to grow into a region in the image as long as the addition of new points to
the region doesn’t violate defined constraints. [POHLE-00] outlines a fully au-
tomatic region growing algorithm that learns its homogeneity criterion automati-
cally from characteristics of the region to be segmented. The method is based on a
model that describes homogeneity and simple shape properties of the region. Pa-
rameters of the homogeneity criterion are estimated from sample locations in the
region. These locations are selected sequentially in a random walk starting at the
seed point, and the homogeneity criterion is updated continuously. The methods
were tested by segmenting the inner aortic wall in abdominal aortic aneurysms,
among other structures, in CT and MR images.

The method is reported to be robust and produce reliable results, as long as the
assumptions the model makes about homogeneity and region characteristics hold.
As ITK encompasses the required tools for this type of segmentation (fuzzy con-
nectedness), this method seems like a suitable approach, at least for the segmen-
tation of the lumen.
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2.1.7 Level set-based approaches

In [MAGEE-00] a level set based method for the segmentation of complex
anatomical structures from CT images is reported. The level set method is based
on the work by J. A. Sethian described in [JASET-99]. The method is concluded
to have much promise in the area of 3D arterial segmentation if the application
is not time-critical. The only cited disadvantage to the level set method is the
computational cost involved.

[LONCA-01] also presents a technique for segmentation of AAA from CT im-
ages using level sets, additionally incorporating narrow banding. The inner aortic
border is initially segmented using 3D level sets, while 2D level sets are used to
segment the outer wall, using the output of the initial segmentation as a zero level
set. The stopping criterion is based on curve expansion speed designed to keep
the boundary from growing into surrounding tissue. Their experiments with this
scheme are cited to have shown good results.

The strengths of the level set method lies in its generality as it is able to han-
dle image data of different dimensionality equally well and handles topological
changes satisfactorily. It encompasses mechanisms to handle regions with lacking
boundary information, and it has been demonstrated to be readily able to handle
bifurcated vessels. This looks like a promising approach for segmenting both the
lumen and the thrombus.

2.2 Registration of CT and US images

2.2.1 Background

Although much work has been done in the area of multimodal image registration,
much less work has been conducted on the specific problem of registering CT and
US images. The work reported in [MAINT-98] also seems to confirm this. Based
on our findings, and the available selection of registration methods in ITK, the
most appropriate method will be chosen.

2.2.2 Gradient and intensity information approaches

A technique to rigidly register intraoperative three-dimensional ultrasound images
with preoperative MR images is demonstrated in [ROCHE-01]. Images are auto-
matically registered by maximization of a similarity measure which generalizes
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the correlation ratio, which involves incorporating multivariate information from
the MR data, both intensity and gradient. In addition, the similarity measure is
built on an intensity-based distance measure, which makes it possible to handle a
variety of US artifacts.

The registration errors reported are of the order of the MR image resolution at
worst. The method looks very promising, but unfortunately ITK doesn’t yet have
the required tools for performing this type of registration.

2.2.3 Mutual information approaches

In [FMAES-97], a method for registering multimodal images is reported. The
method presented applies mutual information, or relative entropy, to measure the
statistical dependence or information redundancy between the image intensities
of corresponding voxels in images, which is assumed to be maximal if the images
are geometrically aligned. The method is validated for rigid body registration
of computed tomography (CT), magnetic resonance (MR), and photon emission
tomography (PET) images. In [UNSER-00] mutual information is used with a
multiresolution optimizer to achieve a registration accuracy of about a tenth of a
pixel under very noisy conditions using normal photographs. [GRIMS-00] reports
the use of a mutual information-based registration algorithm which establishes the
proper alignment via a stochastic gradient ascent strategy. Their primary achieve-
ment is improved execution time of the algorithm.

The results indicate that sub-voxel accuracy can be achieved completely automat-
ically and without any prior segmentation, feature extraction, or other preprocess-
ing steps. Although little work is reported on the use of mutual information to
register CT and US images, ITK has most of the tools for doing this type of regis-
tration implemented. Thus, the potential for registering CT and US images using
this technique remains unknown, but promising.

2.3 Summary

Studies of previous work indicate that segmentation of AAA as seen in CT images
and registration of CT and US images are problems that have received relatively
little attention in the past. Much of the work devoted to create automatic seg-
mentation schemes of AAA from CT images has been mostly exploratory and
experimental, and there has been relatively little focus on developing functional
end products. A common denominator for much of the earlier work regarding our
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particular segmentation problem is that the focus is set on a considerably smaller
problem than the one we’re interested in. Relatively few works deal with all the
issues of segmenting the inner, and especially the outer, wall of the aorta from be-
low the renal arteries to the iliac arteries, including the bifurcation point. Instead,
the focus often remains on one of the following two problems:

• Segmentation of the outer aortic wall in healthy patients only, avoiding the
very difficult problem of thrombus segmentation and vascular structures with
irregular anatomy.

• Segmentation of only the thrombus region in AAA patients, avoiding the
problems associated with the segmentation of bifurcated vessels and vascular
structures with a more complex topology.

One of the reasons for the tendency towards opting to focus on only one of the
problems appears to be that schemes appropriate for vessel extraction lack the
properties required for segmenting structures where edge information is scarce
and where lack of graylevel information makes it hard to distinguish between rel-
evant and irrelevant regions. On the other hand, the deformable model methods
commonly used for segmentation of the dilated parts of the aorta, cannot easily
deal with topologically complex structures, such as bifurcated vessels. The pre-
sented schemes, which are often very capable of handling a limited problem, often
have weaknesses when used at the bigger problem we are looking at.

After extensive studies, it becomes clear that segmentation of AAA as seen in CT
images is a complex and difficult task, and a scheme to perform such segmentation
automatically with minimal initialization does not seem to have been devised.

Little work on registration of CT and US images of AAA were found, and au-
tomatic schemes to perform such registration automatically do not seem to have
been reported.
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In this chapter, we first present a general problem solving strategy and some gen-
eral solution criteria for the segmentation and registration schemes to be devised.
We then present an overview of ITK and have a brief look at the tools it encom-
passes for segmentation and registration of medical images. Last in this chapter,
a more detailed background is presented on the theory of the level set method for
segmentation and the mutual information method for registration. A less elaborate
background on the watershed and fuzzy connectedness segmentation algorithms
is also provided.

3.1 Problem solving strategy

3.1.1 Segmentation

The basic strategy, as discussed and agreed on with the supervisors at Sintef
Unimed, was to first find out which algorithms could be effective for solving the
problem. The least complex schemes would be tested first, and in the case of a
scheme producing unsatisfactory results, the scheme would be abandoned and a
more advanced scheme would be introduced to replace it.

Based on the literature and previous work studied, the task of segmenting a struc-
ture is usually divided into the following three general steps:

• Preprocessing: Enhancement of the desired structure.

• Extraction: Separation of the structure from the rest of the image.

• Postprocessing: Improvement of the extracted structure.

Preprocessing is necessary to reduce noise, enhance the relevant structures and
reduce the possibility of irrelevant image features from interfering with the later
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analysis. The purpose of this step is to increase the chances for success when
we segment the image later on. When segmenting AAA images, preprocessing
will typically include applying filters for noise reduction, smoothing and contrast
enhancement, for example.

Postprocessing is necessary to improve the quality and topology of the extracted
structure and generally to obtain a final shape which makes sense with regards
to what we know about the actual anatomy of the structure. The purpose of this
step is to increase the accuracy and correctness of the extracted structure. In our
problem, this typically includes applying filters, such as median filters, to reduce
sharp corners and edges and improve topology.

The studies of previous work makes clear that segmenting the inner and outer
aortic walls are quite different, and difficult, problems. It was therefore decided
that the aortic structure would be segmented in two separate steps:

1. Segmentation of the inner aortic wall including the stent graft (lumen). This
is the least difficult part to segment as the difference in gray level to the sur-
rounding tissues is generally good due to the injected blood contrast. This
step may also serve as a good indicator of the robustness of the algorithm. An
algorithm producing an unsatisfactory result in this step is unlikely to perform
better when applied to segment the outer aortic wall later on. The desired re-
sult of this step is an solid region outline of the lumen that may be used for
initialization or some other way of general guidance or help for performing
the next step.

2. Segmentation of the outer aortic wall including the dilated parts of the aorta
(thrombus). This is by far the most difficult of the two steps, as contrast
to the surrounding tissues may be very poor, and edge information is much
weaker or may even be missing completely. One way of making this step
easier to accomplish is to find a way to use the more easily obtainable lumen
segmentation from the previous step for guidance. The desired output is a
solid region outline of the outer aortic wall and the thrombus.

Since the first part of the segmentation is the least complicated to perform, it was
assumed that this step would also be the easiest to implement with a minimal
amount of manual initialization. It was therefore presumed to be a good starting
point. Once a segmentation of the lumen has been achieved, the acquired structure
would serve as a stepping stone for performing the second step, as it provides
us with significant knowledge about the location of the outer aortic wall. Using
the information we obtain about the structure in the first step has potential for
reducing much of the need for manual initialization that would otherwise have
been required for performing the second step.
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After the initial studies of previous work, and following the recommendations
of the supervisors, it was decided that the watershed, fuzzy connectedness and
level set algorithms for segmentation were the techniques offering the greatest
prospects of success. These algorithms were subsequently tested in the aforemen-
tioned order.

3.1.2 Registration

The basic strategy was discussed and agreed on in advance with supervisors at
Sintef Unimed. The postoperative CT image should be registered with the post-
operative US image. The desired output of this step is the optimal transformation
matrix that aligns the two volumes in the best possible way. Care must be taken
when choosing a metric and a metric for the registration method as the CT and US
images have quite different properties and qualities:

• The 3D CT images are relatively noise-free, and the abdomen is imaged in
full cross sections. The image contains a relatively high amount of detail. In
addition to edges, it also contains regional information in the form of varying
graylevels. In the images of patients who have been injected with contrast,
the abdominal aorta can be seen roughly as the shape of an inverted “Y”, of
relatively high intensity, stretching through most of the image from top to
bottom.

• The 3D US images are generally extremely noisy and contain a much smaller
region; only the part of the abdomen containing the aneurysm is contained
in these images (the bifurcation is generally not included). The ultrasound
image also contains edge information for the most part, and it is much more
difficult to distinguish between different structures. In US images, the ab-
dominal aorta is considerably harder to discern, and a fuzzy, roundish partial
edge is often the only indicator of its presence.

In cooperation with the supervisors, it was decided that the mutual information
metric should be used for registration. Maximization of mutual information is a
very general and powerful registration criterion, because no assumptions are made
regarding the intensities of the images, and no limiting constraints are imposed on
the image content of the modalities involved. In theory, this makes it very useful
for registering images with very different properties, which is the case with CT
and US. The mutual information functionality was also the most complete part of
the registration framework in ITK, at the time of this work.
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Figure 3.1: CT and US images, registered with a marker and positioning
system, displaying a similar anatomical region of the abdomen.

3.2 Solution criteria

A segmentation and registration scheme with the following properties is desired:

• High degree of automatization. Any manual intervention should preferably
be performed in an initialization step before starting the procedure.

• High degree of extensibility. Additions, improvements and refinements to the
scheme should be easy to implement.

3.3 Visualization

As previously stated, the problem focus has been set mainly on segmentation and
registration and not on visualization. The only visualization performed is that
which has been strictly necessary to document, evaluate and to get a better view
of the finished output. The 2D cross sectional images in this report were pro-
duced by an application, written by the author, to convert 3D image volumes to a
set of 2D image slices for fast and easy viewing. The rendered 3D views of the
segmented image data were created with Dynamic Imager. Dynamic Imager, a
program developed by Ceetron ASA, is an easy-to-use visualization tool devel-
oped in accordance with the ISO 12087 standard.
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3.4 ITK

3.4.1 Introduction to ITK

ITK is an abbreviation for the National Library of Medicine Insight Segmentation
and Registration Toolkit. ITK is an open-source software system for performing
segmentation and registration of data in two, three and more dimensions. The
toolkit is implemented in generic (templated) C++ and is intended to be as cross-
platform as possible [ITKSR-02]. The system is currently under active develop-
ment and today runs under the Microsoft Windows and Linux operating systems,
while efforts to port it to MacOS are underway. Additionally, an automated wrap-
ping process exists to generates interfaces between C++ and interpreted program-
ming languages such as Tcl, Java and Python.

ITK was developed by six principal organizations: three academic (University of
North Carolina at Chapel Hill, University of Utah and University of Pennsylva-
nia) and three commercial (GE Corporate Research & Development, Kitware and
Insightful) [ITKSR-02]. Several other smaller team members and individual users
also contribute actively.

ITK has been developed to support the Visible Human Project [VHPRO-02] and
to be a repository of fundamental algorithms for image segmentation and registra-
tion, saving medical imaging communities from reinventing the wheel over and
over again. The system is intended to serve to establish a foundation for future
research, as well as providing a platform for advanced product development and
conventions for future work.

The idea behind the open-source license of ITK is to open up for the possibility
for developers from around the world to freely contribute to the software’s further
extension and development. Creating a self-sustaining community of both users
and developers is cited as a main objective by the ITK development team.
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The following is a summary of important points regarding the philosophy behind
the toolkit.

Design:

• ITK provides algorithms for performing segmentation and registration.

• The focus is primarily on medical applications.

• ITK provides data representation in a general form for images with arbitrary
dimension.

• Multi-threaded shared memory parallel processing is supported.

Architecture:

• ITK is organized around an object oriented data flow architecture. Data is
represented using data objects (e.g. images). These data objects are processed
by process objects (filters).

• Data objects and process objects are connected together into pipelines.

• Pipelines can process the data in pieces according to a user-specified memory-
limit set on the pipeline.

Implementation:

• ITK is implemented using templated C++.

• ITK is cross-platform (Linux, Unix and Windows).

• Binding to interpreted languages such as Tcl, Python and Java is supported.

• Memory management is handled automatically through the use of so-called
“smart pointers”.

ITK does not provide any tools for visualization and does not provide any graphi-
cal user interface (GUI). Also, the toolkit provides only a minimal framework for
handling of files and file format. Both of these are intended to be provided by
other tools.
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3.4.2 Overview of the segmentation filters

ITK contains the following three different types of image segmentation filters:

1. Intensity-based segmentation filters use the intensity values of the pixels to
segment an image. Usually, spatial contiguity is not considered in intensity-
based segmentation filters. These segmentation filters are often used to detect
structure boundaries. The following submodules exist:

• Pixel classification filters

• Supervised classification filters

• Unsupervised classification filters

• Watershed-based segmentation filters

2. Region-based segmentation filters segment an image based on similarity of
intensity values between spatially adjacent pixels. These filters are often used
to detect object regions. There are the following submodules:

• Fuzzy connectedness-based segmentation filters

• Region growing filters

• Markov random field-based filters

3. Model-based segmentation filters segment an image by starting with a model
and then updating the model based on image features. The updates are typ-
ically constrained by a priori knowledge about the models. The following
submodules exist:

• Mesh-based segmentation filters

• Level set-based segmentation filters

As mentioned earlier, the architecture of ITK makes it possible to create hybrid
filters by combining the various intensity-, region-, or model-based filters.

3.4.3 Overview of the registration filters

Registration methods in ITK are implemented by combining basic components,
allowing for great flexibility. When creating a registration filter, the following
components are used (as defined in ITK):

• Fixed image: This is an image that will be transformed into the coordinate
system of the moving image.
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• Moving image: This is the image into which we map the fixed image.

• Transform: A mapping that associates a point in the fixed image space with a
point in the moving image space.

• Interpolator: A technique used to interpolate intensity values when images
are resampled through the transform.

• Metric: A measure of how well the fixed image matches the moving image
after transformation.

• Optimizer: A method used to find the transform parameters that optimize the
metric.

A registration method is defined by selecting specific implementations of each one
of the listed basic components.

The registration tools in ITK are organized in the following manner:

• Components of registration methods

• Metrics

• Optimizers

• Image registration methods

• Rigid registration methods

• Affine registration methods

• Deformable registration methods

• Model to image registration methods

• Pointset to image registration methods

3.4.4 Documentation

As ITK is still in an early stage of development, the only documentation for the
toolkit is that which can be found online, on the ITK website ([ITKSR-02]). The
documentation is provided in the form of a brief description of the API (Applica-
tion Program Interface) and a suite of example- and test-programs. As of today
there are no printed books yet to be found, documenting the functionality of the
toolkit. Consequently, frequent and elaborate reading of source code and imple-
mentation of trial and error schemes are often necessary to acquire the needed
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understanding to make meaningful use of the software. The members of the in-
sightusers mailing list, and the mailing list archive, are also very helpful and valu-
able sources of information.

3.4.5 Getting started

ITK comes in the form of a set of libraries. Pre-compiled versions of the libraries
are not provided, so a source code archive had to be downloaded from the ITK
website, configured and compiled. With ITK being in a state of relative infancy,
and without any substantial documentation, getting comfortable with the API and
the ITK programming style was a very challenging task. When the work on this
project started, no working code was provided with ITK for either reading or
writing the image files. Also, as ITK doesn’t contain any kind of functionality for
visualization, some tools to facilitate viewing of the results had to be implemented
as well. To implement the needed functionality to handle the input and output of
images and files necessitate a thorough understanding of the way ITK handles
data and data processing. The needed utilities to get raw image data in and out of
ITK were implemented along with tools to convert 3D volumetric images into 2D
slices, needed in order to make viewing with a simple 2D viewer possible.

3.4.6 Using ITK

Segmentation and registration schemes are implemented in ITK by combining
filters as illustrated in figure 3.2.

Figure 3.2: Illustration of general filter operation in ITK. The input and
output are usually images, but may be other types of data objects as well.
The input is usually the output of another filter. Similarly, the output is
usually passed on to another filter. Connecting filters sequentially, the output
data of one filter serves as the input data for the next.
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The development of this project is for the most part based on the intermittent ver-
sions of ITK released after the first beta, the latter of which became available in
late February 2002. Although it was initially seen as desirable to stay with the
initial beta version of ITK to ensure full compatibility between all parts of the
software written for this project, the increasing requirements for more complex
functionality as development went on meant that intermediate development ver-
sions of the toolkit had to be used instead. Although a beta release is usually
associated with a feature-locked version of the software, with the primary focus
set on fixing errors, ITK remains in very active development.

3.5 Segmentation algorithms

3.5.1 Overview

As mentioned before, three segmentation schemes using three different algorithms
were implemented: watershed, fuzzy connectedness and level sets. Each of these
algorithms belong to each of the three different main groups of segmentation al-
gorithms, described in section 3.4.2. This way, we also get a means of evaluating
which one of the three groups of segmentation algorithms is best suited for solving
the problem: intensity-based, region-based or model-based segmentation filters.

Since level sets are the centerpiece of the implemented segmentation scheme, the
theory of this method is presented in more extensive detail than the other two,
along with some clues to why this might be a good choice for segmenting AAA
in CT images.

3.5.2 Watershed

The watershed segmentation algorithm is a grayscale-based algorithm. Watershed
segmentation gets its name from the manner in which the algorithm segments
regions into catchment basins. If a functionf is a continuous height function
defined over an image domain, then a catchment basin is defined as the set of
points whose paths of steepest descent terminate at the same local minimum of
f . In other words, the catchment basins should theoretically correspond to the
homogeneous graylevel regions of the image.

An appropriate choice of height function is made, dependent on the application,
and the basic watershed algorithm operates independently of that choice. For
intensity-based image data, a calculation of gradient magnitude is often used.
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The watershed algorithm proceeds in several steps. First, an initial classification
of all points into catchment basin regions is done by tracing each point down
its path of steepest descent to local minima. Next, neighboring regions and the
boundaries between them are analyzed according to some saliency measure, such
as minimum boundary height, to produce a tree of merges among adjacent regions.
These merges occur at different maximum saliency values. The set of all possible
merges up to a specified saliency “flood level” is often referred to as a “merge
tree”.

Metaphorically, the flood level is a value that reflects the amount of water that
is rained into the catchment basins. As the flood level rises, boundaries between
adjacent segments will merge. The minimum value of the flood level is zero and
the maximum value is the difference between the highest and lowest values in the
input image.

Once the segmentation is done to produce the merge tree, it is easy to produce
a hierarchy of labeled images. The complexity of the watershed algorithm is in
the computation of the merge tree. Once that tree has been created, the initial
segmented image can be relabeled to reflect any maximum saliency value found
in the tree by identifying a subset of segment merges from the tree.

3.5.3 Fuzzy connectedness

The fuzzy connectedness algorithm is a region-based method. In the case of a
grayscale image, the algorithm performs segmentation via thresholding of a fuzzy
connectedness scene. A seed point, or a set of seed points, is first specified within
the region of interest. A construct named the fuzzy affinity is then computed be-
tween neighboring pixels such as to reflect their similarity and assign a probability
that these pixels belong to the same object. This way, a “path” is created between
pixels in the form of a list of pixels that connect them. The strength of a particular
path is defined as the weakest affinity between the neighbor pixels that form the
path. The fuzzy connectedness between two pixels is defined as the strongest path
strength between these two pixels.

The segmentation based on fuzzy connectedness assumes that the fuzzy connect-
edness between any two pixels from a single structure is significantly higher than
those for pixels belonging to different structures. The strength depends on how
close pixels are located spatially and in terms of intensity and intensity-based
properties. After the fuzzy connectedness scene is first computed, a threshold is
applied to the fuzzy scene, and a binary segmented object may be extracted.



32 Materials and methods

3.5.4 Level set methods

3.5.4.1 Introduction to level sets

Level set algorithms are model-based algorithms. They were introduced by S.
Osher and J. A. Sethian in 1988, and are techniques created to follow the evolution
of N -dimensional curves (interfaces), by observing their curvature. Level sets are
designed to handle problems in which the evolving interfaces can develop sharp
corners and cusps, change topology and become very complex.

Most existing shape modeling techniques require that the topology of the object
be known before the shape recovery can commence. However, it is not always
possible to specify the topology of an object prior to its recovery. One important
concern is topological change resulting from tracking the evolution of curve or
surface boundaries through time. During their evolution, interfaces may change
connectivity and split, thereby undergoing a topological transformation which is
often very difficult to follow using traditional approaches. In the level set ap-
proach, the convergence to the final result may be relatively independent of the
initial shape, and branches, splits and merges can develop without problems as
the front moves. Generally, the method may be applied even where no a priori
assumptions about the object’s topology are made.

Also, the evolution of curves and surfaces is a defining component of many phys-
ical phenomena. For example, surface tension in a soap bubble and freezing rates
at the edge of a snowflake both depend on the curvature at a point [JASET-96].
The level set methods have been widely used in the fields of fluid mechanics and
material sciences for some time [MALLA-95] and have in recent years been ap-
plied in image processing for segmentation problems [JASET-99].

3.5.4.2 Level sets vs. deformable models

Deformable model techniques generally attempt to follow boundaries by placing a
set of discrete marker points on the evolving front and then changing the position
of these markers to correspond to the front as it moves. The discrete markers are
updated in time using a set of finite difference approximations to the equations of
motion. However, there are several problems with this approach [JASET-02], the
most important of which are the following:

• Deformable models have a tendency to become unstable as the curvature in-
creases around a cusp. An entropy condition must then be observed to pro-
duce a correct solution [JASET-99].
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• Deformable models suffer from the tendency of small errors in the position to
produce large errors in the determination of the curvature [BRUIN-01]. This
may be solved by a frequent redistribution of the markers, using a small time
step, but has the drawback of altering the motion of the curve in a nonobvious
way.

• Deformable models have great difficulties coping with topological changes.
When an interface is deforming, and its topology changes significantly (split
or merge, for example), tracking the possible changes is an extremely com-
plex task which is incredibly hard to perform [SAPIR-01].

Due to these problems associated with the traditional deformable model-methods,
we instead choose to look more closely at level sets.

3.5.4.3 Evolving interfaces

Let us consider interfaces evolving in time. LetΓ(p, t) : SN−1 × [0, T ) → R
N

denote a family of closed interfaces, wheret parametrizes the family (time) andp
parametrizes the interface (space). We will assume that this family of interfaces
obeys the following partial differential equation:

∂Γ(p, t)

∂t
= α(p, t)~T (p, t) + β(p, t) ~N (p, t), (3.1)

whereΓ(p, 0) is the initial condition. Here~N stands for the outward unit normal
and ~T is a unit tangent vector. This is the most general form and means that the
interfaceΓ is moving withα velocity in the tangential direction~T andβ velocity
in the normal direction~N .

We choose to parametrizeΓ because it is a more general approach to the problem,
as there is no guarantee that an evolving front can always be expressed as the graph
of a function in a fixed coordinate system. Parametrizing the interface relieves us
of this concern.

3.5.4.4 Finding a level set representation

The central idea of level sets is that, rather than follow the movement ofΓ itself,
we instead add one extra dimension to the problem. At first glance, it might seem
counterintuitive to add an extra dimension, since more dimensions usually means
more work and a more complex model. However, the extra dimension will turn
out to be a very powerful addition because, rather than track discrete points ofΓ
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around, which can collide and stretch apart, we will be able to track the front by
adjusting the height of a whole function instead.

Using this approach, the evolving frontΓ can be represented by a level set function
Ψ in one higher dimension. In the case of the parametrized interfaceΓ(p, t) in
(N−1)D space, this involves using a functionΨ(x, t) in a fixed coordinate system
in ND space, withx = [x1, x2, ..., xN ]. Note that we reintroduce a coordinate
system when we’re working with the functionΨ.

Specifically, if we letΓ be represented by

∂Γ(p, t)

∂t
= α(p, t)~T (p, t) + β(p, t) ~N (p, t)

= α~T + β ~N
= ~V,

(3.2)

usingΓ(p, 0) as the initial condition, we may representΓ as the level set of an
embedding function, a level set function,Ψ. By this we mean thatΨ is defined as
a mappingΨ(x, t) : RN × [0, T )→ R

N−1 such that

Λc(t) = {x ∈ RN : Ψ(x, t) = c}
= {Γ(p, t) : p ∈ SN−1},

(3.3)

wherec ∈ R is a given constant.

The initial interfaceΓ(p, 0) can be represented as the zero level set of the higher
dimensional functionΨ(x, 0). We can expressΨ(x, 0) by considering the signed
distance functiond(x) from a point in(N − 1)D space to the curveΓ(x, 0), neg-
ative in the interior and positive in the exterior ofΓ(x, 0), so that

Ψ(x, 0) = d(x) + c. (3.4)

We now have to find the evolution ofΨ so that

Γ(p, t) ∈ Λc(t), (3.5)

that is, the evolution of the original curveΓ coincides with the evolution of the
level sets ofΨ.

A consequence of equation 3.3 is that:

Ψ(Γ(p, t), t) = c. (3.6)

By differentiating with respect tot, we get

∂

∂t
(Ψ(Γ(p, t), t)) =

∂

∂t
(c)
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∇Ψ(Γ(p, t), t) · ∂Γ(p, t)

∂t
+
∂Ψ(Γ(p, t), t)

∂t
= 0. (3.7)

We observe that there is no need to specify the level set valuec, as it is eliminated
from the equation when the derivative is taken.

The unit normal vector can be expressed by the directional derivative as

∇Ψ

‖∇Ψ‖
= ~N , (3.8)

where ~N is the normal to the level setΛc.

Combining equations 3.2, 3.7 and 3.8, we get:

0 = ∇Ψ · ~V +
∂Ψ

∂t

= ∇Ψ · (α~T + β ~N ) +
∂Ψ

∂t

= ∇Ψ · (α~T + β

(
∇Ψ

‖∇Ψ‖

)
) +

∂Ψ

∂t

= 0 + β‖∇Ψ‖+
∂Ψ

∂t

= β‖∇Ψ‖+
∂Ψ

∂t
.

We observe that due to the dot product, the tangential component has no effect on
the evolution of the front, so that observing the evolution of

∂Γ(p, t)

∂t
= β(p, t) ~N (p, t),

is equivalent to observing

∂Γ(p, t)

∂t
= α(p, t)~T (p, t) + β(p, t) ~N (p, t).

Rearranging and using the more customary notationF = β for the speed function,
we get the basic level set equation:

∂Ψ

∂t
+ F‖∇Ψ‖ = 0. (3.9)

We refer to this as a Hamilton–Jacobi type equation, since for certain forms of
the speed functionF , we obtain the standard Hamilton–Jacobi equation. The
evolving functionΨ(x, t) will always remain a function as long asF is smooth
[MALLA-95].
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However, the level setΛc and hence the propagating interfaceΓ, may change
topology considerably as the functionΨ evolves.

To summarize, level set methods exchange a general geometric moving coordinate
representation for a fixed coordinate perspective where each point adjusts its value
to measure the distance to the evolving interface.

A further appealing aspect of the level set approach is that the basic concept is the
same regardless of the dimensionality of the problem. First, we embed the evolv-
ing surface in a function in one higher dimension. Then, we adjust this higher
dimensional function corresponding to motion of the interface, and compute the
zero level set to find the position of the propagating interface. All together, the
trick of embedding the front in a higher dimensional function is well worth the
added cost.

Figure 3.3: Level set formulation of the equations of motion. The upper
two images show the curveΓ and the surfaceΨ(x) at t = 0. The lower two
images show the curveΓ and the corresponding surfaceΨ(x) at timet.
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3.5.4.5 Selecting a speed function

In image segmentation applications, the speed function in equation 3.9 is typically
composed so that the shape of the evolving front is influenced by the following
three components ([MAGEE-00]):

• A constant advection component, independent of the geometry of the front.

• A component depending on the curvature of the front.

• A component containing information about the image (such as edges).

To do this, we use a speed function on the following form, as proposed by
[MALLA-95]:

F = P (F0 + F1(κ)). (3.10)

F0 is the constant advection component, representing a uniform speed, indepen-
dent of the geometry of the evolving front. This is remniscent of the inflation force
used in some deformable model techniques.

F1, being dependent on the curvatureκ, acts like a diffusion component, and
depends on the intrinsic geometric properties of the front. This component has
the effect of smoothing out regions of high curvature, and metaphorically it can
be thought of as the viscosity of a fluid. In fluid mechanics, viscosity is a measure
of the relationship between the shear stress exerted on a fluid and the fluid’s rate
of deformation [GERHA-92]. Loosely speaking, viscosity measures the ability of
a fluid to damp sharp transitions and mute sudden changes.

P is the image dependent component, usually in the form of an edge potential
function, derived from the gradient map of the input image. In order to segment
images, we need to make the speed functionF in equation 3.9 dependent on the
image we wish to segment. This dependency condition should preferably cause
an initial level set interface in the image to stop at the boundary of the desired
object.

As proposed by [MALLA-95] we formulate the speed function as follows:

F = P (I)(1− εκ). (3.11)

Here,0 < ε < 1 is a constant,I is the image intensity andκ is the curvature,
obtained from divergence of the gradient of the normal vector to the front:

κ = ∇ ∇Ψ

‖∇Ψ‖
. (3.12)

The basic speed equation component1 − εκ is fundamental for image analysis
purposes [SAPIR-01]. The advection termF0 = 1, provides us with a means of
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growing a region from an initial front, the viscosity termF1 = εκ provides us
with a way of controlling the front of the region as it expands, and the potential
functionP = P (I), provides the image information required to halt the evolving
front at the desired structure boundaries.

3.5.4.6 Selecting a potential function

The edge potential function,P (I), whereI is still the image intensity, takes the
original image as input and gives an edge representation of the original image as
output. Thus, the edge potential image is in essence an edge map created from the
initial imageI we want to segment.

The potential map is usually defined in the way that seems most appropriate for
the current application. Indeed, when applying the level set algorithm for seg-
mentation purposes in image processing, much of the preprocessing step is about
finding the right potential function to produce the best potential image for the level
set algorithm. Two examples of functions commonly used for creating a potential
image,P (I), are:

P (I) = e−|∇G∗I| and P (I) =
1

1 + |∇G ∗ I|
, (3.13)

where∇G is the derivative of the gaussian operator. Depending on the amount
of preprocessing needed, this function can be chosen to be arbitrarily simple or
arbitrarily complex.

For our application, none of functions in 3.13 were used, as more extensive pre-
processing turned out to be necessary in order to achieve a satisfactory segmen-
tation. AsP (I) is basically a function that contains the whole preprocessing step
it is not always easy or feasible to provide a simple expression for it, and this is
the case here. However, the details of the preprocessing are explained later on in
chapter 4.

Thus, our final level set equation for segmentation is given by

∂Ψ

∂t
+ P (I)(1− εκ)‖∇Ψ‖ = 0 (3.14)

3.5.4.7 Improving the performance

In a numerical implementation, the spatial parameters ((x1, x2) in the 2D case; in
the 3D case(x1, x2, x3)) are discretized into a grid of points. Each pixel (voxel) in
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this grid, or distance map, holds a value for the level set function and updates its
value as the surface moves, using neighborhood values to determine the necessary
partial derivatives in the level set equation.

One of the biggest problems of implementing equation 3.9 is that it is rather slow.
When solving equation 3.9 for a 2D curve evolution, the complexity isO(N2), and
similarlyO(N3) for a 3D surface, whereN is again the size of the grid. Because
of this, level set algorithms commonly use the following improvements:

• Fast marching: In the case of fronts that move forward under speeds where
the speed functionF never changes sign, a considerably more time-efficient
method may be preferred over the general level set method.

• Narrow banding: Rather than update the level set function everywhere, the
work is confined to a thin region on both sides of the evolving front.

3.5.4.8 Fast marching

The fast marching method makes the simplifying assumption that the speed func-
tionF never changes sign, so that the front is always moving forward or backward.

The position of the expanding front is then characterized by computing the arrival
timeT (x) as it crosses each pointx. For this reason,T is often referred to as the
time-of-arrival function. SinceF never changes sign,T (x) is indeed a function,
and the curve crosses each planar point no more than once.∇T is orthogonal to
the level sets ofT , and its magnitude is inversely proportional to the speed:

|∇T |F = 1, T = 0 on Γ. (3.15)

Here,Γ is the initial position of the interface.

In other words, the solution is found by solving a boundary value problem. This is
again a Hamilton–Jacobi equation, which if the speedF depends only on position,
reduces to what is known as the Eikonal equation. The main idea is to exploit a
fast heapsort technique to systematically locate the proper grid point to update, so
that backtracking over previously evaluated grid points is never necessary. The
resulting technique traverses a grid ofN total points inN log(N) steps to obtain
the evolving time position of the front as it propagates through the grid, thus the
name for the algorithm.
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3.5.4.9 Narrow banding

Execution time can be improved by using the narrow band technique. The basic
idea behind narrow banding is to operate only on a surrounding band around the
region of the level set being tracked. This will reduce the complexity toO(kN) in
the 2D case andO(kN2) in the 3D case, wherek is the width of the narrow band.
Using this technique, equation 3.9 is solved only inside the narrow band, and this
band is updated each time the interface approaches the border of the band, or after
a certain number of iterations.

Figure 3.4: A narrow band of widthε around the level set.

When the level set function used is a distance function, a narrow band width ofε
around the zero level set, is given by those points on the level set function with an
absolute value less than or equal toε. This way, all we need to do is to maintain the
level set function as a signed distance function and update only those points where
the level set function is less than a certainε. This simplifies the computation of
the narrow band greatly.

3.5.4.10 Benefits of using level sets in image processing

A skilled eye can pick out the desired boundaries from a noisy image, even those
delimited by slight changes in image intensity. Drawing outlines manually on
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each image slice is both extremely time-consuming and inexact. To create a piece
of software to ignore noise and at the same time avoid introducing non-existent
features has the potential to solve these problems, but is hard to implement. In
the level set approach, the imaginary front is allowed to propagate from an initial
position. The trick is to adjust the speedF to detect the edge of the shape:

• When the interface passes over places where the image gradient is small, we
assume that we are not near a boundary, and we let the curve expand quickly.

• When the curve passes over places where the image gradient is large, we
suspect we are near the boundary, and the expansion is slowed down.

• In addition, a little surface tension (in the form of motion by curvature) is
included to slightly constrain the expanding contours.

3.6 Registration algorithms

3.6.1 Overview

The registration method tested for registering CT and US images is mutual infor-
mation, a method based on a formulation of a general measure of content simi-
larity between the images to be processed. Due to the differences of the nature
of the images to be registered, and considering the other alternatives available in
ITK at the time of this work, it was strongly suggested by the supervisors that this
method be used.

3.6.2 Mutual information

3.6.2.1 Introduction to mutual information

One of the biggest challenges when registering images of different modalities, is
to find a metric able to cope with similar structures in images with very different
characteristics. Rather than require the moving image to be given by a function of
the fixed image, as is the case with many registration methods, one generalization
is to just require the moving image to be predictable from the fixed image. In
statistics, predictability is closely related to the concept of entropy. If a random
variable is predictable, it has low entropy, while if it is unpredictable, it has high
entropy. By formulating a connection based on entropy, many of the drawbacks
of relying on strict connection through a function can be eliminated.
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3.6.2.2 Entropy

The entropyH of a random variablex is defined as:

H(x) = −
∫
p(x) ln(p(x))dx. (3.16)

The joint entropy of two random variablesx andy is given by

H(x, y) = −
∫
p(x, y) ln p(x, y)dxdy. (3.17)

Log likelihood and entropy are closely related, and using [COVER-91] it can be
shown that under certain conditions, the conditional log likelihood of the moving
image is a multiple of the conditional entropy of the moving image given the fixed
image:

log p(m(T (x) | f(x), T )) = −NH(m(T (x)) | f(x), T ), (3.18)

whereN is the number of fixed image points.

Mutual information is a measure of the statistical independence between two ran-
dom variables, or the amount of information one variable contains about the other.
Mutual informationI is defined in terms of entropy in the following way:

I(f(x),m(T (x))) = H(f(x)) +H(m(T (x)))−H(f(x),m(T (x))). (3.19)

HereH is the entropy function of the random variablex, f is the fixed image,m
is the moving image andT is a transform, allocating points from the fixed image
into the moving image.

Mutual information has three components. The first term on the right is the en-
tropy in the fixed image. This does not depend onT . The second term is the
entropy of the part of the fixed image the moving image is transformed into. The
third term is the negative joint entropy of the fixed image and the moving image.

3.6.2.3 Finding a transformation estimator

We now wish to find an estimate of the transform̂T that aligns the moving im-
agem(x) and fixed imagef(x) by maximizing their mutual information over the
transformT . The random variablex is defined over the coordinate space of the
fixed image.

In other words, we want to find the transformation estimatorT̂ such that

T̂ = arg max
T

I(f(x),m(T (x))). (3.20)
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The described entropies are defined by integrals over the probability densities
associated with the fixed imagef and the moving imagem. When we look at
images we will generally not have access to the densities. To compensate, we
use a differentiable estimate of the entropy of a random variable calculated from
samples instead. It is possible to express the entropy of a random variabley as the
expected value of the negative logarithm of the probability density:

H(y) = −Ey(ln p(y)). (3.21)

To estimate the entropies from samples, the first step is to approximate the un-
derlying probability densityp(y) through a superposition of gaussian densities
centered on the elements of a sampleS1 drawn fromy:

p(y) ≈ 1

NS1

∑
xj∈S1

Gσ(x− xj), (3.22)

where

Gσ(y) =
1

2πn/2
1

|σ|1/2
e(− 1

2
yT σ−1y). (3.23)

This is known as the Parzen window method of estimating density. Using the
gaussian density in the Parzen density estimate simplifies some of the following
analysis, but any differentiable function can be used instead.

The next step is to approximate the statistical expectation with the sample mean
over another sampleS2, drawn fromy:

Ey(u(y)) ≈ 1

NS2

∑
yi∈S2

u(yi). (3.24)

An approximation for the entropy of a random variabley may now be expressed
as

H(y) ≈ − 1

NS2

∑
yi∈S2

ln
1

NS1

∑
yj∈S1

Gσ(yi − yj). (3.25)

The density ofy may be a function of a set of parametersT . We can now find the
maxima of mutual information. By calculating the derivative of the entropy with
respect toT , we get the following expression, after simplifying:

d

dT
H(y(T )) ≈ 1

NS2

∑
yi∈S2

∑
yj∈S1

Wy(yi, yj)(yi − yj)Tσ−1 d

dT
(yi − yj), (3.26)

where

Wx(xi, xj) =
Gσ(xi − xj)∑

xk∈S1
Gσ(xi − xk)

. (3.27)
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Here,Wy(yi, yj) is a weighing factor with values between 0 and 1. Ifyi is signifi-
cantly closer toyj than it is to any other element ofS1, it will approach 1. It will
approach 0 if some other element ofS1 is significantly closer toyi. Distance is
interpreted with respect to the squared Mahalanobis distance, given by:

Dσ(y) = yTσ−1y. (3.28)

In other words,Wy(yi, yj) is an indicator of the degree of match betweenyi and
yj.

3.6.2.4 Stochastic maximization of the mutual information

The entropy approximation in equation 3.25 may now be used to evaluate the
mutual information of the fixed image and the moving image in equation 3.19. To
obtain a maximum of the mutual information, we first calculate an approximation
to its derivative:

d

dT
I(f(x),m(T (x))) =

d

dT
H(m(T (x)))− d

dT
H(f(x),m(T (x))). (3.29)

We will assume that the covariance matrices of the component densities used in
the approximation scheme for the joint density, are block diagonal. That is:

σ−1
fm = diag(σ−1

ff , σ
−1
mm). (3.30)

Using this assumption and equation 3.26, we find an estimate for the derivative of
the mutual information:

d̂I

dT
=

1

NS2

∑
xi∈S2

∑
xj∈S1

(mi −mj)
T [Wm(mi,mj)σ

−1
m

−Wfm(wi, wj)σ
−1
mm]

d

dT
(mi −mj).

(3.31)

The weighting factors are defined according to equation 3.27:

Wm(mi,mj) =
Gσm(mi −mj)∑

xk∈S1
Gσm(mi −mk)

(3.32)

and

Wfm(wi, wj) =
Gσfm(wi − wj)∑

xk∈S1
Gσfm(wi − wk)

, (3.33)
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using the following notation:

fi = f(xi),mi = m(T (xi)), and wi = [fi,mi]
T . (3.34)

The notation is similar for indicesj andk.

If we are to increase the mutual information, then the first term in the brackets
of equation 3.31 works to increase the squared distance between sample pairs that
are nearby in image intensity, while the second term decrease the squared distance
between sample pairs that are nearby in both image intensity and the properties
of the fixed image. The termd

dT
(mi − mj) generally involves gradients of the

intensities of the image and the derivative of transformed coordinates with respect
to the transformation.

WhenT is a linear operator, the following expression holds:

d

dT
m(T (xi)) = ∇m(T (xi))x

T
i . (3.35)

In the end, a different structure of gray levels in the images is not a problem when
using mutual information, as it does not directly measure the similarity in the
graylevels of the pixels, but rather how often the intensities appear together. Thus,
the algorithm can match structures of low intensity in one image to structures of
high intensity in another. By using mutual information, having structures that are
bright in one modality and darker, or marked by edges, in the other is generally
not a problem. A potential risks however is if each modality has two different
anatomical structures that look similar and could lead the registration algorithm
to try to match them.





4 Experiments and results

In this chapter we first have a look at the available image test data. We briefly
discuss the use of watershed and fuzzy connectedness for segmentation, before
the final implementation using level sets is presented in more detail. We end the
chapter with a discussion of the use of mutual information for registration.

4.1 Image data

To test the schemes to be implemented, three postoperative CT images along with
three corresponding US images were used.

4.1.1 CT image data

The CT image data has been acquired from patients with abdominal aortic
aneurysm, injected with contrast to increase the visibility of the aortic structure.
The original CT data to be analyzed were volumetric512 × 512 × n images in
16 bit grayscale, withn, the number of slices or cross-sections, in the range be-
tween 100 and 200. These images are stored in DICOM format (Digital Imaging
and COmmunications in Medicine), which is a standard image format for the ex-
change of medical images [NEMAX-93]. As ITK at the time of this work didn’t
have any kind of functionality to handle the DICOM format, the images had to be
passed through an elaborate conversion procedure and stored in a much simpler
raw data format more easily handled with ITK. The conversion software available
to Sintef Unimed to do this conversions had the following unfortunate limitations:

• Each image slice was downsampled from512× 512 to 256× 256 pixels.

• The grayscale depth was reduced from 16 bit to 8 bit.
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• Each image slice was converted separately, its dynamic range being adjusted
automatically, based on the intensity features of the slice.

Downsampling the images naturally means that a considerable amount of detail
was lost. It is obviously more difficult to process images that contain only 25 %
of the original spatial information.

Reducing the grayscale depth also reduces the amount of information available in
the image, especially when combined with the spatial downsampling explained
above.

As for the grayscale adjustment of each slice, the composition of intensity val-
ues in each slice is usually different from the next with regards to maximum and
minimum intensity values and the number of distinct graylevels used. When the
images were converted, this has the unfortunate consequence of introducing inten-
sity gradients throughout the images in the vertical direction, through the cross-
sectional plane, parallel to the general direction of the aorta. The result is that
regions in different slices, which were originally of the same intensity, would
sometimes end up with considerably different intensities. An example of this can
be seen in figure 4.1.

Figure 4.1: Two CT slices from the same volume showing the variation
in intensities after conversion. Note especially the difference in graylevel
value of the lumen. In the left picture, the lumen is the relatively dark region
with a brighter circle around it, while in the right picture, the same region is
relatively bright overall, almost to the point of being solid.
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The problem with all of these issues, as they are a result of the image conversion
only, is that they introduce artifacts that do not represent anything real. Since the
resulting graylevels may vary considerably in a nonobvious way, it becomes more
difficult to process the images. It should be stressed that these problems were
beyond the author’s control.

4.1.2 US image data

The ultrasound data were also volumetric images in 8 bit grayscale. The resolution
of these images are variable, but smaller than for the CT images. The spatial res-
olution of the ultrasound images is frequently less than half of the corresponding
values of the CT.

The issues with image conversion were not a problem with the US images. How-
ever, the available US data has been resampled to the equivalent of the CT image
resolution. This means that the smaller ultrasound images have been padded with
regions of black voxels (voxels with intensity equal to zero) to make them the
same resolution as the CT images.

Figure 4.2: Two US slices from the same volume. In the left image, the
bifurcated stent graft can be vaguely seen slightly to the left in the image.
The dark region above it is caused by most of the soundwaves being reflected
by the graft. In the right image, the graft can can be seen as a small dark
circular area within the aneurysm, which is the bigger and slightly brighter
region around it.
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4.1.3 Initial registration

When the CT and US images were originally acquired, they were registered us-
ing a positioning system. Before the postoperative CT scan is acquired, physical
markers called fiducials are attached in predetermined spots on the skin of the
patient’s body. The positioning system is then used to keep track of the fiducials
in relation to a reference coordinate system. When the CT image is acquired, the
markers will show up in the image, making it possible to obtain the position of
the image relative to the reference coordinate system. Using this information, a
transformation matrixTCT→ref is calculated, which transforms a point from CT
image space into the space of the reference coordinate system.

In a similar manner, when the US images are to be acquired, a tracking device is
attached to the ultrasound probe, making it possible to track the probe’s position
with regard to the same reference coordinate system as was used for the CT. The
ultrasound probe is moved by hand across the patient’s body, acquiring a series
of 2D image slices. After acquisition, the 2D US data is resampled to create a
3D ultrasound image. As the position relative to the reference coordinate system
is known, a transformation matrixTUS→ref can be obtained, which transforms a
point from US image space into the reference space.

Using these two matrices, it is now possible to map a point from US image space
into CT image space, or vice versa, by means of the following transformations:

TCT→US = TCT→refT
−1
US→ref

TUS→CT = TUS→refT
−1
CT→ref

(4.1)

If these operations were without fault, no further registration would be needed,
as the transformed images would line up perfectly. However, the procedure is
inexact for several reasons:

• The biggest source of error lies in tracking the position of the ultrasound
probe.

• When acquiring the CT image, the fiducials are manually placed on the pa-
tient’s body. This may be inaccurate because of patient respiration.

• The positioning devices used when acquiring both the CT and US images
may not be perfectly calibrated, meaning that there are errors in the recorded
positions.

• The patient may be physically positioned in a slightly different way during
the two different examinations.
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• Several other factors may variably affect the volume and position of the inter-
nal organs in the abdomen between the two examinations.

4.2 The watershed approach

4.2.1 The problems

The watershed algorithm was the first technique tested for segmenting the lumen
in 3D. Watershed works best when the region to segment is composed of voxels
which are very close to each other in intensity, so that they form a single region
when the edge image is “flooded”, as explained in section 3.5.2. The complica-
tions encountered with this method stems from its sensitivity to noise, both on
the voxel level and the regional level. The persisting problem is that the resulting
segmented image is divided into too many regions. Neighboring voxels (or small
clusters of) within the region of interest, will frequently differ too much in inten-
sity for smoothing and denoising to blend them together into a region sufficiently
uniform for the watershed method to label it as just one region.

On the pixel scale, the result is that a number of small regions or single pixels are
separated from the bigger aortic structure they really are a part of. This naturally
tend to happen around the edges, where the variation in graylevels are highest.

On the regional scale, the slight gradients throughout the image, especially the
intensity variations caused by the described conversion process, tend to cause the
lumen region to be “fractured” into several smaller chunks, corresponding to re-
gions of slightly different intensity in the original image.

The watershed algorithm was also found to be very sensitive to the choice of
parameters, being heavily dependent on the threshold and level parameters to be
within a small range in order to segment the desirable regions. This is illustrated
in figure 4.3.

Consequently, intensity variations within the region of interest is something the
watershed algorithm doesn’t handle very well, and this is a phenomenon that oc-
curs frequently in our problem. Thus the result is often an image which contains
both oversegmentation and undersegmentation, in the sense that the image has lots
of small regions around the edges and the whole aortic structure being “fractured”
into several smaller regions. This in turn makes it extremely difficult to automati-
cally determine which regions are actually part of the structure and which aren’t.
Thus, the segmented region will too easily contain undesirable portions of the
image in some places and lack portions in other places.
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Figure 4.3: Examples of 3D watershed segmentation. The top left picture
is the initial slice while the other three are the same slice segmented with
different sets of parameters as follows: Top right: threshold = 0.08, level =
0.07. Bottom left: threshold = 0.10, level = 0.07. Bottom right: threshold =
0.08, level = 0.03. By varying the parameters only very slightly, significantly
different segmentations are obtained
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4.2.2 Attempted corrections

Gaussian filtering, median filtering and anisotropic diffusion were used in at-
tempts to reduce noise and smooth the initial image to improve the performance of
the scheme. However, these types of noise reduction and smoothing also result in
degrading and obscuring the level of detail in the image. Relatively little noise re-
duction would tend to leave the big local gradients relatively untouched, resulting
in severe oversegmentation (too many regions), while too much smoothing would
lead to instances of edges blurring together, resulting in undersegmentation (too
few regions).

4.2.3 Conclusion

The biggest problem with the watershed algorithm is that it is too sensitive to
noise and too conspicuous with regard to the quality of the input image. It is
also too dependent on images to have sharp edges delimiting monotonous regions
to produce good results. The input image would have to undergo considerably
more advanced forms of noise removal for the watershed algorithm to segment
adequately. Thus, it made more sense to abandon the algorithm in favor of an
approach less sensitive to noise in the CT images.

It becomes clear that the replacement algorithm must be very capable of clas-
sifying voxels as belonging to the same region despite some level of intensity
variations and noise in the image.

4.3 The fuzzy connectedness approach

4.3.1 The problems

The fuzzy connectedness algorithm was the second technique tested for 3D lumen
segmentation. Although more robust than watershed, the problem with this tech-
nique is mainly that it is based only on statistical measures of gray level similarity
with no regards to the shape or boundary characteristics of the segmented region.

Generally, an image region which is close in proximity and intensity to the region
of actual interest is too easily included in the final segmentation.
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Figure 4.4: Example of 3D fuzzy connectedness segmentation. The right
upper and lower images are initial slices from the same volume. The left
upper and lower images are the same slices, segmented using the same set
of parameters. This is a typical example of the algorithm segmenting both
too little and too much.
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As the fuzzy connectedness region expands, it will too easily tend to “leak” into
parts of other structures with pixel regions sharing the same characteristics as the
growing region. This is a frequent problem in the segmentation of the lumen,
as the aorta runs parallel to the spinal column and through the hip. Parts of these
regions consist of dense tissues and are often very similar in graylevel to the aortic
lumen with injected contrast.

Although the end result of the segmentation is a single region, this region will
frequently contain parts of vertebrae or parts of the hip or both. An example of this
is shown in figure 4.4. A scheme would have to be implemented to automatically
analyze the segmented image and remove such unwanted artifacts.

4.3.2 Attempted corrections

Techniques for smoothing, contrast adjustment and thresholding were explored in
order to correct the problems with this scheme, with little success in removing
the core problem. While regions with a degree of similarity are indeed detected
and segmented despite variable intensity levels, the region grows too arbitrarily.
As with the watershed approach, this results in both oversegmentation and un-
dersegmentation of the input. As these problems are characteristics inherent to
the segmentation algorithm and image data in question, it is something further
preprocessing doesn’t easily solve. Also, the threshold parameters, used by the
algorithm, has to be adjusted for every individual data set, and automatically es-
timating the thresholds that gives an appropriate segmentation for each individual
data set is not a trivial task.

4.3.3 Conclusion

The biggest problem with fuzzy connectedness is that there are too few restric-
tions imposed on the development of the front of the expanding region. Although
the algorithm shows promising signs of being able to cope with the type of im-
ages in question, it ultimately falls short of the goal of segmenting the lumen.
Again, the input would have to undergo much more advanced preprocessing for
this algorithm to produce good results.

Although the application of fuzzy connectedness overcome the fundamental prob-
lems of the watershed algorithm, there is no way to impose rules on the shape of
the expanding front by using this scheme. This gives us few means to avoid the
inclusion of irrelevant image regions with characteristics similar to what we’re
interested in. Thus, we see that the ability to model and place restrictions on the
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evolving front is very desirable, and such a scheme will likely be more capable of
producing a more satisfactory segmentation of the structure we are looking for.

4.4 Implementing level sets

4.4.1 Background

As the results of watershed and fuzzy connectedness methods were deemed un-
satisfactory, and as their characteristics and capabilities were ultimately found to
be insufficient for the purpose of solving the problem, they will not be discussed
in further detail in this text. Level sets was the third technique tested for seg-
mentation. Using the current framwork for level set segmentation in ITK, 3D
segmentation of the lumen was done, and both 3D and 2D segmentation of the
lumen was also performed. The results were generally very pleasing.

4.4.2 Manual initialization

The automatic segmentation procedure is initialized by manually selecting four
initial values in the CT image.

Prior to segmentation, the CT image is examined and a subvolume containing the
stent graft is delimited by manually selecting two slices,zupper andzlower. This
subvolume consists of all voxels between, and including, these two delimiting
slices, and contains the entire anatomical region we are interested in. The loca-
tions of the two slices are illustrated in figure 4.5. When the segmentation process
is initiated, only this subvolume is actually processed.

Additionally, two seed points are selected manually to aid the process. The first
seed point is a voxel located somewhere within the lumen region. This point
is used to initiate the lumen segmentation procedure after preprocessing. The
second seed point is a voxel located somewhere within the thrombus, between the
lumen and the outer aortic wall. This point will be used to sample an appropriate
grayvalue, which is used to mask the segmented lumen region, before segmenting
the thrombus and outer aortic wall. The location of the two seed points are also
illustrated in figure 4.5.

When the segmentation commences, the subvolume delimited by the sliceszupper
andzlower is extracted. The lumen is segmented first, and then the obtained struc-
ture is used to aid the segmentation of the thrombus.
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Figure 4.5: The four initial values selected through the manual initialization
of the CT segmentation.

Figure 4.6: Illustration of the desired results of the segmentation process.
To the left, the region acquired by lumen segmentation. To the right, the
region acquired by thrombus segmentation.
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The desired outcomes of these two steps are illustrated in figure 4.6. When the
segmentation of a structure is completed, the processed subvolume is re-inserted
in the correct position into a volume of the same size as the original input.

4.4.3 Automatic lumen segmentation

The lumen is segmented in 3D using the level set method.

The aortic vessel structure is generally not visible in all slices of the CT volumes.
Especially, it tends to be obscure in the lower slices of the image, below the bi-
furcation point. If the image volume is not delimited by the two slices, as shown
in figure 4.5, the evolving level set region may eventually tend to grow into ir-
relevant parts of the image or the segmentation may become inaccurate in image
regions where traces of the vessel structure gradually disappear. This will be of
no concern if a subvolume is properly delimited prior to segmentation.

When the lumen segmentation commences, a tiny initial volume is initialized
around the seed point. The initial volume may be of any shape, as long as it
is completely confined within the edges of the lumen. The level set algorithm will
then grow a region from this initial volume until it occupies the aortic lumen in
its entirety. At first, the small volume will expand evenly outwards. As the ex-
panding region is constrained by the edges delimiting the lumen in the potential
image, it will progress to expand mostly upwards and downwards. Eventually, it
is contained by the two slices delimiting the subvolume, and the volume will stop
growing. As the measured growth of the region drops below a specified limit, the
lumen segmentation is ended.

4.4.4 Automatic thrombus segmentation

The thrombus is segmented in both 3D and 2D slice-by-slice using the level set
method.

The thrombus is a much harder region to segment than the lumen. The outer
aortic wall and the aneurysm may at times be very hard to distinguish from the
surrounding soft tissues, and edge information may be scarce or even missing
from the potential image. In such cases we hope that the possibilities of curvature
restriction in the level set algorithm will prove to be useful.

To segment the thrombus, the intensity value sampled from the thrombus seed
point is initially used to mask the previously segmented lumen structure, so that
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the traces of the lumen edges will be eliminated when a new potential image is
produced.

When we segment the thrombus, the obtained segmentation of the lumen is used
as the initial level set. This is practical as it is located completely within the bor-
ders of the outer aortic wall. Since the masking procedure has now removed the
edges which constrained the growing region when we segmented the lumen, the
initial level set will now expand freely until it is constrained by the next boundary,
which is that of the outer aortic wall. The two selected slices delimiting the sub-
volume constrains the volume expansion, as it did before. As when segmenting
the lumen, when the measured growth of the region falls below a specified limit,
the segmentation stops and the thrombus segmentation is complete.

4.4.5 3D segmentation of the lumen

4.4.5.1 Overview

The goal of the 3D lumen segmentation is to segment the inner aortic wall. The
segmented region will include the aorta through the lower abdomen, from below
the renal arteries, to slightly past the bifurcation point in the lower abdomen, in-
cluding the top of the iliac arteries.

4.4.5.2 Preprocessing

Figure 4.7 shows two examples of slices from the initial volume. As can be seen
in this figure, the graylevel can vary quite substantially from voxel to voxel. This
means that even in regions where the graylevel intensity is relatively monotonous
on a big scale, the intensity values can be quite variable between single adjacent
voxels. This is an unfortunate characteristic when we want to detect edges in the
image later on, since edges are marked by intensity changes in the image.

To remedy this problem, we first employ a smoothing filter. The gaussian filter
blurs an image by reducing detail and noise at the voxel level, while leaving struc-
tures and regions on a bigger scale relatively intact. The degree of smoothing is
determined by the variance of the gaussian; a bigger variance means a greater de-
gree of smoothing. Thus, a gaussian outputs a weighted average of each voxel’s
neighborhood, with the average weighted more towards the value of the central
voxels. The result of gaussian filtering can be seen in figure 4.8.
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Figure 4.7: Two initial slices from the same unfiltered volume. In the left
slice, taken from below the bifurcation point, the lumen can be seen as two
bright round regions next to each other in the middle of the picture. In the
right slice, taken from above the bifurcation point, the lumen is seen as a
single bright region.

Figure 4.8: Gaussian filtered image, created with DiscreteGaussianImage-
Filter (variance = 0.9).
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Through experiments, the range of values for the variance found to work best is
in the range 0.75 to 1.0. By selecting values below this range, the potential image
will tend to contain too much noise, reducing the quality of the segmentation.
Selecting values above this range, leaves us with an image with washed-out edges,
again reducing the quality of the segmentation, as the segmentation will tend to
“leak” into surrounding areas more easily.

Experiments indicated that although an even greater degree of smoothing would
be necessary to achieve a better segmentation, further use of the gaussian filter
would reduce the quality of the edges too much. On the other hand, the median
filter was found to accomplish the task of more smoothing quite well, and is there-
fore applied to the gaussian filtered image for further effect.

The median filter iterates over each voxel in the image. For each voxel a median
value is calculated from a cubical region with radiusr around the voxel, wherer
is defined by the user. For a three-dimensional image, this region is typically a
cube containing(2r + 1)3 voxels. The median filter is a robust average, since a
single unrepresentative voxel in the neighborhood does not significantly affect the
median value. Also, since the median value is actually one of the voxels in the
neighborhood, the median filter doesn’t create any new unrealistic voxel values
when the filter is crossing an edge with large differences in graylevel values, for
example. This makes the median filter much better at preserving edges than the
very closely related mean filter and the gaussian filter.

Experiments showed that if the gaussian filter is applied after the median filter the
result is an image with weaker edge characteristics, and, later on, the final image
is much more likely to be oversegmented. The result of applying the median filter
after gaussian filtering can be seen in figure 4.9.

After these initial steps to smooth the image, it’s worth observing that, at this
point, the areas in the image, which are similar in intensity on a regional level,
contain voxels that are much closer in intensity values than they were to begin
with. This is of course what we set out to achieve.

Thus, it makes sense to shift our attention from considering the image at the voxel-
level to looking at things at the region-level. That is, in order to create the best
possible potential image, we want the region of interest (the lumen in this case) to
be as distinguishable as possible in intensity from the surrounding regions, thereby
increasing the edge gradients. One way to accomplish this is to increase the image
contrast.

Contrast enhancement of the image was implemented follows: First, two threshold
intensities are selected. All voxels with intensities below the lower thresholdtlower
is set to the minimum intensity,imin (0 in our case), and all voxels above the upper
thresholdtupper is set to the maximum intensityimax (255 in our case). Voxel
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Figure 4.9: Median filtered image, created with MedianImageFilter
(radius = 2).

intensities in the range betweentlower andtupper are redistributed according to the
following equation:

ivoxel =
ivoxel − ilower
iupper − ilower

imax.

As already noted,imax is the maximum possible intensity value, andivoxel is the
intensity of the voxel to be recalculated. The upper and lower threshold intensities,
iupper, andilower, are given relative toimax by

ilower = tlower · imax
iupper = tupper · imax,

wheretlower andtupper are values between 0 and 1.

Adjusting contrast generally helps to reduce the impact of the varying intensity
levels introduced by the data conversion process described earlier. As a lot of
voxels in the lumen region will be thresholded by the upper intensity limit in the
process, the region becomes more uniform. Edges will also show up more clearly,
and it is easier to distinguish between regions of significantly different intensities.
Without adjusting the contrast at all, the segmentation will generally be poor or
sometimes unacceptable with frequent undersegmentation. Adjusting it too much
will usually lead to oversegmentation and generally a structure containing a sig-
nificantly less detail than can be seen in the original image.

Thus, it is important to take great care when we adjust the intensity level using
thresholds in this way. Generally, we have attempted to adjust the contrast as
much as possible, but without losing important details in the image. Contrast
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adjustment is of great help in segmenting the image, and especially for images
with weak intensity characteristics.

Through experiments, the values found to produce the best results are given by:

0.20 < tlower < 0.35 and 0.65 < tupper < 0.80.

Selecting values from these intervals will generally produce good segmentations.
For the segmentations performed, the values are set totlower = 0.275 andtupper =
0.667, giving ilower = 70 andiupper = 170. Figure 4.10 shows the output after
increasing the contrast in the image.

Figure 4.10: Contrast adjusted image (ilower = 70 andiupper = 170).

The gradient image is then calculated as seen in figure 4.11. As desired, the image
features regions with low intensity in regions where the intensity in the original
image is homogeneous and higher intensities in regions where the graylevel is
changing rapidly.

The dynamic range of the image is then optimized, which means that we increase
the span of the graylevels so that it covers its maximum possible range. The voxel
intensity values are redistributed linearly so that the voxel with the lowest value
gets intensityimin, and the voxel with the highest value gets intensityimax.

The image in figure 4.12 is what we convert to a potential image for the level set
filter. Creating a potential image involves scaling all intensity values in the image
according to the formula

P (I) = e−|I|,

whereI is the intensity of the image used as input.
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Figure 4.11: Gradient magnitude image, created with GradientMagni-
tudeImageFilter.

Figure 4.12: Gradient image with optimized dynamic range, created with
RescaleIntensityImageFilter (OutputMinimum = 0, OutputMaximum =
255).
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Ideally, the resulting potential image has values equal to zero in regions with con-
stant intensity and intensities close to one at the edges. In practice, this is hard
to achieve perfectly, but as long as the edges delimiting the region of interest are
much stronger than edge traces found in the interior of the region, this will gener-
ally not be a problem.

4.4.5.3 Segmentation

After these preprocessing steps, we can finally initiate the segmentation. As a first
attempt at applying the level set approach, the fast marching method, described
in section 3.5.4.8 was tested (FastMarchingImageFilter in ITK). This special case
applies to our problem because the speed of the evolving front we observe never
changes sign, as it always moves outward from the initial level set. The advan-
tage of this method is it’s speed, as it can do a segmentation much faster than the
general level set method. Its most serious drawback however, is that it does not
encompass the same possibilities for restraining the curvature as does the general
method. Thus, it turns out to have a weakness very similar to that of the fuzzy
connectedness algorithm tested earlier, as the solution will tend to evolve into
surrounding regions even if only very small sections of edges are missing in the
potential image. This was quickly discovered upon testing the algorithm, as over-
segmented images were frequently the result, and for this reason fast marching
was abandoned in favor of the general level set approach.

The level set filter in ITK takes as input the potential image and the image of the
initial level set surface. A tiny volume in the shape of a3 × 3 cube is initialized
around the seed point. This initial volume of 27 voxels serves as the initial level
set. (A volume is initialized because the ShapeDetectionLevelSetFilter in ITK is
unable to grow regions from a single voxel. This has no negative consequences
for us, however.) A set of numerical parameters is also passed to the filter. These
numerical parameters will be further explained in the following.

The level set algorithm itself doesn’t specify any stopping criteria for the segmen-
tation, as it is only a set of rules for how to evolve the relevant interface. Rather
than just have the algorithm execute a large number of iterations, and then stop,
stopping criteria are applied to halt the evolution of the solution to achieve the
best possible segmentation.

The implemented method works by having the level set filter iterate on the image
for a specified number of iterations, after which stopping criteria are checked.
If the stopping criteria are met, no further segmentation is performed, and the
segmented image is postprocessed. If not, the level set is reinitialized, using the
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currently segmented region as the new initial level set, and the iteration continues
again for the specified number of iterations. This procedure goes on until the
stopping criterion is met.

The implemented stopping criterion is based on a measure of the growth of the
segmented region, which is checked after the specified number of iterations. The
growth of the segmented region is measured as the ratio of the voxel count in
the most recently segmented region relative to that of the previous one. This
ratio is a numberr, where0 < r ≤ 1. The iteration stops whenr reaches a
certain specified limit, which depends on the application and is found through
experiments. Naturally, the typical ratio is a number close to 1, which indicates
that the process will stop iterating when the solution evolves only very slowly or
has stopped evolving completely.

The exact parameters used for the 3D lumen segmentation are listed in table 4.1.
These values were all determined by experimenting with the implemented setup
until the values that produced the best results were found.

In the table, the parameters “iterations” and “ratio” are the same as those just
described. The parameters “epsilon” and “narrowband” were described in chapter
3. The “timestep” parameter is related to the numerical implementation of the
level set filter in ITK. Although details of the numerical implementation of the
ITK filters are not the focus of this text, a brief description of this parameter is
provided, since it is used explicitly: The timestep controls the speed at which the
solution is allowed to converge from one iteration to the next. The parameter is
used to maintain stability in the solution by limiting the maximum change that a
voxel can make in any one particular iteration. It must be low enough to keep the
solution stable, but should be high enough to keep the solution progressing at a
reasonable rate. (At some point in the future, functionality will be implemented
in ITK to determine this parameter automatically.)

parameter iterations epsilon narrowband timestep ratio
value 10 0.4 4 3 0.998

Table 4.1: The parameters used for the 3D lumen segmentation.

Selecting good values for the timestep, the width of the narrow band and the num-
ber of iterations was done as follows: First, the value used for the timestep was
found through experiments. For values higher than the one listed in table 4.1, the
solution would run the risk of becoming unstable, and for lower values, the so-
lution would progress at a very slow rate. Generally, the progress of the solution
is slow, even for the highest timestep value that produces stable solutions. In this
context, “slow” means that the region will grow with too few pixels over one it-
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eration so that the ratio measure will easily fluctuate too much to be useful as a
convergence criterion if it were to be checked after every single iteration. For this
reason, the highest possible timestep value was used.

Having found a good value for the timestep, the next issue was to determine an
appropriate number of iterations to be executed between each time the stopping
criterion is checked. The difference between the solutions of two consecutive
iterations, using the selected timestep, is still very small. To make it big enough
for our stopping criterion to be viable, we increase the number of iteration between
each check. Starting with one iteration, the number of iterations was increased
until the solution evolved sufficiently between each condition check to make our
ratio test for growth a reliable stopping criterion.

Having accomplished this, the last thing to do was to find the smallest possible
narrow band that would contain the entire progress of the solution for the chosen
timestep and iteration values. Starting with a narrow band of 10, this number was
decreased as much as possible, while still containing the region evolved between
the chosen number of iterations.

Through experiments, it was determined that, for the same preprocessing steps,
the final solution would be very similar by selecting different (reasonable and
working) sets of these three parameters. The primary gain lies in a much faster
convergence to a final solution if a good set of parameters is selected. For an
unfortunate selection of parameters, finding a solution may take hours, while for
a good selection, a solution can be found in a matter of minutes (on a fast PC).
Generally, for these three parameters, the same values were found to work equally
well when segmenting the thrombus in 3D and 2D later on.

Regarding the epsilon value, the edges of the lumen structure are generally very
clear and discernable, and the places where edge information is lacking are usu-
ally few and far between. As explained in chapter 3, the epsilon value regulates
the curvature of the expanding front. A greater value indicates that the front will
tend to evolve more smoothly and uniformly. This has the advantage of keeping
the region from leaking through gaps in the potential image in places where edge
features are weak. Choosing a too big epsilon, close to 1, can make the segmen-
tation stop before the narrowest parts of the aortic structure are fully segmented.
This can typically happen in the iliac arteries in the bottom of the image. Select-
ing very small values, closer to 0, might cause the solution to evolve into regions
on the outside of the lumen, but because of the generally good quality of the po-
tential images, this was found to occur rarely, even for small values of epsilon.
In this case, finding a value for the parameter that produced a good solution was
relatively easy.
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As for the value of the ratio parameter, experiments showed that it was unproblem-
atic to select a value very close to 1, as the progress of the solution (and hence the
growth of the segmented region) would drop off rapidly as the confining edges of
the potential image were reached. Several values were tested for segmenting the
test data, and the value producing the most accurate segmentations was chosen.

The output of the level set filter is a binary image as seen in figure 4.14. A display
of the evolution of front of the region can be seen in figures 4.15 and 4.16.

initialize 3D level set
while (stopping criterion not met)
{

reinitialize 3D level set
for (number of iterations)
{

do one level set iteration
}

}

Figure 4.13: Pseudocode for the 3D level set segmentation of the lumen.

Figure 4.14: Slices from the 3D level set filtered image, created with Sha-
peDetectionLevelSetFilter. (The numerical parameters used are listed in ta-
ble 4.1.)
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Figure 4.15: 3D level set filtering of the lumen, showing the evolution of the
solution. From top left to bottom right, the images show the initial cubical
level set and the segmented lumen region after 10, 20 and 30 iterations.
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Figure 4.16: 3D level set filtering of the lumen, showing the evolution of
the solution. From top left to bottom right, the images show the segmented
lumen region after 40, 50, 60 and 100 iterations. The lower right image is
also the final solution.
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4.4.5.4 Postprocessing

In the postprocessing step, we wish to improve the shape of the segmented region,
remove sharp corners and generally smooth the edges of the segmented region so
that it conforms better to the actual anatomy of the lumen. A variety of techniques
for smoothing the edges of the segmented region were tested, among them gaus-
sian filtering with thresholding, dilation and erosion filtering and median filtering.
(Using Fourier filters was also thought of, but ITK doesn’t yet contain any func-
tionality for Fourier filtering.) Of these methods, the median filter was the filter
producing the best results. The problem with the median filter however, is that it
is very slow, especially when the filter radius is big and the image to be filtered is
in 3D. Specifically, even using a relatively small radius of 2 (or 3 later on) means
that the filter, for each voxel in the image, has to sort a total of 125 and 343 vox-
els respectively. The typical CT test image contains about108 voxels. Using the
MedianImageFilter in ITK, with a radius of 3, this task took approximately 15
minutes (on a fast PC).

Figure 4.17: Binary median filtered image, created with BinaryMedianIm-
ageFilter (radius = 2).

Rather than dismiss the filter completely (which would also have implied less
satisfactory results) because of its time penalty, it was decided to try to find a
way of increasing performance specifically for filtering of binary images. The
optimized filter developed uses the following two facts:

• Only the subportion of the image containing the segmented object needs to
be filtered.

• Since the image is binary, the median can be obtained by simply counting
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the voxels rather than sorting them. When more than half the voxels in a
neighborhood has been found to be of either one of the two intensity values
represented in the image, the median has been obtained.

Using these optimizations, the new BinaryMedianImageFilter processed the
aforementioned image in about 30 seconds, producing the exact same results.
The filter was subsequently submitted to the ITK developers and included in ITK
[BINAR-02]. The binary median filtered image is shown in figure 4.17.

The end result of the lumen segmentation, a rendered 3D model of the obtained
region, can be seen in figure 4.18.

Figure 4.18: Rendered model of the lumen region segmented using level
sets in 3D.
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4.4.6 3D segmentation of the thrombus

4.4.6.1 Overview

The 3D thrombus segmentation is performed by using the segmentation of the
lumen as the initial level set, advancing the position of the front outwards in a
similar manner as before until it is constrained by the edges of the outer aortic
wall and the stopping criterion is met.

4.4.6.2 Preprocessing

To begin with, the same preprocessing steps as were used for segmenting the
lumen were tested. However, the resulting segmentation turned out to be unsatis-
factory. This was mostly due to the contrast enhancement, which would tend to
enhance differences between graylevels in the thrombus, thus amplifying inten-
sity variations that lead to unfortunate characteristics in the potential image. A
different preprocessing pipeline had to be devised for the thrombus segmentation.

Figure 4.19 shows two slices from the initial image.

Figure 4.19: Slices from the initial unfiltered image.

When the thrombus is segmented, we want to make sure that there are no interfer-
ing edges between the initial level set and the thrombus border. For this reason,
we need to mask the brighter voxels of the lumen region to the darker intensities
characteristic of the thrombus region surrounding it. Thus, the edges of the lumen
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won’t interfere when we segment the outer aortic wall, as they will be eliminated
from the potential image.

The masking is done as follows: First, the segmented lumen structure is very
slightly dilated by using a gaussian, so that it covers slightly more voxels than
were actually segmented. This is done to ensure that all the brighter pixels that
produce edge traces around the lumen region will be masked. The voxels of this
dilated structure are then copied into the CT image subvolume using the intensity
value of the thrombus seed. The actual intensity value of the thrombus seed point
is determined by selecting the median intensity from a3 × 3 × 3 neighborhood
in the initial image 4.19, with this neighborhood centered on the seed voxel. The
result after pasting the slightly expanded lumen region into the initial image can
be seen in figure 4.20.

Figure 4.20: Slices from the initial image after the segmented region has
been masked.

Care must be taken to not dilate the region too much, as we will run the risk of
masking pixels outside the thrombus region. On the other hand it’s important not
to mask too small an area, as segmentation of the thrombus will be much more
difficult if traces of the lumen edges remain inside the region of interest. From
experiments, the value found to dilate the area by an appropriate amount is a
variance of 0.1. (An obvious alternative to this procedure would be to mask the
lumen area in the lumen gradient image directly, thereby eliminating the need for
the intensity sample of the thrombus as well. In practice, this approach turned out
to result in a very poor segmentation, as the edges of the thrombus are generally
not very clear in the edge map of the lumen.)

After masking, all voxels with intensities aboveiupper are thresholded by setting
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their intensity value toiupper, as seen in figure 4.21. Note that this is the same value
as used for the upper threshold for contrast enhancement in the lumen segmenta-
tion. As this is an automatically computed threshold, it is not accurate enough to
be effective for removing the lumen edges without the prior masking. However,
used in combination, these two steps were found to remove enough of the traces
of the lumen region for the thrombus segmentation to proceed without significant
problems.

Figure 4.21: Intensity values aboveiupper = 170 have been thresholded off.
Voxels with intensities above this limit have all been set toiupper.

We apply the gaussian operator on this image to reduce intensity variations on a
voxel-to-voxel scale to obtain more uniform regions. The result of this step can
be seen in figure 4.22.

In figure 4.23 we have used the median filter for further smoothing. Again, apply-
ing a median filter for smoothing proved to make regions with similar intensities
more uniform and edges are better preserved compared to simply increasing the
variance of the gaussian operator.

The gradient magnitude image calculated is shown in figure 4.24.

We then optimize the dynamic range of the edge image in exactly the same way
as we did when we segmented the lumen. The result can be seen in figure 4.25.
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Figure 4.22: Gaussian filtered image, created with DiscreteGaussianImage-
Filter (variance = 1.0).

Figure 4.23: Median filtered image, created with MedianImageFilter
(radius = 2).
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Figure 4.24: Gradient magnitude image, created with GradientMagni-
tudeImageFilter.

Figure 4.25: Gradient image with optimized dynamic range, created with
RescaleIntensityImageFilter (OutputMinimum = 0, OutputMaximum =
255). Note how different the edge features in these slices are from those
shown in figure 4.12, especially how the traces of the lumen have been re-
moved and those of the thrombus are more prominent.
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4.4.6.3 Segmentation

The preprocessed image is then passed on to the level set filter to be used as the
potential image. The model of the lumen segmented in section 4.4.5 is also input
to the filter, as the initial level set. The parameters used for this segmentation are
listed in table 4.2.

parameter iterations epsilon narrowband timestep ratio
value 10 0.6 4 3 0.994

Table 4.2: The parameters used for the 3D thrombus segmentation.

Note that a slightly bigger epsilon-value is used this time, compared to the 3D
lumen segmentation. The reason for this is that the edges of the thrombus are
much less prominent in the potential image than was the case with the lumen.
Much bigger portions of the edges will be missing, and there is a greater need to
restrain the expansion of the solution. Decreasing the parameter below the value
in the table easily causes the segmented region to expand beyond the borders of
the thrombus. Increasing it, however, sometimes lead to undersegmentation as the
region stops expanding before the edges of the thrombus are reached.

The ratio parameter used for the stopping criterion is slightly smaller than the
one used for the lumen segmentation. The reason for this is that the edges of the
thrombus are of lower quality than those for the lumen, and it was observed that
the solution can grow very slowly for a very long time before it stops and even
expand beyond the edges if the ratio is set too high. The listed value was obtained
through experiments and is set so that we get the most accurate segmentation. If
set lower, the segmentation may terminate prematurely with undersegmentation
as the result, and if set higher, oversegmentation is more likely to happen.

As mentioned previously, the other parameters values were found to work well,
so no additional changes were needed. The resulting output of this step is shown
in figure 4.27.
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initialize 3D level set
while (stopping criterion not met)
{

reinitialize 3D level set
for (number of iterations)
{

do one level set iteration
}

}

Figure 4.26: Pseudocode for the 3D level set segmentation of the thrombus.

Figure 4.27: Slices from the 3D level set filtered image, created with Sha-
peDetectionImageFilter. (The numerical parameters used are listed in table
4.2.)
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Figure 4.28: 3D level set filtering of the thrombus, showing the evolution of
the solution. From top left to bottom right, the images show the initial level
set and the segmented region after 10, 20 and 30 iterations. Notice that the
initial level set is the same as the segmentation shown in figure 4.18
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Figure 4.29: 3D level set filtering of the thrombus, showing the evolution of
the solution. From top left to bottom right, the images show the segmented
region after 40, 50, 70 and 90 iterations. The lower right image shows the
final segmentation.



84 Experiments and results

4.4.6.4 Postprocessing

Again, we smooth the edges using a binary median filter. The obtained region is
more rugged this time, caused by the fact that the small variations in the potential
image, inside the region of interest, are relatively big compared to the potential of
the edges. (Remember that these variations was not a problem when segmenting
the lumen because the characteristics of the lumen edges were so strong.) Thus,
the need for postprocessing the result is more urgent, so a bigger radius is used
in the binary median filter. The processed output can be seen in figure 4.30. The
rendered end result of the thrombus segmentation is shown in figure 4.31.

Figure 4.30: Binary median filtered image, created using the BinaryMedi-
anImageFilter (radius = 3).
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Figure 4.31: Rendered model of the thrombus region segmented using level
sets in 3D.

4.4.7 2D segmentation of the thrombus

4.4.7.1 Overview

The 2D thrombus segmentation is also performed by using the segmentation of
the lumen as the initial level set. This time, however, we segment the thrombus
slice-by-slice, using the slices of the segmented lumen as the initial level sets.
After all the slices are segmented, they are inserted into a volume of the same size
as the original input to produce a 3D model.
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4.4.7.2 Preprocessing

The preprocessing stage for this segmentation is exactly the same as for the 3D
segmentation of the thrombus described in section 4.4.6.3.

4.4.7.3 Segmentation

The parameters used for this segmentation are listed in table 4.3.

parameter iterations epsilon narrowband timestep ratio
value 10 0.8 4 3 0.995

Table 4.3: The parameters used for the 2D thrombus segmentation.

Compared to the 3D segmentation of the thrombus, the epsilon value has been
increased. When segmenting in 2D, a bigger value for epsilon is needed to achieve
similar results compared to when 3D segmentation is performed. In 3D, when the
algorithm is confronted with a section of the thrombus where edge characteristics
are weak, the algorithm will apply the curvature restraint globally. Frequently,
edge traces are weak only in a few consecutive slices at a time, which often makes
for areas with low potential that are small in height, but bigger in width. In these
cases, it is clearly easier to contain the evolving front if the curvature restraint is
applied to the whole region rather than independently to successive slices. Thus,
a larger epsilon turned out to be required when segmenting in 2D.

Only a minor adjustment is performed on the ratio parameter, compared to the 3D
thrombus segmentation. This is done mostly to compensate for the fact that the
use of a bigger epsilon generally requires more iterations to evolve into a similar
solution, mostly because the evolving front doesn’t pass obstacles in the potential
image as easily, and therefore expands at a slower rate.

Again, the other values were found to work well, so no changes were needed.
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for (all slices)
{

initialize 2D level set
while (stopping criterion not met)
{

reinitialize 2D level set
for (number of iterations)
{

do one level set iteration
}

}
}

Figure 4.32: Pseudocode for the 2D level set segmentation of the thrombus.

Figure 4.33: Slices from the 2D level set filtered image, created using the
ShapeDetectionImageFilter. (The numerical parameters used are listed in
table 4.3.)
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Figure 4.34: 2D level set filtering, showing the evolution of the solution in
one of the slices. From top left to bottom right, the images show the initial
level set and the segmented region after 10, 30 and 60 iterations. The lower
right image shows the final segmentation.
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Figure 4.35: 2D level set filtering, showing the evolution of the solution in
another of the slices. From top left to bottom right, the images show the
segmented region after 10, 30 and 130 iterations. The lower right image
shows the final segmentation.
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4.4.7.4 Postprocessing

In this case, also, the segmented image is postprocessed in the same way as de-
scribed in section 4.4.6.4. The binary median filter was found to be very good for
processing the 2D segmented thrombus image, since using the median voxel of
a neighborhood easily eliminates extreme protrusions or dents in the segmented
region caused by single unrepresentative slices. The result of the median filtering
is shown in figure 4.36. A rendered model of the outer aortic wall is displayed in
figure 4.37.

Figure 4.36: Binary median filtered image, created with BinaryMedianIm-
ageFilter (radius = 3).



Implementing level sets 91

Figure 4.37: Rendered model of the thrombus region segmented using level
sets in 2D.

4.4.7.5 The segmentation error

To evaluate the results of the volumetric segmentations performed, it is desir-
able to measure the difference of the segmented regions to the actual anatomical
regions. The segmented region is usually compared slice by slice to the actual
region segmented manually. As no manual segmentation of the test images ex-
isted, they would first have to be segmented manually if an error estimate was to
be produced. However, since manually segmenting both the inner and outer aortic
walls from all three test images (all of which contain well over 100 slices) would
have been an excruciating and extremely time-consuming task, a compromise was
made to select five slices from each test image. In these five slices, both the inner
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and outer aortic walls were extracted manually, and these manual segmentations
were then compared with the equivalent slices from the automatically segmented
data.

In all three cases the five slices were selected as follows: Slice 1 is the fifth from
the top of the volume, while slice 5 is the fifth from the bottom of the volume.
Slice 3 is located at the point where the diameter of the aneurysm is at a maximum,
and slices 2 and 4 are located 15 slices above and below slice 3, respectively.
Figure 4.38 shows an illustration of the location of the five slices.

Figure 4.38: Illustration of the positions of the five slices used to calculate
the segmentation error.

To measure the error in a slice, a center pixel is selected at the same index in
both the manually and automatically segmented slices. Horizontal and vertical
lines are then traced in both slices until they reach the edges of the manually
and automatically segmented regions. The distance from the center, measured in
pixels, is then recorded. The error, denoted byd, is the positive difference between
the distances in the automatically segmented slice and the equivalent distances in
the manually segmented slice. In the slices where we have a bifurcated structure,
this process is done twice, once for each of the aortic branches. An illustration
can bee seen in figures 4.39 and 4.40.

When the errorsd1 to d4 (andd5 to d8 for slice 5) have been found, the mean error
for each slice is calculated as:

1

n

n∑
i=1

dn,

wheren is the number of distances measured in the slice (4 or 8).
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Figure 4.39: Illustration of the error measures in slices 1-4, above the bifur-
cation point.

Figure 4.40: Illustration of the error measures in slice 5, below the bifur-
cation point. In this case, the segmentation error is measured separately for
both of the iliac arteries.
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The error in millimeters is found by multiplying each result by the pixel spac-
ing. The pixel spacing is the spatial extent of one pixel, in our case measured in
millimeters, given as one number for each spatial dimension.

The measured segmentation errors in millimeters are listed in table 4.4. More
detailed data for the slices of each image can be found in appendix A.

segmentation 1 2 3 4 5 all
lumen 3D 0.47 0.22 0.71 0.70 1.05 0.63
thrombus 3D 1.95 1.05 1.41 1.61 2.02 1.61
thrombus 2D 2.17 1.17 1.41 1.36 1.82 1.59

Table 4.4: Error measures in millimeters of the different segmentations.
The values in each row are averaged over the three segmented test images.

4.5 Implementing mutual information optimization

4.5.1 Background

We want to perform 3D rigid registration using the mutual information metric.
Rigid registration means that only translation and rotation of the two images are
performed to align them. No scaling is performed, as the scale of the CT and US
images are already equivalent. This implies that if the distance between the same
two anatomical points in the two images are measured in voxels and multiplied
by their respective voxel spacings, the distance measured in millimeters will be
the same. Unfortunately, no satisfactory results were obtained using the current
framework for mutual information registration in ITK.

4.5.2 The CT and US image modalities

As noted earlier, the CT data is acquired from patients with injected contrast en-
hancement. In these images, the graft and the lumen appears as a solid region of
bright voxels. The aneurysm around it appears as a region of darker voxels. The
contrast between the lumen and the thrombus is generally good, while the contrast
between the thrombus and surrounding tissues can be much more diffuse.
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Figure 4.41: CT and US images of similar features in the abdomen prior to
manual extraction of the subregions to be registered. The CT and US images
are from corresponding data sets. While the lumen and the thrombus show
up as solid regions in the CT images, it is the edges of these structures that
are the most predominant features in the US images. The lower right US
image also illustrates how US data is often very degraded by noise.
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In the US images, the AAA and the stent graft are the most predominantly visible
structures, and there is hope that these structures can be used as the main feature
to register the images. The metal structure in the graft gives a high amplitude
echo in the US images, and so does the outer aortic wall. These regions show up
as bright voxels, while the space between the graft and the outer aortic wall has
darker intensity.

These different characteristics are illustrated in the images in figure 4.41. In gen-
eral, the intensity maps for CT and US images are very different in that structures
that are bright in the CT volume may be less bright or even close to black in
the US volume. The application of many other common registration techniques
would easily lead to confusion as structure intensities and other image character-
istics don’t match directly. Thus they would have great difficulties matching the
right structures to each other. The appearance of bright edges in the US image
could easily be confused with structures that are bright in the CT volume, such as
bone tissue, for example.

4.5.3 Registering CT and US images

4.5.3.1 Manual preparations

The available ultrasound test data were already resampled to the equivalent of the
CT image resolution. Since the CT image is so big compared to the original US
image (see section 4.1), the resampled ultrasound image will contain a majority
of black voxels, with a relatively small region of actual ultrasound data inside it.

CT images generally also contain a lot of black voxels, as demonstrated in pictures
throughout this text.

If these images are registered the way they are, the large regions of black voxels
will influence the mutual information metric in an undesirable way, as they gen-
erally do not contain information about the anatomical region of interest. When
voxels are sampled, as explained in section 3.6.2.3, there will be a significant
number of (black, black) and (black, non-black) pairs which do not contain pa-
tient information. (Of course, the effect is negative not because the voxels are
black, but because black voxels will mostly be sampled from regions in the im-
ages that doesn’t contain information relevant for registering the images. Black
voxels located within the image regions that actually represent anatomical data
are not a problem.)

To exclude the problematic regions of black voxels from the computation, a small
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subvolume is extracted from both the CT and US images. These two subvolumes
are of the same size and contain the CT and US voxels from corresponding voxel
indices respectively. The volumes are delimited so that they contain only voxels
that represent actual anatomical data obtained from the patient.

4.5.3.2 Full automatization

Since the issue of automatization is important in this report, an explanation is
provided on how this procedure is intended to be fully automated, without the
need for manual extraction of subvolumes from the CT and US images.

Although the US images available for use in this project were resampled to the
same resolution as the CT images, the US images will generally not be resampled
this way, and they will contain only voxels from within the patient’s abdomen.
When the initial transform is executed to initially align the two images before
the registration procedure starts, the ultrasound image, which in the un-resampled
form is much smaller than the CT image, will be transformed into a region of the
CT that contains a majority of relevant voxels. Thus, the irrelevant black pixels
initially causing problems here will generally not be an issue. (Naturally, the
sample pairs used by the mutual information metric will always have to reside
within the region of the smallest of the two images to be registered. The initial
registration performed by the positioning system is accurate enough so that, after
the initial transformation, the volume alignment will generally be good enough to
make the risk of sampling too many irrelevant voxels a non-issue.)

When registering images in ITK, it is usually favorable to take advantage of the
fact that the role of the moving image and the fixed image is not symmetric. This
means that when the CT is the fixed image and the US is the moving image, the
registration process will behave differently compared to when the roles of the two
images are interchanged.

As described in section 1.7.1, the registration process basically takes voxels from
the fixed image and map their spatial location through the registration transform
into the geometric space of the moving image. It is best to use the US as the fixed
image since such a setup is more favorable. The reasons for this has to do with the
resolution of the image data. The US images typically contain around107 voxels,
while the converted CT data contain about108 voxels. As mentioned earlier, both
are 8 bit grayscale.

If the CT is used as the fixed image, each evaluation of the metric will need to visit
108 voxels. (When using the full-size DICOM CT data, this number will easily
grow by an order of magnitude.) Most of the voxels will end up being mapped
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to the outside of the ultrasound image, thus not at all contributing to the metric,
while still using a lot of processing time.

If, on the other hand, the US is used as the fixed image, the computation of the
metric will be visiting about107 voxels. Most of them will be mapped to regions
of the CT image that contain relevant information, thus they are very likely to
contribute to the metric.

(Specifically, when using the mutual information metric this not exactly true, since
a precise number of voxels are selected and the metric is computed only for those
pixels. For the use of most other metrics however, this is a fact important to be
aware of.)

Another advantage of exchanging the role of the images is that the derivative of
the metric uses the gradient of the moving image, and it is generally better to use
the gradient of the CT image than the gradient of the US image. This is also
another reason for using the CT image as the moving image.

Other than this, interchanging the role of the fixed and moving images will simply
result either in a final transformT or its inverseT−1.

4.5.4 The registration procedure

The registration framework in ITK is modular, as explained in section 3.4.3. Thus,
when composing a registration method, each component is relatively independent
of the others. The most critical components though, are the metric and the opti-
mizer.

Before the registration process is started, the images are normalized to have a
mean value of 0 and a standard deviation of 1. This is done to get the intensity
values in the image on the standard form the mutual information metric works
with, and is remniscent of the way we converted gradient images into the potential
images required by the level set filter.

The registration process is started by first applying the initial offset transforma-
tion, which has been produced by the marker and positioning system and is de-
scribed in section 4.1.3. This aligns the images as accurately as the system was
able to record when the images were acquired. Of course, this initial transform is
only applied once, after which the registration method takes over to further refine
the image alignment.

All the voxels in the fixed image are then mapped to the moving image using the
selected registration transform.
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As the voxel values are mapped into the moving image, their spatial position will
generally be mapped to non-grid positions. This means that a mapped voxel does
not overlap exactly with one of the voxels in the other image. The interpolator
then helps determine what the voxel intensity should be.

After this, the metric, that is the mutual information in our case, then evaluates
how well features in the two images match each other. This is done by comparing
the moving image with the transformed fixed image.

Lastly, the role of the optimizer is to keep changing the parameters of the reg-
istration transform, searching for a combination that gives the best value of the
metric. Thus, the execution of the registration method is ultimately driven by the
optimizer.

perform initial transform
for (number of iterations)
{

transform fixed image to moving image
interpolate voxels
evaluate mutual information metric
evaluate optimizer

}

Figure 4.42: Pseudocode for the registration procedure.

A technique known as multiresolution registration was also employed. To save
processing time, both images to be registered may be downsampled to a lower res-
olution, before the registration starts. Registration is performed on the downsam-
pled images for a number of iterations before it continues on the full-resolution
images. The technique is generalized so that the original images may be sub-
sampled any number of times, to different resolutions. When the registration is
completed on one level, it steps up to the next level and the images are registered
again, and so on, until the full-resolution images are registered. This increases the
performance considerably compared to working with the full-resolution images
all the time.

When multiresolution registration is used, the for-loop in figure 4.42 is executed
once for each level, as every single level in the multiresolution framework is a
complete registration in its own right.

The ultimate goal of the registration process is to find the set of values for the
transformation that optimize the metric. The output of the registration is a trans-
formation matrix which can be used to resample the moving image to align it with
the fixed image.
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Following the advice of the ITK developers, two different optimizers were tested:
the GradientDescent optimizer and the RegularStepGradientDescent optimizer.

4.5.5 Using the GradientDescent optimizer

The GradientDescent optimizer implements one of the many variants of gradient
descent. The central parameter in this optimizer is the learning rate. The learning
rate is one of the hardest parameters to adapt in the entire process. It is used by
the Gradient descent in order to compute how long each step should be in the
parameter space of the optimizer.

When we perform rigid registration in 3D, the parameter space is six-dimensional,
consisting of a translation(x, y, z) and a rotation(γ, θ, φ).

The optimizer starts with a particular combination of(x, y, z, γ, θ, φ). It evaluates
the metric for these values and the derivative of the metric with respect tox, y, z
andγ, θ, φ. Using this derivative, the optimizer obtains a gradient direction in
this 6D parameter space(x, y, z, γ, θ, φ). The metric may then be improved by
moving in the direction of this gradient.

To find out how far to move, the GradientDescent optimizer computes the length
of this movement by multiplying the metric-derivative vector by the learning rate.
Naturally, the larger the learning rate, the longer the step will be.

Initially, the easiest thing to do is to use relatively small values for the learning
rate. The size will depend on the values of the metric derivative because what
matters in the end is the product of the metric derivative and the learning rate. To
find good values for the learning rate, the following procedure can be used:

• First, an arbitrary value is selected, for example in the order of10−3.

• A registration is performed and the values of the transform from one iteration
to the next is tracked.

• If the distance moved from one iteration to the next is too big, the learning
rate is reduced.

• If, on the other hand, the distance moved is too low, the learning rate is in-
creased.

A movement in the range of 0.1 to 10 voxels per iteration is usually preferred, but
this is dependent on the application and on the current degree of image alignment.

The value of the learning rate depends on the value of the metric derivative be-
tween the two images. The metric derivative can only be found through testing and
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depends on the nature and content of the images, as well as the type of transform
used. Thus, the only way to find a good value is through experiments.

The learning rate of the GradientDescent optimizer has the serious drawback that
the length of the step is proportional to the derivative of the metric, and it is pretty
hard to get an idea of how this derivative will change as the registration evolves.
For this reason, even if a good learning rate for the initial steps of the registration
is selected, the value may become inappropriate at any moment. In the same way,
low gradient regions in the metric can easily make the step size too big. The
advantage of this optimizer is that it is fast, and it is useful to experiment to find
good initial values for some of the registration parameters before switching to a
different and more robust optimizer.

4.5.6 Using the RegularStepGradientDescent optimizer

The RegularStepGradientDescent optimizer also uses the metric derivative to de-
termine in which direction to move. However, this optimizer applies a different
strategy for computing the step size. The regularStepGradientDescent uses an
independent, user provided, initial value for the step.

This optimizer computes the derivative of the metric with respect to(x, y, z, γ, θ, φ)
and normalizes it, so that only the direction of the derivative is used, and not its
magnitude. This normal vector is then multiplied by the initial step value provided
by the user. This way the first step will always be what the user specified amount
of voxels, completely independent of the value of the metric derivative.

The optimizer will continue using this step size until it advances one step without
any improvement of the metric value. At this point, the optimizer steps back, and
the current step size is multiplied by -0.5, so that its direction is reversed and the
step size is halved. It then proceeds as before, again advancing until the metric
stops improving.

Every time that the direction changes more than 90 degrees, the step length is
divided by two. A good initial value for rigid transforms is 0.1, which is equivalent
to a moderate rotation of about 5 degrees.

The algorithm stops when the step size reaches a minimum value, also provided
by the user.

This is generally a more robust method than the GradientDescent optimizer, with
the drawback that it is much slower.
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4.5.7 Parameter selection

After selecting a metric and an optimizer, the parameters for the chosen methods
that produce the best results must be determined. In general, the most difficult
task in registration is to find a good combination of parameters for the problem.
The challenge lies in finding the parameters that fine-tune a particular approach
for a particular application.

Through correspondence with the ITK developers, it was learned that the selec-
tion of these parameters is a huge and very lengthy process of trial and error. As
of today, there are no documented rules or directions for tuning the parameters for
the use of mutual information. According to ITK developers, it appears that in
the past, the importance of documenting the process of parameter tuning for this
technique has passed relatively unnoticed. As a consequence, the default parame-
ters for mutual information provided in ITK are mostly those found through initial
testing and experiments performed during development.

Mutual information is estimated using two sample sets: one to calculate the singu-
lar and joint probability density functions and one to calculate the entropy integral.
By default 50 samples points are used in each set in ITK. In our tests, values be-
tween 50 and 80 were used, according to the recommendations of the developers.
Using more sample points would make the process extremely slow, running for
hours.

A gaussian kernel was used in the density estimation in the mutual information.
The quality of the density estimate depends on the choice of the kernel’s vari-
ance. The optimal choice will depend on the images in question. It can be shown
that around the optimal variance, the mutual information estimate is relatively in-
sensitive to small changes of the variance. Experiments performed by the ITK
developers have shown that a variance of around 0.4 works well for images nor-
malized to have a mean of zero and a standard deviation of 1.0. Variances in the
range 0.3 to 0.5 were tested.

Selecting the right parameters for the optimizer is critical to reach a good result.
According to the ITK developers, the only way to find what values give the best
results is to experiment, using different values for the learning rate in the case of
the GradientDescent, and the initial step value in the case of RegularStepGradi-
entDescent. The step size and learning rate values used in our tests were both in
the order of10−6 to 101.

The number of iterations in the registration can be set to any amount. A number
of iterations in the orders of103 to 104 were tested, and using a number smaller
than in the order of103 was not recommended, as the images would not have time
to align.
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The number of levels for multiresolution registration can also be varied. The
number of levels used in our tests were between 1 and 4.

A parameter value is also used to scale between the translation and rotation pa-
rameters. This parameter is dependent on the images, and has to do with how
much the edges of an image will move as a result of the image being rotated about
its center. It was recommended that this value be set to approximately the voxel
spacing in millimeters, and values of this order of the voxel spacings were tested.

4.5.8 The problems

Despite collaboration with the supervisors at Sintef Unimed and extensive cor-
respondence with the developers of ITK to find a good set of parameters, it has
so far been found extremely difficult to register US to CT using the registration
methods currently available in ITK.

Using the GradientDescent optimizer with small learning rates of10−6 to 10−5,
the registration will move arbitrarily. It never reaches the correct position, and
the steps are very small, in the range10−2 to 10−1. The result is fluctuations
around the starting point in a random way. Using multiresolution registration,
or changing the other parameters did not produce any observable improvements
in the outcome. When the learning rate is increased up to a certain threshold
(about5 · 10−4 to 1 · 10−3), the step size becomes too big, and the algorithm
will consistently move the two images apart until their respective spatial regions
are completely disjoint. The values of the transform were checked after each
iteration, but there was generally a consistent lack of any pattern to the movement
and direction of the image.

Tests performed with the RegularStepGradientDescent optimizer showed that, re-
gardless of the initial learning rate used, the algorithm would consistently move
the two images apart until their respective spatial regions were completely dis-
joint. Again, applying the multiresolution technique and considerably changing
the set of parameters did not produce better results or observable improvements.

4.5.9 Attempted corrections

Initially, the CT and US images to be registered were not preprocessed in any way
before the registration process started. Using a gaussian to blur the CT and the US
images was tested, using variances between 0.6 and 1.0.
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Smoothing either or both images before registering was also tried, but did not
lead to observable improvements in the results. Attempts at registering the gra-
dient map of gaussian smoothed CT rather than the original CT were also made.
Unfortunately, none of these changes led to any observable improvement in re-
sults.



5 Discussion and conclusions

In this chapter, we discuss our findings and results on the use of ITK for medical
segmentation and registration and sum up our work. A conclusive evaluation of
ITK is also provided.

5.1 Segmentation

The segmentation scheme presented in this report performs automatic segmenta-
tion of both the inner and outer aortic wall in postoperative CT images of patients
with AAA, using 2D and 3D level sets, requiring the manual initialization of only
four values. The spatial extent of the segmentation includes a region from below
the renal arteries to the top of the iliac arteries, including the aortic bifurcation
point in the lower abdomen.

The inner aortic wall has been segmented using the level set method in 3D. The
average segmentation error in this case is 0.63mm, which implies that sub-voxel
accuracy has been achieved. The outer aortic wall has been segmented using the
level set method in both 3D and 2D. In this case, the average errors measured were
1.61mm and 1.59mm respectively. This is an error margin of slightly more than
one voxel. The segmentation error for the inner aortic wall is generally smaller
than that of the outer aortic wall, and this can mainly be attributed to the much
lower visibility of the outer aortic wall in the CT images.

Although schemes to segment AAA using level sets are also presented in
[LONCA-01] and [MAGEE-00], these do not focus on, or detail, how to auto-
mate the presented methods. The deformable model scheme for semi-automatic
segmentation presented in [BRUIN-02], produces a segmentation with a smaller
error, compared to the one presented in this text, but also requires extensive man-
ual initialization and user intervention. It also avoids the challenges associated
with the aortic bifurcation by segmenting the dilated aortic tissue only. Further



106 Discussion and conclusions

searches indicate that an automatic scheme for segmentation AAA such as the
one documented in this report, has not previously been presented.

More testing needs to be performed to determine whether it is best to use level
sets in 2D or 3D for segmentation of the outer aortic wall. The current results
suggest that the error is very similar for both. However, it is easier to impose
varying structure constraints when segmenting slice-by-slice, as conditions may
be imposed on each individual slice when segmenting in 2D. This is in contrast to
the 3D segmentation where the whole volume is handled as one single structure.

Using the current framework for level set segmentation in ITK and the available
test data, it is likely that the achieved results are close to as good as one can
realistically expect. As ITK is further developed, there are good prospects for
improvement of the scheme in the future.

5.2 Registration

A scheme to perform automatic registration of CT and US images of AAA using
mutual information has been discussed. The tests performed indicate that an ap-
proach using the framework currently available in ITK, may not by be sufficient.
Despite intense collaboration at Sintef Unimed and extensive correspondence with
the developers of ITK, no set of parameters providing satisfactory registration of
the CT and US data was achieved.

While the process of determining the right parameters for the registration is indeed
a huge process of trial and error, the fact that no improvement in results was
observed, despite using parameter values as recommended by the ITK developers,
is alarming. Between the extreme cases of the registration fluctuating randomly
about its initial state and the two volumes moving completely apart, it would be
reasonable to expect to see the registration moving in a way more or less consistent
with our intentions. This was not found to be the case and was never observed.
These results may be due to several factors.

The quality of the ultrasound data may be too poor, with too much noise, so that
there is simply not enough mutual information in the sample pairs from the CT
and US images for the mutual information algorithm to actually register them.
Similarly, the converted CT data has been downsampled and contain only 25 % of
the original information. Performing registration using the original CT data rather
than the converted data would also be interesting. Using the original image data
of higher resolution and without intensity artifacts may possibly produce better
results. Although mutual information is basically immune to the differences in
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graylevels due to the different image modalities involved, it cannot do much if the
images in question don’t actually have enough potential matching regions.

Exploring other algorithms, such as the one described in [ROCHE-01], may be a
worthwhile option over the risk of spending months attempting to find working
parameters for a registration algorithm that may or may not be appropriate for the
problem. At this time though, this method is not available in ITK.

The mutual information method for registration is the most promising method the
ITK toolkit has for registration of CT and US images at the time of this work. Still,
it may be that a different algorithm is needed to achieve better results. Although
it may be desirable to perform further testing to confirm or deny the results of the
work presented on registration of CT and US images in this text, it is likely that
the methods of the existing registration framework available in ITK is insufficient
for registering the image data used in this project.

5.3 Conclusive evaluation of ITK

As mentioned in section 3.4.6, the development of this project is for the most part
based on intermittent versions of ITK released after the first beta. The first beta
became available in February 2002, shortly after this project was begun, and the
second beta was ready in June. Although it was initially seen as desirable to stay
with the beta version of ITK to ensure full compatibility between all the pieces
of software written for this project, the increasing requirements for more complex
functionality as development went on, intermediate development versions of the
toolkit had to be used instead. In practice, frequent upgrades were necessary to
get access to new and essential functionality.

Although the first beta versions of ITK have been released, the software remains
in very active development, and the first fully developed version is still months
away. The sheer increase in the amount of source code well illustrates the pace of
development of the toolkit. Over the span of four months, from March to June, the
code base of ITK grew from 21MB to 32MB, an increase of more than 50 %. It
is not always easy to keep up with the latest development of such a large software
package, and the constant process of development, redevelopment and modifica-
tion of existing functionality may sometimes lead to undesirable situations for the
end user.

Since of the code in ITK is still relatively new, the coding style isn’t always con-
sistent, which means that it may be necessary to perform the same type of function
calls in slightly different ways, depending on what filter or functionality is used.
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This can make the API confusing, especially when the API is the only documenta-
tion available much of the time. Also, new functionality is added and changed on
a regular basis, which can make software development difficult. The typical sce-
nario encountered is the one where new features are added to the software, which
the at some point is found to be necessary to solve the problem the user is working
on. When an upgrade to the more recent version of the software is made, the new
version turns out to contain other changes as well, requiring further modification
of the user’s own code.

The whole level set code framework in ITK has also been under redevelopment
for the full length of this work, and the current level set implementation, used in
this project, will eventually be removed from the codebase at some point in the
future.

The lack of tutorials, books and documentation in general makes ITK difficult to
learn and use. Thus, there was quite some time of learning before useful code was
produced for this project. Also, the lack of a DICOM reader and a general lack of
robust IO-modules at the time the development of this project started, meant that
essential functionality to get data in and out of ITK had to be implemented before
the relevant tasks could be considered. Time-consuming reading of source code
to understand how to implement basic and absolutely necessary IO-functionality,
with the API as the only documentation available, is not the kind of situation a user
wants to be in when everything is new and time is the most scarce and valuable
resource of all.

Despite these problems and drawbacks, it should be kept in mind that most of
them are caused by the fact that ITK is still in a stage of relatively early devel-
opment, and thus cannot by any means be expected to be fully functional for all
intended purposes yet. Thus, for most medical imaging communities, it is a lit-
tle too early to make full use of the toolkit today, but in the longer run, ITK has
great potential. In time, it is quite possible that ITK will achieve a similar sta-
tus in medical imaging communities as VTK (the visualization toolkit) enjoys in
visualization communities today.

5.4 Conclusion

The starting point of this project was to perform segmentation and registration
of abdominal aortic aneurysm as seen in CT and US images, using the existing
framework provided by ITK. The achieved results of the segmentation indicate
that ITK is a medical imaging tool with great potential. The achieved results of
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the registration indicate that it is a bit too early to make full use of the software in
clinical applications. The current limitations of the ITK framework are thought to
have been met for both of our specific problems, and thus the goals of this project
have been achieved.





6 Future work

In this chapter a number of suggestions are made for possible improvements of
the segmentation and registration. Some of the future improvements planned for
ITK by the ITK development team are also mentioned.

6.1 Improving the segmentation scheme

Several improvements can be made to the segmentation scheme, some of which
require only more time to implement, while others depend on the further develop-
ment of ITK.

The robustness of the method may be improved by further testing it on more data
sets and adjusting the various parameters to better fit a wider variety of input.

One of the most interesting improvements would be further improvement of the
automatization to require fewer initialization values. One possibility would be
to use some means of pattern recognition analysis (such as a neural network) to
find a suitable seed point for the lumen segmentation. An initial analysis with the
purpose of detecting characteristic regions could possibly eliminate the need to
manually initialize the seed point to initiate the segmentation. The second seed
point may be eliminated if some way of creating a gradient image for the thrombus
can be found without relying on grayvalue masking. With such improvements, the
new scheme would come very close to complete automatization.

It is also desirable to improve the accuracy of the method when segmenting data
sets with severe lack of boundary information. The promising active shape model-
based method presented for thrombus segmentation in [BRUIN-02], turns out to
be robust in terms of improving accuracy with regard to this issue, but also has the
formerly mentioned problems of the deformable model-based methods. Adding a
deformable model-based method as a final refinement step to improve on the level
set segmentation might still be an interesting possibility. This would also be a
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way of implementing a more prominent use of a priori knowledge of the shape of
the (diseased) aortic structure. Implementing a method for inter-slice correalation
when segmenting in 2D would also be very useful to improve the accuracy.

6.2 Improving the registration

According to the ITK developers, recent papers have proposed variations of mu-
tual information in which gradient information is added. Such methods are not yet
available in ITK, although they might well be included in the future, as published
results using these methods seem to be positive so far. Especially, a much more
efficient procedure for finding the optimal parameters for mutual information reg-
istration is desirable.

6.3 Improving ITK

Although improving ITK is not a part of this project, the following overview of
things to come is provided for completeness. The ITK development team has
reported to be aware of the following issues to be addressed in the near or fore-
seeable future:

• Better documentation and more examples will be added.

• A tutorial on ITK will be presented at the IEEE Visualization 2002 confer-
ence.

• The need for a book to provide organized and complete information on the
toolkit has been acknowledged.

• The need for more robust and uniform code has been identified and is being
worked on.

• The IO modules will be improved and DICOM support will be added.

• Wrapping for more scripting languages will be added.

Invitations are generally open for anyone to contribute new algorithms and func-
tionality to the toolkit.
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6.4 Further development

In the bigger picture, the work presented in this report is a step on the way to
implement the following scheme:

1. Segment the CT image.

2. Register the CT and US images.

3. Segment the US image using deformable registration.

Exploiting multimodal image analysis and using both ultrasound and CT diag-
nostics rather than CT alone can pave the way for reduced time and costs in the
treatment of diseases in general, not just AAA. The hope is that, by combining
post-surgical CT image data with more recently gathered ultrasound images, con-
dition assessment can be done by representing what is already known along with
more recently acquired information in a single model, thus providing better in-
formation and a better overall picture. If this can be done, costs can be greatly
reduced by relying more heavily on ultrasound equipment which is considerably
cheaper, and both easier and safer to use than CT.





A Tables and charts

A.1 Error measurements of the 3D lumen
segmentation

The following three tables give more detailed information about the measurements
of the segmentation error. Thed-values have been obtained as described in section
4.4.7.5.

slice d1 d2 d3 d4 d5 d6 d7 d8 sum avg(vox) avg(mm)
1 0 0 1 0 1 0.2500 0.3467
2 1 0 0 0 1 0.2500 0.3467
3 0 0 1 1 2 0.5000 0.6934
4 0 0 1 1 2 0.5000 0.6934
5 1 1 0 1 1 2 0 1 7 0.8750 1.2134

All 0.4750 0.6587

Table A.1: Dataset 1 (AAA43).

slice d1 d2 d3 d4 d5 d6 d7 d8 sum avg(vox) avg(mm)
1 1 0 0 0 1 0.2500 0.3213
2 0 0 1 0 1 0.2500 0.3213
3 0 0 1 0 1 0.2500 0.3213
4 0 0 1 1 2 0.5000 0.6426
5 0 0 0 2 0 2 1 0 5 0.6250 0.8033

All 0.3750 0.4820

Table A.2: Dataset 2 (AAA52).
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slice d1 d2 d3 d4 d5 d6 d7 d8 sum avg(vox) avg(mm)
1 0 1 0 1 2 0.5000 0.7520
2 0 0 0 0 0 0.0000 0.0000
3 0 1 1 1 3 0.7500 1.1279
4 0 1 1 0 2 0.5000 0.7520
5 1 1 0 1 1 1 0 1 6 0.7500 1.1279

All 0.5000 0.7520

Table A.3: Dataset 3 (AAA59).
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A.2 Evolution of the lumen 3D segmentation

The three following tables include more detailed output of the 3D level set seg-
mentation of the lumen of the three test datasets. The first column in the tables
specifies the number of iterations performed. The second specifies the total num-
ber of voxels in the segmented region at the time of the previous check of the stop-
ping criterion. The third column specifies the number of voxels in the segmented
region at the following check of the stopping criterion (after 10 iterations). Fi-
nally, the fourth column specifies the ratio of the pixel count in the current region
to the previous one. In the test setup, the initial level set was a3× 3× 3 cube, and
thus the size of the first initial volume is always 27 (the first value in the second
column). The iteration was halted when the ratio was equal to, or greater than,
0.998, as can be seen from the final ratio value in each table.

Figure A.1: The chart shows the growth measure ratio for each check of the
stopping criterion, performed every 10 iterations. Notice how it converges
almost asymptotically to 1.
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iteration initial current ratio
10 27 2023 0.013347
20 2023 8934 0.226438
30 8934 13855 0.644821
40 13855 18041 0.767973
50 18041 21733 0.830120
60 21733 23953 0.907318
70 23953 25296 0.946909
80 25296 26507 0.954314
90 26507 27128 0.977109
100 27128 27465 0.987730
110 27465 27566 0.996336
120 27566 27619 0.998081

Table A.4: Dataset 1 (AAA43).

iteration previous current ratio
10 27 1980 0.013636
20 1980 9171 0.215898
30 9171 15926 0.575851
40 15926 21140 0.753359
50 21140 25877 0.816942
60 25877 30478 0.849039
70 30478 33512 0.909465
80 33512 34607 0.968359
90 34607 34920 0.991037
100 34920 34988 0.998056

Table A.5: Dataset 2 (AAA52).
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iteration previous current ratio
10 27 1984 0.013609
20 1984 8836 0.224536
30 8836 15190 0.581698
40 15190 20528 0.739965
50 20528 25584 0.802376
60 25584 29055 0.880537
70 29055 31024 0.936533
80 31024 32392 0.957767
90 32392 33204 0.975545
100 33204 33405 0.993983
110 33405 33466 0.998177

Table A.6: Dataset 3 (AAA59).
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A.3 Error measurements of the 3D thrombus
segmentation

slice d1 d2 d3 d4 d5 d6 d7 d8 sum avg(vox) avg(mm)
1 4 1 1 3 9 2.2500 3.1201
2 0 1 1 0 2 0.5000 0.6934
3 1 0 1 0 2 0.5000 0.6934
4 1 2 1 1 5 1.2500 1.7334
5 1 2 1 2 2 2 0 1 11 1.3750 1.9067

All 1.1750 1.6294

Table A.7: Dataset 1 (AAA43).

slice d1 d2 d3 d4 d5 d6 d7 d8 sum avg(vox) avg(mm)
1 1 1 1 2 5 1.2500 1.6065
2 1 0 1 1 3 0.7500 0.9639
3 4 0 0 0 4 1.0000 1.2852
4 1 1 2 1 5 1.2500 1.6065
5 2 2 0 3 3 2 0 1 13 1.6250 2.0885

All 1.1750 1.5101

Table A.8: Dataset 2 (AAA52).

slice d1 d2 d3 d4 d5 d6 d7 d8 sum avg(vox) avg(mm)
1 0 1 2 0 3 0.7500 1.1279
2 2 1 0 1 4 1.0000 1.5039
3 1 0 3 2 6 1.5000 2.2559
4 1 1 1 1 4 1.0000 1.5039
5 2 1 1 1 2 1 1 2 11 1.3750 2.0679

All 1.1250 1.6919

Table A.9: Dataset 3 (AAA59).
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A.4 Evolution of the thrombus 3D segmentation

The 3D segmentation of the thrombus proceeds in the same manner as for the
lumen. The only differences are the initial level set, which in this case is the final
preprocessed result of the lumen segmentation, and the segmentation parameters.

Figure A.2: The chart shows the growth measure ratio for each check of the
stopping criterion, performed every 10 iterations.
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iteration previous current ratio
10 26466 34342 0.770660
20 34342 36583 0.938742
30 36583 39053 0.936753
40 39053 40546 0.963178
50 40546 41535 0.976189
60 41535 42297 0.981985
70 42297 43304 0.976746
80 43304 44301 0.977495
90 44301 45030 0.983811
100 45030 45516 0.989322
110 45516 45868 0.992326
120 45868 46160 0.993674
130 46160 46420 0.994399

Table A.10: Dataset 1 (AAA43).

iteration previous current ratio
10 33632 42036 0.800076
20 42036 43798 0.959770
30 43798 44880 0.975891
40 44880 45765 0.980662
50 45765 46435 0.985571
60 46435 47380 0.980055
70 47380 47997 0.987145
80 47997 48363 0.992432
90 48363 48606 0.995001

Table A.11: Dataset 2 (AAA52).
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iteration previous current ratio
10 32185 44353 0.725656
20 44353 49901 0.888820
30 49901 55050 0.906467
40 55050 60251 0.913678
50 60251 63967 0.941908
60 63967 65708 0.973504
70 65708 66930 0.981742
80 66930 67881 0.985990
90 67881 68729 0.987662
100 68729 69426 0.989961
110 69426 70051 0.991078
120 70051 70608 0.992111
130 70608 71160 0.992243
140 71160 71562 0.994382

Table A.12: Dataset 3 (AAA59).
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A.5 Error measurements of the 2D thrombus
segmentation

slice d1 d2 d3 d4 d5 d6 d7 d8 sum avg(vox) avg(mm)
1 3 2 1 4 10 2.5000 3.4668
2 0 1 1 1 3 0.7500 1.0400
3 0 1 0 1 2 0.5000 0.6934
4 1 3 1 0 5 1.2500 1.7334
5 1 2 0 2 2 2 1 1 11 1.3750 1.9067

All 1.2750 1.7680

Table A.13: Dataset 1 (AAA43).

slice d1 d2 d3 d4 d5 d6 d7 d8 sum avg(vox) avg(mm)
1 1 1 1 3 6 1.5000 1.9278
2 2 0 0 1 3 1.7500 0.9639
3 2 0 0 2 4 0.0000 1.2852
4 1 1 1 2 5 1.2500 1.6065
5 3 2 0 2 3 2 0 2 14 1.7500 2.2491

All 1.2500 1.6065

Table A.14: Dataset 2 (AAA52).

slice d1 d2 d3 d4 d5 d6 d7 d8 sum avg(vox) avg(mm)
1 0 1 2 0 3 0.7500 1.1279
2 2 0 0 2 4 1.0000 1.5039
3 1 0 2 3 6 1.5000 2.2559
4 1 0 0 1 2 0.5000 0.7520
5 2 1 0 1 2 0 0 1 7 0.8750 1.3159

All 0.9250 1.3911

Table A.15: Dataset 3 (AAA59).
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A.6 Evolution of the thrombus 2D segmentation

The three following tables include more detailed output of the 2D level set seg-
mentation of the thrombus of the three test datasets. The first column specifies the
slice number of the delimited subvolume. The second specifies the total number of
voxels in the segmented region at the time of the second-to-last check of the stop-
ping criterion. The third column specifies the number of voxels in the segmented
region when the stopping criterion was met. The fourth column specifies the ratio
of the pixel count in the current region to the previous one, and the fifth specifies
the total number of iterations necessary to reach convergence. When segmenting
the lumen in 2D, the iteration was halted when the ratio was equal to, or greater
than, 0.995. At the end of the table is specified the average values for each of the
four data columns.

Figure A.3: The chart shows the total number of iterations per slice in each
of the three data sets for the 2D thrombus segmentation.
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Table A.16: Dataset 1 (AAA43).

slice previous current ratio iterations
1 431 432 0.997685 60
2 410 412 0.995146 70
3 415 417 0.995204 50
4 427 429 0.995338 100
5 411 413 0.995157 90
6 369 369 1.000000 80
7 348 348 1.000000 100
8 292 293 0.996587 40
9 286 287 0.996516 50
10 279 280 0.996429 40
11 270 271 0.996310 50
12 247 248 0.995968 20
13 273 274 0.996350 50
14 295 295 1.000000 90
15 298 298 1.000000 70
16 297 297 1.000000 80
17 308 309 0.996764 80
18 298 299 0.996656 50
19 309 310 0.996774 70
20 317 317 1.000000 80
21 334 335 0.997015 100
22 336 337 0.997033 60
23 349 350 0.997143 70
24 364 364 1.000000 70
25 411 413 0.995157 120
26 428 429 0.997669 100
27 450 451 0.997783 70
28 475 477 0.995807 80
29 508 510 0.996078 100
30 573 575 0.996522 120
31 619 622 0.995177 120
32 667 670 0.995522 160
33 760 762 0.997375 230
34 810 814 0.995086 190
35 850 854 0.995316 200
36 1042 1046 0.996176 280
37 1122 1127 0.995563 270
38 1243 1249 0.995196 360



Evolution of the thrombus 2D segmentation 127

slice previous current ratio iterations
39 1162 1165 0.997425 280
40 1180 1184 0.996622 250
41 1188 1191 0.997481 190
42 1191 1195 0.996653 170
43 1186 1189 0.997477 160
44 1194 1199 0.995830 170
45 1259 1264 0.996044 220
46 1205 1211 0.995045 190
47 1179 1181 0.998307 250
48 1023 1028 0.995136 230
49 891 895 0.995531 230
50 868 871 0.996556 340
51 655 655 1.000000 200
52 540 542 0.996310 50
53 550 552 0.996377 70
54 516 518 0.996139 30
55 507 508 0.998031 50
56 483 484 0.997934 40
57 471 471 1.000000 40
58 456 458 0.995633 60
59 433 435 0.995402 40
60 420 421 0.997625 50
61 413 415 0.995181 50
62 402 404 0.995050 50
63 411 412 0.997573 90
64 393 394 0.997462 60
65 373 374 0.997326 60
66 360 361 0.997230 40
67 379 379 1.000000 70
68 379 379 1.000000 40
69 401 403 0.995037 60
70 425 425 1.000000 60
71 426 427 0.997658 50
72 410 412 0.995146 60
73 401 403 0.995037 40
74 411 412 0.997573 50
75 403 404 0.997525 80
76 402 403 0.997519 60
77 433 434 0.997696 120
78 427 429 0.995338 70
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slice previous current ratio iterations
79 444 445 0.997753 100
80 428 430 0.995349 80
81 421 423 0.995272 50
82 433 434 0.997696 110
83 409 411 0.995134 80
84 405 407 0.995086 60
85 400 402 0.995025 60
86 408 408 1.000000 70
Avg 547.38 549.19 0.996904 105.23
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Table A.17: Dataset 2 (AAA52).

slice previous current ratio iterations
1 306 307 0.996743 190
2 258 259 0.996139 70
3 344 344 1.000000 130
4 408 409 0.997555 70
5 491 492 0.997967 100
6 517 519 0.996146 70
7 528 529 0.998110 80
8 515 517 0.996132 70
9 506 508 0.996063 70
10 442 444 0.995495 40
11 403 405 0.995062 100
12 357 358 0.997207 30
13 339 340 0.997059 40
14 331 332 0.996988 60
15 315 316 0.996835 30
16 334 335 0.997015 80
17 345 346 0.997110 50
18 343 343 1.000000 50
19 341 341 1.000000 50
20 336 337 0.997033 40
21 342 343 0.997085 40
22 350 351 0.997151 70
23 347 348 0.997126 60
24 346 347 0.997118 50
25 354 354 1.000000 60
26 376 376 1.000000 90
27 362 363 0.997245 80
28 385 385 1.000000 90
29 414 416 0.995192 120
30 417 419 0.995227 80
31 481 481 1.000000 140
32 525 527 0.996205 140
33 586 588 0.996599 150
34 610 612 0.996732 130
35 579 581 0.996558 60
36 643 646 0.995356 80
37 703 706 0.995751 100
38 788 789 0.998733 150
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slice previous current ratio iterations
39 825 827 0.997582 150
40 875 878 0.996583 150
41 913 917 0.995638 140
42 939 942 0.996815 150
43 969 973 0.995889 150
44 965 969 0.995872 130
45 980 984 0.995935 150
46 965 968 0.996901 170
47 938 942 0.995754 190
48 842 846 0.995272 130
49 849 850 0.998824 150
50 826 830 0.995181 110
51 806 810 0.995062 120
52 778 781 0.996159 160
53 749 750 0.998667 120
54 728 729 0.998628 70
55 717 719 0.997218 80
56 697 698 0.998567 80
57 661 664 0.995482 60
58 605 607 0.996705 50
59 569 571 0.996497 30
60 548 550 0.996364 30
61 536 537 0.998138 40
62 510 511 0.998043 30
63 502 503 0.998012 30
64 494 496 0.995968 40
65 495 497 0.995976 70
66 485 487 0.995893 80
67 455 457 0.995624 50
68 447 447 1.000000 40
69 443 444 0.997748 60
70 449 450 0.997778 50
71 451 453 0.995585 30
72 487 488 0.997951 70
73 498 500 0.996000 60
74 478 480 0.995833 40
75 466 468 0.995726 50
76 464 466 0.995708 40
77 478 479 0.997912 70
78 481 481 1.000000 60
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slice previous current ratio iterations
79 484 486 0.995885 60
80 486 487 0.997947 50
81 511 512 0.998047 150
82 476 478 0.995816 60
83 469 470 0.997872 80
84 471 472 0.997881 80
85 462 464 0.995690 70
86 459 461 0.995662 70
87 461 463 0.995680 60
88 483 485 0.995876 100
89 481 482 0.997925 100
90 475 477 0.995807 90
Avg 538.31 539.99 0.997004 84.00
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Table A.18: Dataset 3 (AAA59).

slice previous current ratio iterations
1 234 235 0.995745 80
2 242 243 0.995885 100
3 248 248 1.000000 70
4 265 266 0.996241 60
5 344 344 1.000000 120
6 438 439 0.997722 100
7 473 475 0.995789 60
8 527 528 0.998106 110
9 503 504 0.998016 90
10 475 476 0.997899 50
11 454 456 0.995614 60
12 426 427 0.997658 70
13 380 381 0.997375 90
14 349 350 0.997143 110
15 321 322 0.996894 110
16 346 346 1.000000 170
17 285 286 0.996503 50
18 293 294 0.996599 50
19 282 283 0.996466 30
20 306 307 0.996743 80
21 287 288 0.996528 50
22 331 332 0.996988 140
23 308 309 0.996764 120
24 298 299 0.996656 130
25 261 262 0.996183 60
26 260 261 0.996169 40
27 367 368 0.997283 210
28 421 423 0.995272 200
29 617 620 0.995161 320
30 606 607 0.998353 280
31 619 622 0.995177 220
32 737 739 0.997294 190
33 890 892 0.997758 270
34 883 887 0.995490 190
35 863 866 0.996536 110
36 964 966 0.997930 150
37 1021 1025 0.996098 130
38 1084 1089 0.995409 140
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slice previous current ratio iterations
39 1125 1128 0.997340 140
40 1178 1183 0.995773 120
41 1234 1239 0.995964 120
42 1295 1300 0.996154 120
43 1363 1368 0.996345 160
44 1535 1541 0.996106 230
45 1567 1573 0.996186 190
46 1525 1529 0.997384 180
47 1572 1578 0.996198 180
48 1550 1557 0.995504 160
49 1565 1572 0.995547 170
50 1544 1551 0.995487 150
51 1584 1588 0.997481 180
52 1539 1545 0.996117 140
53 1528 1534 0.996089 140
54 1547 1552 0.996778 150
55 1546 1552 0.996134 160
56 1530 1535 0.996743 170
57 1500 1505 0.996678 180
58 1349 1352 0.997781 170
59 1280 1283 0.997662 130
60 1259 1260 0.999206 140
61 1178 1182 0.996616 120
62 1127 1131 0.996463 130
63 1038 1041 0.997118 140
64 948 949 0.998946 180
65 857 861 0.995354 160
66 824 827 0.996372 140
67 781 784 0.996173 130
68 730 733 0.995907 160
69 669 672 0.995536 160
70 595 596 0.998322 120
71 561 562 0.998221 60
72 561 561 1.000000 50
73 579 579 1.000000 90
74 574 575 0.998261 60
75 572 572 1.000000 50
76 577 577 1.000000 70
77 574 576 0.996528 60
78 559 561 0.996435 50
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slice previous current ratio iterations
79 526 528 0.996212 40
80 515 516 0.998062 70
81 496 497 0.997988 40
82 492 494 0.995951 90
83 471 473 0.995772 50
84 452 454 0.995595 50
85 458 459 0.997821 80
86 429 431 0.995360 40
87 439 440 0.997727 60
88 426 427 0.997658 30
89 431 432 0.997685 70
90 415 417 0.995204 60
91 429 431 0.995360 90
92 401 403 0.995037 60
93 402 404 0.995050 70
94 403 404 0.997525 110
95 387 388 0.997423 70
Avg 743.15 745.55 0.996903 116.84
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AAA Abdominal Aortic Aneurysm.

aneurysm An abnormal blood-filled dilatation of a blood vessel, and especially
an artery, resulting from disease of the vessel wall.

bifurcation point In this text, this term generally denotes the point in the lower
abdomen where the aorta splits into the iliac arteries leading blood to the legs.

CAT Computer Assisted Tomography

CT Computer Tomography

DICOM Digital Imaging and COmmunications in Medicine

ITK The Insight segmentation and registration ToolKit

image registration The process of subdividing an image into its constituent parts
or objects.

image segmentationThe process of bringing the involved pictures into spatial
alignment.

lumen In this text, the inner aortic wall is often referred to as the lumen for the
sake of simplicity.

MR Magnetic Resonance

multimodal imaging Combining, in some way, two or more techniques for im-
age acquisition

PET Photon Emission Tomography

thrombus In this text, the outer aortic wall is often referred to as the thrombus
for the sake of simplicity.

US UltraSound
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VTK The Visualization ToolKit

voxel The three-dimensional equivalent of a pixel
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