
Version control with
RCS and CVS

An introduction

Markus Bjartveit Krüger

markusk@pvv.org

1

RCS

Revision Control System, written by Walter

F. Tichy in 1982 and further developed by Paul

Eggert.

RCS is mostly used for revision control of sin-

gle files—scripts, configuration files, and other

files that “stand alone”. It is not well suited

for managing large collections of files.

This course will only cover basic use of RCS.

We’ll show more advanced revision control with

CVS instead.

2

Features of RCS

• Store and retrieve multiple revisions of text.

• Maintain a complete history of changes.

• Resolve access conflicts.

• Maintain a tree of revisions.

• Merge revisions and resolve conflicts.

• Control releases and configurations.

• Automatically identify each revision with
name, revision number, creation time, au-
thor, etc.

3

Version, release or revision?

The word version is used both to describe the

various stages of a file during development and

to identify releases of a software product (Win-

dows NT 4.0, Netscape 4.5, and so on).

To avoid confusion, we will use the term re-

vision for files. Release numbering is separate

from revision numbering, and is done through

symbolic revisions.

4

Putting files into RCS

RCS maintains an archive file–called a RCS file—

for each file. These files are normally kept in

a directory named RCS.

To start using RCS with a file, first create this

directory by running mkdir RCS in the file’s di-

rectory, then put the file into RCS with the

command

ci -i -u file

This creates a file named file,v in the RCS di-

rectory, and makes the file read-only.

5

Editing files with RCS

You edit a file that has been put into RCS like

this:

1. Check out a working copy:

co -l file

2. Edit the working copy.

3. Check in the new revision:

ci -u file

6

Checking out a working copy

In order to edit a file, you first need to check

out a working copy of the file, by running the

command

co -l file

co (check out) is the command used to check

out RCS copies. The -l option tells RCS to

lock the archive file so that others cannot edit

the file while you are working on it.

7

Checking in a new revision

After editing, you need to check in the file in

order to store your changes in the archive and

release the lock so that others can edit the file

later.

ci -u file

ci (check in) is used to check in revisions. The

-u option tells RCS to unlock the file, and also

to keep the working copy. (Otherwise, RCS

would remove the working copy, which in most

cases you don’t want RCS to do.)

You will be asked for a log entry when checking

in. It is important to write good log entries,

so that you can see what changes happened

when in the revision history.

8

Viewing differences

You can view differences between two revisions
with rcsdiff:

rcsdiff file

shows differences between the working copy of
file and the latest revision that was checked in.

rcsdiff -r1.3 file

shows differences between the working copy
and revision 1.3 of file.

rcsdiff -r1.1 -r1.2 file

shows differences between revision 1.1 and 1.2
of file.

9

Viewing the revision log

You can view the log of revision changes with
rlog:

rlog file

shows all log messages for file, along with other
RCS information.

You can specify which revision logs you want
to see:

rlog -r1.1 file
rlog -r1.1:1.5,1.7 file

The first command shows the log entry for re-
vision 1.1, the second shows the log entries for
revision 1.1 through 1.5 and also revision 1.7.

10

Resolving lock conflicts

It happens quite often that someone forgets to

check in a file in RCS after editing it, or forgets

to unlock it. In this case, RCS will complain

when you try to check out the file.

Conflicts can be resolved like this:

1. Check if the working copy of the file dif-

fers from the RCS archive with rcsdiff. If

it does, make an extra copy of the file

(file.tmp, for instance).

2. “Steal” the lock with the command

rcs -L file

11

RCS will send a mail to the user who had

the lock, informing him that his lock has

been broken.

3. If the previous working copy differed from

the latest revision, copy it over the current

working copy (mv file.tmp file) and check it

in with an appropriate log message, then

check the file out again.

Specifying revisions

Most RCS commands take the option -rrev,

which can be used to specify which revision to

check out, what revision number to use when

checking in, and so on.

co -r1.4 file

ci -r2.0 file

rlog -r1.2:1.4 file

Another common option is -ddate, which tells

RCS to use a revision from the given date. This

can be combined with -z to specify local time

(default is UTC).

co -d’1999-01-01 13:00’ file

rlog -d1998-07-06<1999-01-01 file

12

Keyword substitution

RCS defines several keyword strings that will

be replaced with information from RCS when

checking out a file. Some of these strings are:

$Author$ Login name of the user who checked

in the revision.

$Date$ Date and time the revision was checked

in.

Id Name of RCS file, revision number, date

and time, author, state, and locker of file

(if locked).

$Revision$ Revision number of file.

13

Log Log message. On each checkin, the lat-

est log message is appended with the prefix

of the Log line. This is useful for lan-

guages with comments that go to the end

of the line.

A common practice is to put a Id keyword

in a comment at the start of the file.

. . . and much more

RCS has many more features, but if you require

them you are probably better off using CVS in-

stead, which gives a more convenient interface.

Some of the RCS features not covered here are

• Symbolic names for revisions

• Creating and merging development branches

• Multiple working copies

More information on RCS can be found in the

man pages (rcs(1), ci(1), co(1), ident(1), rcs-

diff(1), rcsmerge(1), rlog(1), rcsintro(1)), and

in the book Applying RCS and SCCS from O’Reilly.

14

CVS

Concurrent Versions System, originally writ-

ten as a set of shell scripts by Dick Grune in

1986, made into a C program in 1989 by Brian

Berliner with the aid of Jeff Polk.

CVS is a widely used version control system for

projects of all sizes. CVS was originally built

on RCS, and although CVS no longer uses RCS

internally, CVS still behaves like RCS in many

ways.

FreeBSD and Netscape are two of the larger

software projects that uses CVS.

15

Features of CVS

• Store and retrieve multiple revisions of text.

• Maintain a complete history of changes.

• Maintain a tree of revisions.

• Merge revisions and resolve conflicts.

• Control releases and configurations.

• Automatically identify each revision with

name, revision number, creation time, au-

thor, etc.

16

• Run scripts when checking files in or out,

e.g. mailing the project group about changes,

indenting code properly, and so on.

• Client/server.

• Allows several developers to edit a file at

the same time.

Version, release or revision?

The word version is used both to describe the

various stages of a file during development and

to identify releases of a software product (Win-

dows NT 4.0, Netscape 4.5, and so on).

To avoid confusion, we will use the term re-

vision for files. Release numbering is separate

from revision numbering, and is done through

symbolic revisions.

17

A simple session with CVS

Check out a working copy of module hello

$ cvs checkout hello

cvs checkout: Updating hello

U hello/Makefile

U hello/hello.c

Fetch updates made by others

$ cvs update

cvs update: Updating .

U hello.c

Make changes and commit them

$ cvs commit

/home/markusk/cvs/hello/hello.c,v <-- hello.c

new revision: 1.3; previous revision: 1.2

done

18

Structure of CVS commands

All CVS commands are on the form

cvs [global opts] command [cmd opts] [cmd args]

Global options are common to all commands.
(One exception: the history command.)

Command is what you want CVS to do. Most
commands have one or more short forms.
(E.g. checkout→co, commit→ci.)

Command options are specific to the current
command.

Command arguments are arguments to the
current command, usually the name of one
or more files or subdirectories.

19

More on commands

When command arguments are left out, CVS

runs recursively, applying the command on all

files in the current directory and its subdirec-

tories.

Global options must be given before the com-

mand, command options afterwards. Global

options mean the same to all commands, com-

mand options usually have different meanings

for different commands.

cvs -l co foo 6= cvs co -l foo

20

Command line help

To list all available global options:

cvs --help-options

To list all available commands:

cvs --help-commands

To display usage information for a command:

cvs -H command

21

Specifying revisions

Most CVS commands take the command op-

tion -rrev, which can be used to specify which

revision to check out, what revision number to

use when checking in, and so on.

cvs update -r1.4 file

cvs commit -r2.0 file

cvs log -r1.2:1.4 file

Another common option is -Ddate, which tells

CVS to use a revision from the given date. This

can be combined with -z to specify local time

(default is UTC).

cvs update -D’1999-01-01 13:00’ file

cvs log -D’1998-07-06<1999-01-01’ file

22

The repository

CVS modules and administrative files are stored
in a repository, either on the local machine or
via a network.

You can specify where the repository is with
the -d global option,

cvs -d /usr/local/cvsroot checkout foo

or by setting the $CVSROOT environment variable
(bash example),

CVSROOT=/usr/local/cvsroot

export CVSROOT

cvs checkout foo

A working copy remembers its repository. When
running CVS commands within a working copy,
you do not need to specify a repository.

23

Setting up a repository

When you are joining an existing project, the

repository is probably already in place. If you

need to set up one yourself, this is how:

cvs -d /usr/local/cvs init

This will create the directory /usr/local/cvs if

it does not exist, and create a repository in

it. cvs init will not overwrite any files already

present in the directory.

24

Starting a project with CVS

To set up a new project from sources in the

working directory wdir with CVS, use cvs import.

cd wdir

cvs import rdir vendor tag release tag

rdir Where project is placed in repository. All

files and subdirectories in the working di-

rectory are copied here.

vendor tag Identifies where the source is from.

Not always useful, but CVS requires it.

release tag Tag used to mark the start of the

project.

25

Checking out a working copy

Each developer has his or her own working

copy checked out of the repository. When you

start working on a project, you check it out

with

cvs checkout foo

This creates the directory foo and checks out

a working copy to this directory. If you want

the directory to have some other name, you

can use the -d option:

cvs checkout -d foobar foo

You normally check out a project only once.

Changes are fetched using cvs update.

26

Committing changes

You register changes you have made in the

repository with

cvs commit [file]

If no files are specified, all changes in the cur-

rent directory and its subdirectories are com-

mited. An easy way to commit all changes is

to change to the base directory of the project

and run cvs commit from there.

When committing, CVS prompts for a log mes-

sage. It is important to write descriptive log

messages in order to discover when what changes

was made.

27

Updating your working copy

Use cvs update to update your working copy

with the changes others have made, or to fetch

a specific revision.

cvs update file

cvs update -r1.12 file

If no file is specified, CVS updates all files in

the current directory and its subdirectories.

cvs update prints a line for each file, preceded

by one character telling the status of the file.

28

U,P File was updated.

A File has been added to your working copy,
and will be added to the repository when
you commit.

R File has been removed from your working
copy, and will be removed from the repos-
itory when you commit.

M File has been changed by you since your
last commit, and there may have been merged
changes from the repository.

C There is a conflict between your changes
to the files and changes in the repository.

? File is in your working directory, but does
not exist in the repository.

29

Merging and conflicts

CVS allows several developers to modify a file
at the same time. When developers commit
their files or update their working copies, the
changes are merged together.

If changes are overlapping, CVS reports this as
a merge conflict and requires the user to re-
solve the conflicts before commiting the file.
Conflicts are marked like this:

int main(int argc, char** argv)
{
<<<<<<< main.c

if (argc != 1)
=======

if (argc != 2)
>>>>>>> 1.4

usage();

This shows a conflict in the file main.c, where
the latest revision in the repository is 1.4. To
resolve the conflict, edit the code between the
<<<<<<<, =======, and >>>>>>> markers, remove
the markers, and commit.

30

Adding and removing files

To add new files to a project, first create the

files in your working copy, then run

cvs add files

To remove files, first remove the files from your

working directory, then run

cvs remove files

The files will be added to or removed from the

repository the next time you run cvs commit.

(Actually, CVS never really removes files from

the repository, it marks them as dead instead.)

31

Adding directories

To add a directory:

mkdir dir

cvs add dir

This adds only the directory, if there are files

or subdirectories you must add these explicitly.

If you want to add a new directory hierarchy,

you can use cvs import instead.

CVS does not automatically create new direc-

tories when updating. To fetch new directories

that have been added to the module, use the

-d option:

cvs update -d foo

32

Removing directories

You cannot remove a directory directly. In-

stead, you must remove all files in it with cvs

remove, then run

cvs update -P

The -P option tells CVS to prune away empty

directories.

33

Moving files and directories

Moving files is normally done like this:

mv oldname newname

cvs remove oldname

cvs add newname

Directories are moved by adding the directory,

moving all files from the old to the new di-

rectory and removing the directory with cvs

update -P.

This way of moving files is safe, but has the

drawback that the new file loses its change

log. The change log is still available through

the old file name. See the CVS documentation

for ways to move a file and keep the change

log.

34

Ignoring files

Often, your working directory will contain tem-

porary files (object files, executables, etc.) that

you do not want to add to the repository.

To make CVS ignore a file, edit the .cvsignore

file in the directory containing the file. Each

line of .cvsignore specifies a file or a filename

wildcard to ignore.

You can also make CVS ignore files by editing

the cvsignore administrative file.

35

Symbolic revisions

Typically, the files in a repository will have very

different revision numbers. This means you

can’t fetch revision 1.4 of each file and hope

to get a snapshot of the module at a given

time; revision 1.4 of main.c could be a month

old, with many changes between then and now,

while revision 1.4 of Makefile might not even

exist.

One way around this is to specify a date when

checking out or updating your working copy:

cvs checkout -D 1999-03-15 00:01

will check out a snapshot of the repository

from midnight, March 15th.

36

A better way is to tag the repository with a

symbolic name, and use this symbolic name

later on for checkouts and such.

cvs tag REL 0 1

This gives all files in the current directory and

subdirectories the symbolic tag REL 0 1. Nor-

mally, you want to tag all files in the repository,

to create a snapshot of the entire module.

The tag is “tied” to the current revision num-

ber of each file in your repository. You can

move the tag to another revision number by

rerunning tag with the -f option.

RELEASE_0_21.2

1.3

1.4

1.5

1.6

RELEASE_0_1

main.c Makefile README

1.1

1.2

1.3

1.4

1.1

1.2

1.3

1.4

1.5

1.1

You can now check out or update a working

copy corresponding to REL 0 1:

cvs checkout -rREL 0 1

cvs update -rREL 0 1

37

Sticky tags

When you fetch specific revisions using revision

numbers, symbolic names, or dates, CVS gives

them a sticky tag. This is useful with branches

(more on this later on), but not so useful with

non-branch tags.

Sticky tags ensure that later commits and up-

dates uses the same tag. For non-branch tags,

this means that you are “stuck” on the current

revision of each file: updates fetch the same

revisions, commits aren’t allowed.

To remove sticky tags and revert to the head

of the development trunk, use cvs update -A.

If what you really want is to replace your cur-

rent revision of a file with a new file, you can

38

do this with the -p option, which sends the

contents of the file to standard output.

cvs update -r1.1 -p main.c > main.c

This replaces your copy of main.c with revision

1.1, without making any sticky tags.

Status

To view current status of a file (revision, mod-

ified or not, newer revision in repository, etc):

cvs status file

A useful option is -v (verbose), to view all tags

set for a given file:

cvs status -v file

39

Viewing logs

It is highly useful to view the log messages of
revisions to track down when a specific change
was made. This requires that developers write
good log messages.

To view the entire change logs of a file:

cvs log file

To view log messages from revision 1.1 to 1.3,
inclusive:

cvs log -r1.1:1.2 file

To view log messages for symbolic tag REL 0 1:

cvs log -rREL 0 1 file

40

Tracking changes

To view differences between revisions of a file:

cvs diff file
cvs diff -r1.1 -r1.15 file

To view all differences made in current direc-
tory and subdirectories (useful before commit-
ting changes for determining a log message
and avoid committing unintended changes):

cvs diff

To show in which revision each line of a file
was last changed, and which developer made
the change:

cvs annotate file

41

Branches

At times, it is useful to have several develop-
ment branches at the same time:

• Bugs are found in an old version, but the
current version has changed so much that
it is impractical to make fixes there.

• You are about to add a major new feature,
and your changes will affect other develop-
ers seriously.

The solution is to make a separate branch,
so that changes on one branch will not affect
other branches. Changes can later be merged
between branches (i.e. develop a feature on
one branch and merge it into the main branch
when it is stable, or merge bug fixes without
including other changes).

42

Creating a branch

From an existing tag (no working copy needed):

cvs rtag -b -r REL 1 0 REL 1 0 FIXES foo

From your current working copy:

cvs tag -b REL 1 0 FIXES

43

Working on a branch

To start working on a branch, use checkout:

cvs checkout -r REL 1 0 FIXES

Or, if you already have a working copy:

cvs update -r REL 1 0 FIXES

Branch tags are sticky, meaning that later com-

mits go to your current branch, not the main

branch, and updates fetches the latest revi-

sions of the branch.

44

Branches and revisions

Branch 1.2.4

1.1

Branch 1.2.2

1.2.2.2.2.1Branch 1.2.2.2.2

Main branch1.2 1.3 1.4

1.2.4.1 1.2.4.3

1.2.2.31.2.2.21.2.2.1

1.2.4.2

When a branch is made, a branch revision num-

ber is created by appending the first unused

even integer to the current revision. After the

branch number follows the revision number on

the branch.

45

Merging a branch

You can merge changes made on a branch into

your working copy by using update with the -j

option.

cvs update -j REL 1 0 FIXES

After resolving any conflicts that occur, you

commit the merged files as usual with commit.

46

Merging several times

Sometimes you keep changing a branch after

merging it into the main branch. To avoid

unneccessary work with the merge, it is con-

venient to merge only the changes since last

merge into the main branch.

The easiest way to do this is to tag the branch

each time you merge it, then give two -j op-

tions to update. Only the changes between the

two revisions specified are merged.

cvs update -jREL 1 0 MERGED -jREL 1 0 FIXES

47

Client/server CVS

You can use a CVS repository on a remote
machine by specifying the repository as host-
name:directory :

cvs -d verden.pvv.ntnu.no:/usr/local/cvs

checkout foo

This uses rsh to connect to verden.pvv.ntnu.no

and check out the foo module. You do not
need to have a CVS server running on the re-
mote machine; CVS starts a server process when
connecting.

If you want to use something else than rsh

to connect, set the $CVS RSH variable to the
program you want to use (e.g., ssh).

CVS also provides other ways to use a remote
server. See the CVS documentation for more
information.

48

Keyword substitution

CVS defines several keyword strings that will

be replaced with information from CVS when

checking out a file. Some of these strings are:

$Author$ Login name of the user who checked

in the revision.

$Date$ Date and time the revision was checked

in.

Id Name of CVS file, revision number, date

and time, author, state, and locker of file

(if locked).

$Revision$ Revision number of file.

49

Log Log message. On each checkin, the lat-

est log message is appended with the prefix

of the Log line. This is useful for lan-

guages with comments that go to the end

of the line.

A common practice is to put a Id keyword

in a comment at the start of the file.

Binary files

Binary files (images, Word documents, exter-
nal libraries, etc.) in a CVS repository can
cause problems if CVS expands keywords in the
binary files or tries to merge revisions.

You avoid these problems by specifying that a
file is binary:

cvs add -kb file

If you’ve already added the file, you can mark
it as binary with cvs admin:

cvs admin -kb file

You can specify that CVS should treat all files
matching a wildcard (e.g., all .exe files, all .jpg
files) as binary by editing the cvswrappers ad-
minstrative file.

50

Administrative files

There are several administrative files in the CVS

repository that tells CVS how to behave. You

can edit these files by checking out the CVSROOT

module, edit the files you want and commit.

See the CVS documentation for full descrip-

tions of each of these files.

modules Specifies which modules exist in the

repository, allows setting up alias modules

and options for running programs when the

module is used.

cvswrappers Allows you to transform files on

their way in and out of CVS. Useful for spec-

ifying binary files, among other things.

commitinfo Checks that a commit is allowed.
51

verifymsg Evaluates and validates log mes-

sages.

editinfo Program to use for editing log mes-

sages.

loginfo Program run on complete commits.

Can be used for mailing a notice to the

project group upon commits.

rcsinfo A fill-out form for log messages.

cvsignore Specifies which files CVS should ig-

nore.

config Various other CVS configuration.

Releasing a module

If you are done with your working copy, you

should notify CVS about it with the release

command. CVS logs checkouts and releases,

which can be viewed with the history com-

mand. When you release your working copy,

CVS will check that you haven’t made any changes

since last commit. If you want CVS to delete

the working copy after releasing the module,

give the -d option to release.

cvs release foo

cvs release -d foo

52

Some CVS tools

pcl-cvs A CVS interface for the editor Emacs, which
is bundled with version 21. An older version that
works with Emacs 20 and XEmacs is available at
ftp://flint.cs.yale.edu/pub/monnier/pcl-cvs

jCVS A CVS client written in Java.
http://www.jcvs.org/

CvsGui A collection of CVS interfaces for various plat-
forms, including Windows, Macintosh and X with
GTK.
http://www.wincvs.org

TortoiseCVS Shell Extension for Windows that inte-
grates CVS with Windows Explorer.
http://www.tortoisecvs.org

Eclipse A very good open source extensible IDE, writ-
ten in Java and primarily for Java development, that
has integrated support for CVS.
http://www.eclipse.org

Jalindi Igloo Visual Studio bindings for CVS.
http://www.jalindi.com/igloo/

53

For more information...

man pages cvs(1), cvs(5)

info pages info cvs

“Version Management with CVS” The reference man-
ual to CVS, written by Per Cederqvist et al. The
manual corresponds to the info pages, and this
course builds mainly on it. The manual is avail-
able in various formats at the CVS web site:
http://www.cvshome.org/docs/manual/

CVS Home The CVS web site, containing source and
binary realeases, documentation, tutorials, the FAQ,
and pointers to other resources such as mailing lists,
newsgroups, and support information.
http://www.cvshome.org/

“Open Source Development With CVS” Written by
Karl Fogel, previously a member of the CVS devel-
opment team. As far as I know, this is the only book
available that describes CVS in depth. It also con-
tains material on running an open source project.
Most of the book is available for free on WWW:
http://cvsbook.red-bean.com/

comp.software.config-mgmt Newsgroup about software con-
figuration management and version control.

54

Some alternatives

Subversion An intended replacement for CVS. Currently
being developed; release date for version 1.0 still to
be decided. Now self-hosted.
http://subversion.tigris.org/

BitKeeper A commercial product that also has a free
use license. BitKeeper has a more distributed ar-
chitecture than CVS.
http://www.bitkeeper.com/

Perforce
http://www.perforce.com/

ClearCase
http://www.rational.com/products/clearcase/index.jsp

SourceSafe
http://msdn.microsoft.com/ssafe/

55

