
Feedback-driven Product Development

Cisco’s development and innovation centre in Norway (Lysaker) develops videoconferencing products, telepresence technology and collaboration solutions. 
This is embedded product development involving advanced mechanics, customised electronics, movable parts and millions of lines of software mostly written 
in C and C++. Over the last two decades we have gradually established a workflow that very much supports lean and agile product development for 
hundreds of engineers working closely together. A lot of effort goes into establishing effective feedback loops guiding the whole development process. We are 
not only talking about rapid feedback from build systems and continuous integration, but also from regression tests, advanced scenario testing and real users. 
The focus on establishing feedback loops goes beyond the product development workflow, it is a principle applicable to the whole organization.

This talk will present a concrete insight into the software development workflow that we are using today, before discussing what you need to consider if you 
want to set up an equally effective feedback-driven product development workflow in your organization. The talk is relevant for everyone involved product 
development where software is a key component.

Olve Maudal, Cisco Systems Norway

a 60 minute keynote at Equinor Developer Conference, Sola, Norway, September 26, 2018

how we do it at Lysaker and how you can design your own system



Cisco Systems, Innovation Center
Lysaker, Norway



Telepresence



Telepresence



Some of the stuff we develop at Lysaker





at Lysaker we are ~350 engineers



we do...



Electronics / Hardware



Mechanics



1992 2015

Industrial Design



User Experience Design



Unboxing and Logistics



Machine Learning and Artificial Intelligene



Looking into 

the future



but, by far, most of us work with



software developement



“... an organization that develops spectacular products and 
outperforms all competitors”

At Lysaker we have been developing telepresence products and
collaboration solutions for more than two decades (since ~1991)



The secret sauce

• Effective feedback loops
• Slack
• Professionalism
• Focus on value
• Systems thinking
• Transparency
• Release early, release often

The most important ingrediences

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg


The secret sauce

• Effective feedback loops
• Slack
• Professionalism
• Focus on value
• Systems thinking
• Transparency
• Release early, release often

The most important ingrediences

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg


The secret sauce

• Effective feedback loops
• Slack
• Professionalism
• Focus on value
• Systems thinking
• Transparency
• Release early, release often

The most important ingrediences

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg


The secret sauce

• Effective feedback loops
• Slack
• Professionalism
• Focus on value
• Systems thinking
• Transparency
• Release early, release often

The most important ingrediences

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg


The secret sauce

• Effective feedback loops
• Slack
• Professionalism
• Focus on value
• Systems thinking
• Transparency
• Release early, release often

The most important ingrediences

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg


The secret sauce

• Effective feedback loops
• Slack
• Professionalism
• Focus on value
• Systems thinking
• Transparency
• Release early, release often

The most important ingrediences

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg


The secret sauce

• Effective feedback loops
• Slack
• Professionalism
• Focus on value
• Systems thinking
• Transparency
• Release early, release often

The most important ingrediences

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg


The secret sauce

• Effective feedback loops
• Slack
• Professionalism
• Focus on value
• Systems thinking
• Transparency
• Release early, release often

The most important ingrediences

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg


The secret sauce

• Effective feedback loops
• Slack
• Professionalism
• Focus on value
• Systems thinking
• Transparency
• Release early, release often

The most important ingrediences

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg


Facts about advanced product development 



Few high tech projects are like running 
down on a paved road where you can see the ...



... goal in the end of the road. 



Most projects are more like...



extreme orienteering



in impossible terrain



with a group of people



in the dark



with only a sketchy map as guidance



http://www.youtube.com/watch?v=oetF3UTIwbc

http://www.youtube.com/watch?v=oetF3UTIwbc


http://www.youtube.com/watch?v=oetF3UTIwbc

http://www.youtube.com/watch?v=oetF3UTIwbc


• embedded software development
• about 200 active software developers
• typically more than 100 commits per day
• 4-5 million lines of code, mostly C and C++
• visible traces back to the late 1980’s
• ~20 products, ~50 builds

The main codebase



1987 1992
1997

2000

2003

2004
2006

20052006



2010

2008

2008

2009

2009



2018

2019

2013

2014

2013

2016

2014

2017



software development 
workflow



Continuous integration
and deployment

system



emulator

target

unit tests

Continuous integration
and deployment

system



emulator

target

unit tests

continuous 
integration

QA status

Continuous integration
and deployment

system



emulator

target

unit tests

continuous 
integration

QA status

code base

Continuous integration
and deployment

system



emulator

target

unit tests

continuous 
integration

QA status

code base

Continuous integration
and deployment

system



emulator

target

unit tests

continuous 
integration

QA status

unit tests

code base

Continuous integration
and deployment

system



emulator

target

unit tests

continuous 
integration

QA status

unit tests module tests

code base

Continuous integration
and deployment

system



emulator

target

unit tests

continuous 
integration

QA status

unit tests module tests

code base

builds

Continuous integration
and deployment

system



emulatorsemulatorsemulatorsemulators

emulatorsemulatorsemulatorstargets

emulator

target

unit tests

continuous 
integration

QA status

unit tests module tests deployment 
engine

system tests

code base

builds

Continuous integration
and deployment

system



emulatorsemulatorsemulatorsemulators

emulatorsemulatorsemulatorstargets

emulator

target

unit tests

continuous 
integration

QA status

unit tests module tests deployment 
engine

system tests

code base

builds

Continuous integration
and deployment

system



emulatorsemulatorsemulatorsemulators

emulatorsemulatorsemulatorstargets

emulator

target

unit tests

continuous 
integration

QA status

unit tests module tests deployment 
engine

system tests

code base

builds

Continuous integration
and deployment

system



emulatorsemulatorsemulatorsemulators

emulatorsemulatorsemulatorstargets

emulator

target

unit tests

continuous 
integration

QA status

unit tests module tests deployment 
engine

system tests

code base

builds

Continuous integration
and deployment

system

scenario testing software
distribution



emulatorsemulatorsemulatorsemulators

emulatorsemulatorsemulatorstargets

emulator

target

unit tests

continuous 
integration

QA status

unit tests module tests

code coverage

deployment 
engine

system tests

code base

builds

Continuous integration
and deployment

system

scenario testing software
distribution



emulatorsemulatorsemulatorsemulators

emulatorsemulatorsemulatorstargets

emulator

target

unit tests

continuous 
integration

QA status

unit tests module tests

code coverage

deployment 
engine

system testsstatic code 
analysis

code base

builds

Continuous integration
and deployment

system

scenario testing software
distribution



emulatorsemulatorsemulatorsemulators

emulatorsemulatorsemulatorstargets

emulator

target

unit tests

continuous 
integration

QA status

unit tests module tests

code coverage

deployment 
engine

system testsstatic code 
analysis

code base

builds

Continuous integration
and deployment

system

scenario testing software
distribution

static code 
analysis



emulatorsemulatorsemulatorsemulators

emulatorsemulatorsemulatorstargets

emulator

target

unit tests

module tests

continuous 
integration

QA status

unit tests module tests

code coverage

deployment 
engine

system testsstatic code 
analysis

code base

builds

dynamic code analysis

Continuous integration
and deployment

system

scenario testing software
distribution

static code 
analysis



emulatorsemulatorsemulatorsemulators

emulatorsemulatorsemulatorstargets

emulator

target

unit tests

module tests

continuous 
integration

QA status

unit tests module tests

code coverage

deployment 
engine

system testsstatic code 
analysis

code base

builds

dynamic code analysis

Continuous integration
and deployment

system

scenario testing software
distribution

static code 
analysis







We want something like that! Where do we start?



We want something like that! Where do we start?

• Create a robust build system



We want something like that! Where do we start?

• Create a robust build system
• Integrate continuously



We want something like that! Where do we start?

• Create a robust build system
• Integrate continuously
• Grow professionalism



Create a robust build system



• Embedded? Create your own build system!

Create a robust build system



• Embedded? Create your own build system!
• Check in build system with your code

Create a robust build system



• Embedded? Create your own build system!
• Check in build system with your code
• Aim for a clean build, eg get rid of warnings (-Werror)

Create a robust build system



• Embedded? Create your own build system!
• Check in build system with your code
• Aim for a clean build, eg get rid of warnings (-Werror)
• Superfast, incremental and partial builds

Create a robust build system



• Embedded? Create your own build system!
• Check in build system with your code
• Aim for a clean build, eg get rid of warnings (-Werror)
• Superfast, incremental and partial builds
• Heterogeneous development environment (avoid the VS6 effect)

Create a robust build system



• Embedded? Create your own build system!
• Check in build system with your code
• Aim for a clean build, eg get rid of warnings (-Werror)
• Superfast, incremental and partial builds
• Heterogeneous development environment (avoid the VS6 effect)
• Invest in writing good emulators

Create a robust build system



• Embedded? Create your own build system!
• Check in build system with your code
• Aim for a clean build, eg get rid of warnings (-Werror)
• Superfast, incremental and partial builds
• Heterogeneous development environment (avoid the VS6 effect)
• Invest in writing good emulators
• Make sure unit tests can run on dev machine, emulator and target

Create a robust build system



• Embedded? Create your own build system!
• Check in build system with your code
• Aim for a clean build, eg get rid of warnings (-Werror)
• Superfast, incremental and partial builds
• Heterogeneous development environment (avoid the VS6 effect)
• Invest in writing good emulators
• Make sure unit tests can run on dev machine, emulator and target
• Integrate your test systems into your build system (--test-all)

Create a robust build system



Integrate continuously



• Beware of sandboxes (comfortable developers are leathal!)

Integrate continuously



• Beware of sandboxes (comfortable developers are leathal!)
• Continuous pain is the key to success

Integrate continuously



• Beware of sandboxes (comfortable developers are leathal!)
• Continuous pain is the key to success
• Feature branches are evil! Try feature toggles instead.

Integrate continuously



• Beware of sandboxes (comfortable developers are leathal!)
• Continuous pain is the key to success
• Feature branches are evil! Try feature toggles instead.
• Test everything, for all commits

Integrate continuously



• Beware of sandboxes (comfortable developers are leathal!)
• Continuous pain is the key to success
• Feature branches are evil! Try feature toggles instead.
• Test everything, for all commits
• Focus on superfast feedback

Integrate continuously



• Beware of sandboxes (comfortable developers are leathal!)
• Continuous pain is the key to success
• Feature branches are evil! Try feature toggles instead.
• Test everything, for all commits
• Focus on superfast feedback
• Invest in equipment for fast and complete system testing

Integrate continuously



• Beware of sandboxes (comfortable developers are leathal!)
• Continuous pain is the key to success
• Feature branches are evil! Try feature toggles instead.
• Test everything, for all commits
• Focus on superfast feedback
• Invest in equipment for fast and complete system testing
• Prune unused metrics and feedback mechanisms

Integrate continuously



• Beware of sandboxes (comfortable developers are leathal!)
• Continuous pain is the key to success
• Feature branches are evil! Try feature toggles instead.
• Test everything, for all commits
• Focus on superfast feedback
• Invest in equipment for fast and complete system testing
• Prune unused metrics and feedback mechanisms
• Slim down your QA department 

Integrate continuously



Grow professionalism



• make sure you have enough slack in the system

Grow professionalism



• make sure you have enough slack in the system
• avoid staged or gated commits, some broken builds are acceptable

Grow professionalism



• make sure you have enough slack in the system
• avoid staged or gated commits, some broken builds are acceptable
• focus on the flow of changes

Grow professionalism



• make sure you have enough slack in the system
• avoid staged or gated commits, some broken builds are acceptable
• focus on the flow of changes
• make everything visible and advocate collective ownership

Grow professionalism



• make sure you have enough slack in the system
• avoid staged or gated commits, some broken builds are acceptable
• focus on the flow of changes
• make everything visible and advocate collective ownership
• encourage code reviews, but avoid mandatory formal code reviews

Grow professionalism



• make sure you have enough slack in the system
• avoid staged or gated commits, some broken builds are acceptable
• focus on the flow of changes
• make everything visible and advocate collective ownership
• encourage code reviews, but avoid mandatory formal code reviews
• beware of the observer effect

Grow professionalism



• make sure you have enough slack in the system
• avoid staged or gated commits, some broken builds are acceptable
• focus on the flow of changes
• make everything visible and advocate collective ownership
• encourage code reviews, but avoid mandatory formal code reviews
• beware of the observer effect
• optimize for your top 80% developers

Grow professionalism



emulatorsemulatorsemulatorsemulators

emulatorsemulatorsemulatorstargets

emulator

target

unit tests

module tests

continuous 
integration

QA status

unit tests module tests

code coverage

deployment 
engine

system testsstatic code 
analysis

code base

builds

dynamic code analysis
scenario testing software

distribution

static code 
analysis



?



The more you tighten your grip, Tarkin, the more 
star systems will slip through your fingers.

(Princess Leia)



The more you tighten your grip, Tarkin, the more 
star systems will slip through your fingers.

(Princess Leia)



!



About Agile Principles



There used to be a time, where we believed that anyone could do software development

after all, it was just about programming a computer...





1) get some smart people to analyze the problem



1) get some smart people to analyze the problem

2) create a plan



1) get some smart people to analyze the problem

2) create a plan
3) find resources



1) get some smart people to analyze the problem

2) create a plan
3) find resources 4) execute according to 

the plan



and when the projects failed

the respons was always:



do more up-front analysis



create a more detailed plan



find more resources



and make sure that everyone followed the plan



but the projects still failed

and the respons was, as usual:











but of course...





Dark ages of software development (early 80’s to late 90’s)



1) get some smart people to analyze the problem

2) create a plan
3) find resources 4) execute according to 

the plan



We had only discovered a fancy way of playing the “scabby queen” 
game, also known as the “Old Maid” or “Svarte Per”, always try to 

“save your ass” by delegating responsibility to someone else.



There must be a better way...



The Agile Manifesto (2001)



Individuals and interactions over processes and tools 
Working software over comprehensive documentation 

Customer collaboration over contract negotiation 
Responding to change over following a plan



Individuals and interactions over processes and tools 
Working software over comprehensive documentation 

Customer collaboration over contract negotiation  
Responding to change over following a plan



Individuals and interactions over processes and tools 
Working software over comprehensive documentation 

Customer collaboration over contract negotiation 
Responding to change over following a plan



The agile manifesto started a huge 
awakening process in the software industry...

(picture from the 1990 film Awakenings)



processes and tools 
comprehensive documentation 

contract negotiation  
following a plan



processes and tools 
comprehensive documentation 

contract negotiation  
following a plan





Individuals and interactions
Working solutions

Customer collaboration
Responding to change



Individuals and interactions
Working solutions

Customer collaboration
Responding to change





Seven Enemies of Agile

Plans
Commitments
Pressure
Objectives
Documentation
Inspection
Procedures



Everyone has a plan 'till they get punched in the mouth.
Mike Tyson

Plan

http://www.brainyquote.com/quotes/quotes/m/miketyson382439.html


Commitments



Pressure



Objectives



Documentation



Inspection



Procedures



Seven Enemies of Agile

Plans
Commitments
Pressure
Objectives
Documentation
Inspection
Procedures





Seven Friends of Agile



Seven Friends of Agile

Planning



Seven Friends of Agile

Planning
Collaboration



Seven Friends of Agile

Planning
Collaboration
Slack



Seven Friends of Agile

Planning
Collaboration
Slack
Direction



Seven Friends of Agile

Planning
Collaboration
Slack
Direction
Communication



Seven Friends of Agile

Planning
Collaboration
Slack
Direction
Communication
Reflection



Seven Friends of Agile

Planning
Collaboration
Slack
Direction
Communication
Reflection
Principles



Planning
Collaboration
Slack
Direction
Communication
Reflection
Principles

Plans
Commitments
Pressure
Objectives
Documentation
Inspection
Procedures



Planning
Collaboration
Slack
Direction
Communication
Reflection
Principles

Plans
Commitments
Pressure
Objectives
Documentation
Inspection
Procedures



!


