
Grow Professionalism!

A key to succeed with high-tech product development is to create an environment where engineers are really treated as professionals. In return the
engineers must use the opportunity to always reach for new levels of professionalism. Allow professionalism to thrive within your organization.

In this talk I will discuss a cocktail of ideas like: burn your corporate coding standards, stay close to the value stream, get rid of metrics, prefer collective
ownership, always train your strongest engineers first, be transparent, remove mechanisms for shifting responsibilities, optimize for your 80% best
engineers, introduce slack, celebrate failures, and more...

45 minute presentation + Q&A , Demo Day @ Huddly, 6. November 2020

Olve Maudal

Suppose you are just going to make something
nice for yourself...

then, really, anything will do. Even...

but, software development is usually about
more than just making something nice for

yourself.

It is usually about making something really
fancy...

together with a large team of professionals...

for some demanding customer ...

You need a clean and functional work
environment

Your codebase is like a kitchen.

Keep it clean and functional so that you can
create spectacular solutions for your

demanding customers!

?

Grow Professionalism!

A key to succeed with high-tech product development is to create an environment where engineers are really treated as professionals. In return the
engineers must use the opportunity to always reach for new levels of professionalism. Allow professionalism to thrive within your organization.

In this talk I will discuss a cocktail of ideas like: burn your corporate coding standards, stay close to the value stream, get rid of metrics, prefer collective
ownership, always train your strongest engineers first, be transparent, remove mechanisms for shifting responsibilities, optimize for your 80% best
engineers, introduce slack, celebrate failures, and more...

Olve Maudal

There used to be a time, when it was believed that anyone could do software development

after all, how hard could it be, it was just about programming a computer...

1) get some smart people to analyze the problem

2) create a plan
3) find resources 4) execute according to

the plan

and when projects failed

the respons was always:

do more up-front analysis

create a more detailed plan

find more resources

and make sure that everyone followed the plan

but the projects still failed

and the respons was, as always...

but of course...

Dark ages of software development (early 80’s to late 90’s)

1) get some smart people to analyze the problem

2) create a plan
3) find resources 4) execute according to

the plan

We had only discovered a fancy way of playing the “scabby queen”
game, also known as the “Old Maid” or “Svarte Per”, always try to
“save your ass” by delegating responsibility to someone else.

There must be a better way...

The Agile Manifesto (2001)

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

The agile manifesto started a huge
awakening process in the software industry...

(picture from the 1990 film Awakenings)

Grow Professionalism!

a cocktail of topics related to
Professionalism

Effectiveness Efficiencyvs

Introduce slack to become more effective!

If your company’s goal is to become fast, responsive, and agile, more
efficiency is not the answer--you need more slack. (Tom DeMarco)

100% full = high efficiency, very low effectiveness
50% full = high effectiveness, moderate efficiency

The more difficult tasks you need
to solve, the more slack you need

Taking breaks to "sharpen your
saw" is often very effective

Trust

Deming states unequivocally that merit reviews, by whatever
name, including management by objectives, are the single
most destructive force in American management today.

Management by objectives is... a disastera disaster!

Constraints and direction

The observer effect

When observing a programmer, he/she is much more likely to add code than to delete code. Also, you can nearly
guarantee that they will not shut their eyes and think carefully about things.

Pull vs Push

Money flow and turbulence

Midnight cowboys and sustainable pace

Do not rush miracles

Inigo Montoya

Miracle Max

Inigo: We need a miracle. It's very important.

Inigo: We're in a terrible rush.
Miracle Max: Don't rush me, sonny.

You rush a miracle man, you get rotten miracles.

Inigo: I just hope it's enough to buy a miracle, that's all.

[Inigo knocks on the door. A face appears]

Inigo: Are you the Miracle Max who worked for the king all those years?

Inigo: We need a miracle. It's very important.

[after a while]

Inigo: Sir...sir??

Miracle Max: Huh?

Inigo: We're in a terrible rush.

Miracle Max: Don't rush me, sonny. You rush a miracle man, you get rotten miracles.

http://www.youtube.com/watch?v=1oWAtAWat4E

Do not rush miracles

Any sufficiently advanced technology is indistinguishable from magic.
Arthur C. Clark (third law)

Be open, transparent and honest

Celebrate learning

Burn the corporate coding standards

The corporate coding standard is usually written by some old-school developers that are not coding anymore.

Why do car have breaks?

Scope

Cost Schedule

Quality

“Fast, Good, Cheap. Pick two!”

Scope

Schedule

Quality

Cost

Scope

Cost Schedule

Quality

Scope

Cost Schedule

Quality

Scope

Cost Schedule

Quality

IBM 5150 PC with IBM 5151 monitor

http://en.wikipedia.org/wiki/IBM_5151

Lock cost and schedule, but not scope

Scope

Cost Schedule

Quality

Training

Always train your best developers first. The others will follow.

Remove mechanisms for shifting responsibility around

"What we don't do is treat our employees like they're all, you
know, criminals,"

(Jenn Mann, SAS Institute)

think, use tools, create tools, focus on effectiveness

share knowledge, collaborate, fremsnakke and extend trust boundaries

align your efforts and make sure you all pull in the same direction

make sure you have enough data to know where you are going

understand the business, take overall responsibility for what you create

deliver value early and often, continuously improve

stay close to where the money is flowing, avoid the turbulence

work in a sustainable pace, build quality in, celebrate your vision

no sandbagging, be honest and be transparent, deliver magic

establish fast and reliable feedback loops, celebrate failures

stay up to date with current industry standards and best practice

establish reliable breaking mechanisms, fail fast, stop or change direction

deliver value early and often, without compromising the overall vision

share your knowledge, teach, encourage others to follow your ideas

be trustworthy, practice collective ownership and responsibility

always do the right things

make sure there is enough slack

encourage teams and individuals to meet and spend time together

instead of setting objectives, show your constraints and suggest a direction

respect the observer effect, get rid of externally imposed metrics

share your vision, never throw requirements "over the wall"

pull value out of a system, do not push

explain the business to everyone involved

don't celebrate the midnight cowboys

do not demand dates and estimates, aka "do not rush miracles"

respect that software development is a learning process

beware of governance and corporate coding standards

abandon decision gates and commitments

you may lock time and cost, but do not lock the scope

train your best developers first

get rid of mechanisms for shifting responsibilities around

don't treat your employees as criminals

Grow Professionalism!
w

h
at

 s
u

cc
es

sf
u

lo
rg

an
iz

at
io

n
 n

ee
d

 t
o

 d
o

w
h

at a
sp

irin
g

so
ftw

are craftsm
en

 n
eed

 d
o

think, use tools, create tools, focus on effectiveness

share knowledge, collaborate, fremsnakke and extend trust boundaries

align your efforts and make sure you all pull in the same direction

make sure you have enough data to know where you are going

understand the business, take overall responsibility for what you create

deliver value early and often, continuously improve

stay close to where the money is flowing, avoid the turbulence

work in a sustainable pace, build quality in, celebrate your vision

no sandbagging, be honest and be transparent, deliver magic

establish fast and reliable feedback loops, celebrate failures

stay up to date with current industry standards and best practice

establish reliable breaking mechanisms, fail fast, stop or change direction

deliver value early and often, without compromising the overall vision

share your knowledge, teach, encourage others to follow your ideas

be trustworthy, practice collective ownership and responsibility

always do the right things (even when nobody is looking)

make sure there is enough slack

encourage teams and individuals to meet and spend time together

instead of setting objectives, show your constraints and suggest a direction

respect the observer effect, get rid of externally imposed metrics

share your vision, never throw requirements "over the wall"

pull value out of a system, do not push

explain the business to everyone involved

don't celebrate the midnight cowboys

do not demand dates and estimates, aka "do not rush miracles"

respect that software development is a learning process

beware of governance and corporate coding standards

abandon decision gates and commitments

you may lock time and cost, but do not lock the scope

train your best developers first

get rid of mechanisms for shifting responsibilities around

don't treat your employees as criminals

Grow Professionalism!
w

h
at

 s
u

cc
es

sf
u

lo
rg

an
iz

at
io

n
 n

ee
d

 t
o

 d
o

w
h

at a
sp

irin
g

so
ftw

are craftsm
en

 n
eed

 d
o

