
History and Spirit of C
Olve Maudal, Cisco Systems

opening keynote at ECC 2017, Sep 5, Winterthur, Switzerland

http://thesourceny.com/welcome/wp-content/uploads/2014/02/stage-red-curtain.jpg

The history of C
in 90 seconds

http://www3.nd.edu/~atrozzol/BellLabs1959.jpg

At Bell Labs.

http://www.multicians.org/picnics.html

Back in 1969.

http://upload.wikimedia.org/wikipedia/commons/3/36/Ken_n_dennis.jpg

Ken Thompson wanted to play.

Ken Space Travel

http://en.wikipedia.org/wiki/PDP-7#/media/File:Pdp7-oslo-2005.jpeg

He found a little used PDP-7.

https://archive.org/stream/byte-magazine-1983-08/1983_08_BYTE_08-08_The_C_Language#page/n190/mode/1up

Ended up writing a nearly complete operating system from scratch.

“Essentially one person for a month, it was just my self.”

(Ken Thompson, 1989 Interview)

In about 4 weeks.

http://bitsavers.trailing-edge.com/pdf/dec/pdp7/PDP-7_AsmMan.pdf

In pure assembler of course.

http://upload.wikimedia.org/wikipedia/commons/3/36/Ken_n_dennis.jpg

Dennis Ritchie soon joined the effort.

http://cm.bell-labs.com/who/dmr/picture.html

Dennis

Ken

While porting Unix to a PDP-11

http://cm.bell-labs.com/cm/cs/who/dmr/ctut.pdf

they invented C,

http://cm.bell-labs.com/cm/cs/who/dmr/ctut.pdf

heavily inspired by Martin Richards’ portable
systems programming language BCPL.

GET “LIBHDR”
LET START() BE WRITES(“Hello, World”)

Martin Richards, Dec 2014

https://code.google.com/p/unix-jun72/source/browse/trunk/src/c/c03.c

In 1972 Unix was rewritten in C.

Due to Steve Johnsons Portable C Compiler,

Fact: from “The Development of the C Language” by Dennis Ritchie

http://www.computerhistory.org/collections/catalog/102691249 http://www.technikum29.de/en/computer/early-computers http://en.wikipedia.org/wiki/IBM_System/370 http://alegion63.tripod.com/bob/id6.html

Unix and C could be ported to all kinds of computer architectures.

C became the most successful programming language ever.

http://blogs.jpmsonline.com/wp-content/uploads/2014/11/

K&R
(1978)

Initially K&R and PCC was the only reference for C.

With significant contributions from C++ (Bjarne Stroustrup), the C language
got standardized

http://blogs.jpmsonline.com/wp-content/uploads/2014/11/

C99 C11ANSI/ISO C
(C89/C90)

in 1989/1990, and thereafter updated in 1999 and 2011.

http://powerlisting.wikia.com/wiki/File:The-end.jpg

At Bell Labs. Back In 1969. Ken Thompson wanted to play. He found a
little used PDP-7. Ended up writing a nearly complete operating
system from scratch. In about 4 weeks. In pure assembler of course.
Dennis Ritchie soon joined the effort. While porting Unix to a
PDP-11 they invented C, heavily inspired by Martin Richards’ portable
systems programming language BCPL. In 1972 Unix was rewritten in
C. Due to Steve Johnsons Portable C Compiler (PCC), Unix and C
could be ported to all kinds of computer architectures. C became
the most successful programming language ever. Initially the K&R and
PCC was only reference for C. With significant contributions from
C++ (Bjarne Stroustrup), the C language got standardized in
1989/1990, and thereafter updated in 1999 and 2011.

http://web.mit.edu/saltzer/www/multics.html

Ken Thompson, Dennis Ritchie and 20+ more technical staff from Bell Labs
had been working on the very innovative Multics project for several years.

While working on the Multics projects, Dennis and Ken had also been exposed
to the very portable and efficient systems programming language BCPL.

 "Both of us were really taken by the language and did a lot of work
with it." (Ken Thompson, 1989 interview)

http://www.princeton.edu/~hos/mike/transcripts/thompson.htm

GET “LIBHDR”
LET START() BE WRITES(“Hello, World”)

BCPL (1967) was the brainchild of Martin Richards from the University of
Cambridge

BCPL was a very much simplified version of CPL (1963).

CPL was the language initially designed for the Atlas computer to be
installed in Cambridge (ordered in 1961, operational in 1964).

EDSAC 2 users in 1960
http://en.wikipedia.org/wiki/EDSAC_2

A replacement for EDSAC 2,

which was an upgrade of the original EDSAC computer (1949)

http://en.wikipedia.org/wiki/Electronic_Delay_Storage_Automatic_Calculator

EDSAC was arguably, the first electronic digital stored-program
computer. It ran its first program May 6, 1949

Maurice Wilkes and Bill Renwick in front of the complete EDSAC

http://en.wikipedia.org/wiki/Electronic_Delay_Storage_Automatic_Calculator

Maurice Wilkes' himself commenting on the 1951 film about how EDSAC was
used in practice:

https://youtu.be/x-vS0WcJyNM

EDSAC 2 users in 1960
http://en.wikipedia.org/wiki/EDSAC_2

http://en.wikipedia.org/wiki/Titan_(computer)

A scaled down version of Atlas (called Titan / Atlas2) was ordered
in 1961, delivered to Cambridge in 1963, but not usable until early 1964

“How BCPL evolved from CPL”, Martin Richards

a programming language was needed!

Many existing programming languages was concidered….

(designed by Tony Brooker and Derrick Morris)

http://history.dcs.ed.ac.uk/archive/docs/atlasautocode.html
From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

Atlas Autocode

http://en.wikipedia.org/wiki/Fortran

Simple FORTRAN II program

Fortran

(appeared 1957, designed by John Backus)

Algol

(aka IAL, designed by Friedrich L. Bauer, Hermann Bottenbruch, Heinz Rutishauser, Klaus Samelson, John
Backus, Charles Katz, Alan Perlis, Joseph Henry Wegstein)

http://en.wikipedia.org/wiki/ALGOL_58

http://www.softwarepreservation.org/projects/ALGOL/report/Algol58_preliminary_report_CACM.pdf/

In the early 1960's, it was common to think "we are building a new
computer, so we need a new programming language."

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

(David Hartley, in 2013 article)

But, hey….

Autocode? Fortran? Algol? other languages?

CPL
Cambridge Programming Language

Combined Programming Language
(Cristophers’ Programming Language)

Cambridge Plus London

"anything not explicity allowed should be forbidden ... nothing should be left
undefined"

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

"It was envisagd that [the language] would be sufficiently general and
versatile to dispense with machine-code programming as far as possible"

Example of CPL

http://www.math.bas.bg/~bantchev/place/cpl/features.pdf

http://comjnl.oxfordjournals.org/content/6/2/134.full.pdf+html

CPL as described in 1963

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

Martin Richards started as a research student in 1963

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

Martin Richards started as a research student in 1963double floating po
int precision

support for complex numbers

polymorphic operators

transfer functio
ns (aka, coercio

n)

closures and lamda calculus

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

http://s3.amazonaws.com/rapgenius/BIg-Pill.jpg

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

CPL was once compared to the invention of a pill that could
cure every type of ill.

Cambridge never succeeded writing a working CPL compiler.

Development on CPL ended December 1966.

Writing a compiler for CPL was too difficult.

Inspired by his work on CPL, Martin Richards wanted to create a language:

• that was simple to compile
• with direct mapping to machine code
• that assumes the programmer know what he is doing

 "The philosophy of BCPL is not one of the tyrant who thinks he knows
 best and lay down the law on what is and what is not allowed;
 rather, BCPL acts more as a servant offering his services to the
 best of his ability without complaint, even when confronted with
 apparent nonsense. The programmer is always assumed to know what he
 is doing and is not hemmed in by petty restrictions.”

The BCPL Reference Manual, Martin Richards, July 1967

Martin Richards joined MIT’s Project MAC

and through the MULTICS project the Bell Labs people learned about this beautiful
language called BCPL - a language exactly to the taste of Ken and Dennis.

MIT GE Bell Labs

Computer Laboratory, Cambridge, December 2014

Humble fans meet Martin Richards, the inventor of BCPL

Jon Jagger, Martin Richards, Olve Maudal

B was the link between BCPL and C

Interviewer: Did you develop B?

Thompson: I did B.

Interviewer: As a subset of BCPL?

Thompson: It wasn't a subset. It was almost exactly the same.
...
Thompson: It was the same language as BCPL, it looked
 completely different, syntactically it was, you
 know, a redo. The semantics was exactly the same
 as BCPL. And in fact the syntax of it was, if you
 looked at, you didn't look too close, you would
 say it was C. Because in fact it was C, without
 types.
...

http://www.princeton.edu/~hos/mike/transcripts/thompson.htm

From an interview with Ken Thompson in 1989

From the HOPL article by Dennis Ritchie in 1993

BCPL, B and C differ syntactically in many
details, but broadly they are similar.

The C programming language was devised in the
early 1970s as a system implementation language

for the nascent Unix operating system. Derived from
the typeless language BCPL, it evolved a type

structure; created on a tiny machine as a tool to
improve a meager programming environment, it has
become one of the dominant languages of today.

…

Users’ Reference to B, Ken Thompson, January 1972The BCPL Reference Manual, Martin Richards, July 1967

vs

excerpt from the BCPL reference manual (Richards, 1967), page 6

excerpt from the B reference manual (Thompson, 1972), page 6

excerpt from the BCPL reference manual (Richards, 1967), page 6

excerpt from the B reference manual (Thompson, 1972), page 6

excerpt from the BCPL reference manual (Richards, 1967), page 6

excerpt from the B reference manual (Thompson, 1972), page 6

GET "LIBHDR"

GLOBAL $(
 COUNT: 200
 ALL: 201
$)

LET TRY(LD, ROW, RD) BE
 TEST ROW = ALL THEN
 COUNT := COUNT + 1
 ELSE $(
 LET POSS = ALL & ~(LD | ROW | RD)
 UNTIL POSS = 0 DO $(
 LET P = POSS & -POSS
 POSS := POSS - P
 TRY(LD + P << 1, ROW + P, RD + P >> 1)
 $)
 $)

LET START() = VALOF $(
 ALL := 1
 FOR I = 1 TO 12 DO $(
 COUNT := 0
 TRY(0, 0, 0)
 WRITEF("%I2-QUEENS PROBLEM HAS %I5 SOLUTIONS*N", I, COUNT)
 ALL := 2 * ALL + 1
 $)
 RESULTIS 0
$)

• Designed by Martin Richards, appeared in 1966, typeless (everything is a word)
• Influenced by Fortran and Algol
• Intended for writing compilers for other languages
• Simplified version of CPL by "removing those features of the full language which make

compilation difficult"

BCPL

PDP-7
(18-bit computer, introduced 1965)

/* The following program will calculate the constant e-2 to about
 4000 decimal digits, and print it 50 characters to the line in
 groups of 5 characters. */

main() {
extrn putchar, n, v;
auto i, c, col, a;

i = col = 0;
while(i<n)

v[i++] = 1;
while(col<2*n) {

a = n+1 ;
c = i = 0;
while (i<n) {

c =+ v[i] *10;
v[i++] = c%a;
c =/ a--;

}

putchar(c+'0');
if(!(++col%5))

putchar(col%50?' ': '*n');
}
putchar('*n*n');

}

v[2000];
n 2000;

Designed by Ken Thompson, appeared in ~1969, typeless (everything is a word)
"BCPL squeezed into 8K words of memory and filtered through Thompson's brain"

B

auto
extrn

if
else
while
switch
case

goto
return

PDP-11
•16-bit computer
•introduced 1970
•orthogonal instruction set
•byte-oriented

/* Early C example */

mystrcpy(s,t)
char *s;
char *t;
{
 int i;

 for (i = 0; (*s++ = *t++) != '\0'; i++)
 ;
 return(i);
}

main()
{
 char str1[10];
 char str2[] = "Hello!";
 int len = mystrcpy(str1, str2);
 int i;
 for (i = 0; i < len; i++)
 putchar(str1[i]);
 exit(0);
}

Designed by Dennis Ritchie and Ken Thompson
Developed during 1969-1972 in parallel with Unix
Data types added to the language to support the PDP-11

C

int
char
float
double
struct
sizeof

if
else
while
switch
case

goto
return

auto
extrn

default
do
for

break
continue
entry

extern
static
register

The C Reference Manual, Dennis Ritchie, Jan 1974 (aka C74)

Fun fact: The C74 reference manual does not mention BCPL at all.
It does not even mention the B reference manual by Ken Thompson.

The seminal book "The C Programming Language" (1978) acted for a long time as the
only formal definition of the language. And PCC was the reference implementation for C.

K&R C

“C became the most successful language ever.”

in the Computing Laboratory at University of Cambridge.

in the mid/late 70’

Bjarne was working on his PhD thesis

http://computersweden.idg.se/polopoly_fs/1.346563!imageManager/1326219611.jpg

Bjarne

Cambridge Computing, The first 75 years, Haroon Ahmed, 2013

"The Design and Evolution of C++", Bjarne Stroustrup, 1994

He was working on a simulator to study alternatives for the organization of
system software for distributed systems.

The initial version of this simulator was written in Simula

http://en.wikipedia.org/wiki/Simula

object oriented programming multitasking

Bjørn Myrhaug, Sigurd Kubosh,
Kristen Nygard and Ole Johan Dahl

by the “Simula blackboard”

and ran on the IBM 360/165 mainframe.

https://www-03.ibm.com/ibm/history/exhibits/mainframe/mainframe_PP3165.html

System/370 model 165

The concepts of Simula and object orientation became increasingly helpful as
the size of the program increased. Unfortunately, the implementation of Simula

did not scale the same way.

Eventually, he was foreced to rewrite the simulator in BCPL and run it on the
experimental CAP computer.

“The experience of coding and debugging the simulator in BCPL was horrible.”

“Upon leaving Cambridge, I swore never again to attack a problem with tools as
unsuitable as those I had suffered while designing and implementing the simulator.”

After finishing his PhD Thesis in Cambridge,
Bjarne was hired by Bell Labs in April 1979

At Bell Labs, Bjarne started to analyze if the UNIX kernel could be distributed
over a network of computers connected by a local area network. Proper tools

was needed….

Bjarne started to write a preprocessor
to C that added Simula like classes to C.

“I learned C properly from people like Stu Feldman, Steve Johnson,
Brian Kernighan, and Dennis Ritchie.”

And then Bjarne started to develop “C with Classes”. The main motivation
was to create better support for modularity and concurrency.

The success of C++ added to the motivation for a C standard

C++ was the inspiration for the function prototypes and
several other mechanisms stronger type support.

Indeed, while an unusual perspective, it is fair to some extend to
view ANSI C as a strict subset of C++ at the time.

“The first demand from development management was that of 100% compatibility with C.”

But without a standard, that requirement did not make much sense: compatible with what
implementation of C?

Fun fact: All the examples in K&R, 2ed, was compiled with CFront 2.0

K&R, ed 2ANSI/ISO C (C89/C90)

// C99 example, ISO/IEC 9899:1999

#include <stdio.h>

size_t mystrcpy(char *restrict s, const char *restrict t)
{
 size_t i;

 for (i = 0; (*s++ = *t++) != '\0'; i++)
 ;
 return i;
}

int main(void)
{
 char str1[16];
 char str2[] = "Hello, C99!";
 size_t len = mystrcpy(str1, str2);
 for (size_t i = 0; i < len; i++)
 putchar(str1[i]);
}

C99 added a lot of stuff to C89, perhaps too much. Especially a lot of features for scientific
computing was added, but also a few things that made life easier for programmers.

C99

The main focus:
- security, eg Anneks K (the bounds checking library, contributed by Microsoft)
- support for multicore systems (threads from WG14, memory model from WG21)

The most interesting features:

• Type-generic expressions using the _Generic keyword.
• Multi-threading support
• Improved Unicode support
• Removal of the gets() function
• Bounds-checking interfaces
• Anonymous structures and unions
• Static assertions
• Misc library improvements

Made a few C99 features optional.

C11

WG14 meeting at Lysaker, April 2015

Cisco Systems in Norway

• Currently working on defect reports
• There are some nasty/interesting differences between C11 and C++11
• IEEE 754 floating point standard updated in 2008
• CPLEX - C parallel language extentions (started after C11)

Next version of C - C2x?

Private conversation with David Keaton, April 2015

The Spirit of C

• Trust the programmer.
• Don't prevent the programmer from doing what needs to be done.
• Keep the language small and simple.
• Provide only one way to do an operation.
• Make it fast, even if it is not guaranteed to be portable.

http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf

 "The philosophy of BCPL is not one of the tyrant who thinks he knows
 best and lay down the law on what is and what is not allowed;
 rather, BCPL acts more as a servant offering his services to the
 best of his ability without complaint, even when confronted with
 apparent nonsense. The programmer is always assumed to know what he
 is doing and is not hemmed in by petty restrictions.”

 (The BCPL book, 1979)

s/BCPL/C/g

 "The philosophy of C is not one of the tyrant who thinks he knows
 best and lay down the law on what is and what is not allowed;
 rather, C acts more as a servant offering his services to the
 best of his ability without complaint, even when confronted with
 apparent nonsense. The programmer is always assumed to know what he
 is doing and is not hemmed in by petty restrictions.”

 (a rewrite of perhaps the most important paragraph in the BCPL book, 1979)

!

?

