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Navigating Chaos



There used to be a time, when it was believed that anyone could do software development

after all, how hard could it be, it was just about programming a computer...



1) get some smart people to analyze the problem

2) create a plan 3) find resources 4) execute according to 
the plan



and when projects failed

the respons was always:



do more up-front analysis



create a more detailed plan



find more resources



and make sure that everyone followed the plan



but the projects still failed

and the respons was, as always...











but of course...





Dark ages of software development (early 80’s to late 90’s)



1) get some smart people to analyze the problem

2) create a plan 3) find resources 4) execute according to 
the plan



Something is wrong



Few high tech projects are like running 
down on a paved road where you can see the ...



... goal in the end of the road. 



Typical projects are more like...



extreme orienteering



in difficult terrain



with a group of people



in the dark



provided by @tlberglund

and the landscape is constantly changing



with only a sketchy map as guidance



and you should arrive at some safe place... Together!



"Computer programs are the most complex things that humans make", Douglas Crockford



"Computer programs are the most complex things that humans make", Douglas Crockford





Complicated Complex



Software development is a continuous learning process -
a journey into the unknown



Navigating Chaos



Embrace chaos



Prefer adaptable and scalable methodologies



If your company’s goal is to become fast, responsive, and agile, more 
efficiency is not the answer--you need more slack. (Tom DeMarco)

100% full = high efficiency, very low effectiveness
50% full = high effectiveness, moderate efficiency

The more difficult tasks you need 
to solve, the more slack you need

Taking breaks to "sharpen your 
saw" is often very effective

Introduce slack to increase effectiveness





Use constraints to set direction



When observing a programmer, he/she is much more likely to add code than to delete code. Also, you can nearly 
guarantee that they will not shut their eyes and think carefully about things. 

Beware the observer effect





Pull value out of a complex system



Focus on execution (avoid innovation initiatives)



Be open, transparent and honest



-



Seek early feedback



Release often



Celebrate learning



• Embrace chaos
• Prefer adaptable methodologies
• Introduce slack to increase effectiveness
• Use constraints to set direction
• Beware the observer effect
• Pull value out of a complex system
• Focus on execution
• Be open, transparent and honest
• Release early and release often
• Celebrate learning

Navigating Chaos
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