
a 25 minute internal tech talk, EqLunch, 5. December 2019

Olve Maudal

Navigating Chaos



There used to be a time, when it was believed that anyone could do software development

after all, how hard could it be, it was just about programming a computer...



1) get some smart people to analyze the problem

2) create a plan 3) find resources 4) execute according to 
the plan



and when projects failed

the respons was always:



do more up-front analysis



create a more detailed plan



find more resources



and make sure that everyone followed the plan



but the projects still failed

and the respons was, as always...











but of course...





Dark ages of software development (early 80’s to late 90’s)



1) get some smart people to analyze the problem

2) create a plan 3) find resources 4) execute according to 
the plan



Something is wrong



Few high tech projects are like running 
down on a paved road where you can see the ...



... goal in the end of the road. 



Typical projects are more like...



extreme orienteering



in difficult terrain



with a group of people



in the dark



provided by @tlberglund

and the landscape is constantly changing



with only a sketchy map as guidance



and you should arrive at some safe place... Together!



"Computer programs are the most complex things that humans make", Douglas Crockford



"Computer programs are the most complex things that humans make", Douglas Crockford





Complicated Complex



Software development is a continuous learning process -
a journey into the unknown



Navigating Chaos



Embrace chaos



Prefer adaptable and scalable methodologies



If your company’s goal is to become fast, responsive, and agile, more 
efficiency is not the answer--you need more slack. (Tom DeMarco)

100% full = high efficiency, very low effectiveness
50% full = high effectiveness, moderate efficiency

The more difficult tasks you need 
to solve, the more slack you need

Taking breaks to "sharpen your 
saw" is often very effective

Introduce slack to increase effectiveness





Use constraints to set direction



When observing a programmer, he/she is much more likely to add code than to delete code. Also, you can nearly 
guarantee that they will not shut their eyes and think carefully about things. 

Beware the observer effect





Pull value out of a complex system



Focus on execution (avoid innovation initiatives)



Be open, transparent and honest



-



Seek early feedback



Release often



Celebrate learning



• Embrace chaos
• Prefer adaptable methodologies
• Introduce slack to increase effectiveness
• Use constraints to set direction
• Beware the observer effect
• Pull value out of a complex system
• Focus on execution
• Be open, transparent and honest
• Release early and release often
• Celebrate learning

Navigating Chaos



!


	Navigating Chaos
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Navigating Chaos
	Embrace chaos
	Prefer adaptable and scalable methodologies
	Introduce slack to increase effectiveness
	Slide Number 38
	Use constraints to set direction
	Beware the observer effect
	Slide Number 41
	Pull value out of a complex system
	Focus on execution (avoid innovation initiatives)
	Be open, transparent and honest
	-
	Seek early feedback
	Release often
	Celebrate learning
	Navigating Chaos
	!
	Navigating Chaos
	Q&A
	Enjoy the ride and maximize the fun factor
	Convert free riders into contributors
	Get rid of software architects
	Burn the corporate coding standards
	Work on the trust boundaries
	Money flow and turbulence
	Learn to surf
	Admire the doers (and create an autonomous organization)
	Try to be effective
	Celebrate the organization (not individuals, nor teams)
	Sustainable pace
	Why do car have breaks?
	Slide Number 65
	Remove mechanisms for shifting responsibility around
	Grow Professionalism!
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Trust your software teams
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Do not rush software developers
	Always train your best developers first
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Lock cost and schedule, but not scope

