st |ret] s
CISCO

Secure Coding in C
Olve Maudal

st |ret] s
CISCO

ot inkeqers

—

Secure Coding’in C
Olve Maudal

Some tricks for insecure coding in C and C++

#0 Never ever let other programmers review your code
#1 Write insecure code by depending on a particular evaluation order
#2 Write insecure code by doing sequence point violations

#3 Write insecure code where the result depends on the compiler
#4 Know the blind spots of your compilers

#5 Write insecure code by messing up the internal state of the program.

#6 Write insecure code by only assuming valid input values

#7 Understand how the optimizer can and will remove apparently critical code
#8 Write code that allows buffer overflows

#9 Disable stack protection

#10 Disable ASLR whenever you can.

#11 Avoid hardware and operating systems that enforce DEP/W”X/NX-bit
#12 Make it easy to find many ROP gadgets in your program

#13 Skip integrity checks when installing and running new software.

#14 Write insecure code by leaking information

—

Some tricks for insecure coding in C and C++

#0 Never ever let other programmers review your code
#1 Write insecure code by depending on a particular evaluation order
#2 Write insecure code by doing sequence point violations

#3 Write insecure code where the result depends on the compiler
#4 Know the blind spots of your compilers

#5 Write insecure code by messing up the internal state of the program.

#6 Write insecure code by only assuming valid input values

#7 Understand how the optimizer can and will remove apparently critical code

#8 Write code that allows buffer overflows

#9 Disable stack protection

#10 Disable ASLR whenever you can.

#11 Avoid hardware and operating systems that enforce DEP/W”X/NX-bit l
#12 Make it easy to find many ROP gadgets in your program

#13 Skip integrity checks when installing and running new software. |
#14 Write insecure code by leaking information

—

http://www.pvv.org/~oma/lnsecureCodingC_Bangalore_Nov20|4.pdf

just a quick recap of the most important thing |
covered at SecConX Bangalore last year

On undefined behavior anything can happen!

On undefined behavior anything can happen!

On undefined behavior anything can happen!

it to make demons fly out of your nose” [comp.std.c]

[When the compiler encounters [a given undefined construct] it is legal fork

you can not reason about undefined behavior!

In practice, what do you think happens if you run this program on your machine?

foo.c

#include <stdio.h>

int main(void)

{
int v[] = {0,2,4,6,8};
int 1 = 1;
int n =1 + v[++i] + v[++i];

printf ("%d\n", n);

In practice, what do you think happens if you run this program on your machine?

foo.c

#include <stdio.h>

int main(void)

{
int v[] = {0,2,4,6,8};
int 1 = 1;
intn =1 + v[++i] + v[++i];
printf ("%d\n", n);
}

Here is what happens on my machine:

In practice, what do you think happens if you run this program on your machine?

foo.c

#include <stdio.h>

int main(void)

{
int v[] = {0,2,4,6,8};
int 1 = 1;
intn =1 + v[++i] + v[++i];
printf ("%d\n", n);
}

Here is what happens on my machine:
icc

In practice, what do you think happens if you run this program on your machine?

foo.c

#include <stdio.h>

int main(void)

{
int v[] = {0,2,4,6,8};
int 1 = 1;
intn =1 + v[++i] + v[++i];
printf ("%d\n", n);
}

Here is what happens on my machine:
icc clang

In practice, what do you think happens if you run this program on your machine?

foo.c

#include <stdio.h>

int main(void)

{
int v[] = {0,2,4,6,8};
int 1 = 1;
intn =1 + v[++i] + v[++i];
printf ("%d\n", n);
}

Here is what happens on my machine:
icc clang gcc

In practice, what do you think happens if you run this program on your machine?

foo.c

#include <stdio.h>

int main(void)

{
int v[] = {0,2,4,6,8};
int 1 = 1;
int n =1 + v[++i] + v[++i];
printf ("%d\n", n);

;

Here is what happens on my machine: Here is what “could” also happen:
icc clang gcc

In practice, what do you think happens if you run this program on your machine?

foo.c

#include <stdio.h>

int main(void)

{
int v[] = {0,2,4,6,8};
int 1 = 1;
int n =1 + v[++i] + v[++i];
printf ("%d\n", n);
;
Here is what happens on my machine: Here is what “could” also happen:

clang

icc gcc X

In practice, what do you think happens if you run this program on your machine!?

foo.c

#include <stdio.h>

int main(void)

{
int v[] = {0,2,4,6,8};
int 1 = 1;
int n =1 + v[++i] + v[++i];
printf ("%d\n", n);

;

Here is what happens on my machine: Here is what “could” also happen:
clang

gcc X Y

icc

In practice, what do you think happens if you run this program on your machine!?

foo.c

#include <stdio.h>

int main(void)

{
int v[] = {0,2,4,6,8};
int 1 = 1;
int n =1 + v[++i] + v[++i];
printf ("%d\n", n);

;

Here is what happens on my machine: Here is what “could” also happen:
clang

icc

gcc X)4 Z
42 missiles

In practice, what do you think happens if you run this program on your machine!?

foo.c
#include <stdio.h>
int main(void)
{
int v[] = {0,2,4,6,8};
int 1 = 1;
int n =i+ v[++i] + v[++i];
printf ("%d\n", n);
;
Here is what happens on my machine: Here is what “could” also happen:
clang

icc

gcc X)4 Z
42 missiles

see http://www.pvv.org/~oma/UnspecifiedAndUndefined_ ACCU_Apr2013.pdf for detailed explanation of this phenomenon

you can not reason about undefined behavior!

In practice, what do you think are possible outcomes when this function is called?

foo.c

#include <stdio.h>
#include <stdbool.h>
void foo(void)
{

bool b;

it (b)

printf("true\n");
it (!b)

printf("false\n");

In practice, what do you think are possible outcomes when this function is called?

foo.c

#include <stdio.h>
#include <stdbool.h>

void foo(void)
{
bool b;
if (b)
printf("true\n");
if ('b)
printf("false\n");

Here is what | can observe on my machine:

In practice, what do you think are possible outcomes when this function is called?

foo.c
#include <stdio.h>
#include <stdbool.h>
void foo(void)
{
bool b;
it (b)
printf("true\n");
it (!b)
printf("false\n");
Y

Here is what | can observe on my machine:*

* if the uninitialized internal representation for b is a positive even number

In practice, what do you think are possible outcomes when this function is called?

foo.c
#include <stdio.h>
#include <stdbool.h>
void foo(void)
{
bool b;
it (b)
printf("true\n");
it (!b)
printf("false\n");
Y

Here is what | can observe on my machine:*

icC

true

* if the uninitialized internal representation for b is a positive even number

In practice, what do you think are possible outcomes when this function is called?

foo.c
#include <stdio.h>
#include <stdbool.h>
void foo(void)
{
bool b;
it (b)
printf("true\n");
it (!b)
printf("false\n");
Y

Here is what | can observe on my machine:*

icC

true

clang

* if the uninitialized internal representation for b is a positive even number

In practice, what do you think are possible outcomes when this function is called?

foo.c
#include <stdio.h>
#include <stdbool.h>
void foo(void)
{
bool b;
it (b)
printf("true\n");
it (!b)
printf("false\n");
Y

Here is what | can observe on my machine:*

icC

true

clang

gcc

* if the uninitialized internal representation for b is a positive even number

In practice, what do you think are possible outcomes when this function is called?

foo.c
#include <stdio.h>
#include <stdbool.h>
void foo(void)
{
bool b;
it (b)
printf("true\n");
it (!b)
printf("false\n");
Y

Here is what | can observe on my machine:*
icc clang gcc

* if the uninitialized internal representation for b is a positive even number

In practice, what do you think are possible outcomes when this function is called?

foo.c
#include <stdio.h>
#include <stdbool.h>
void foo(void)
{
bool b;
it (b)
printf("true\n");
it (!b)
printf("false\n");
Y

Here is what | can observe on my machine:*
icc clang gcc

false

* if the uninitialized internal representation for b is a positive even number

In practice, what do you think are possible outcomes when this function is called?

foo.c
#include <stdio.h>
#include <stdbool.h>
void foo(void)
{
bool b;
it (b)
printf("true\n");
it (!b)
printf("false\n");
Y

Here is what | can observe on my machine:*
icc clang gcc

false

* if the uninitialized internal representation for b is a positive even number

see http://www.pvv.org/~oma/UnspecifiedAndUndefined_ ACCU_Apr2013.pdf for detailed explanation of this phenomenon

In practice, what do you think are possible outcomes when this function is called?

foo.c

#include <stdio.h>
#include <stdbool.h>

void foo(void)

{
bool b;

if (b)
printf("true\n");

if ('b)
printf("false\n");

Here is what | can observe on my machine:* Here is what “could” also happen:
icc clang gcc

false

* if the uninitialized internal representation for b is a positive even number

see http://www.pvv.org/~oma/UnspecifiedAndUndefined_ ACCU_Apr2013.pdf for detailed explanation of this phenomenon

In practice, what do you think are possible outcomes when this function is called?

foo.c
#include <stdio.h>
#include <stdbool.h>
void foo(void)
{
bool b;
if (b)
printf("true\n");
if (!b)
printf("false\n");
}
Here is what | can observe on my machine:* Here is what “could” also happen:
icc clang gcc X

false

* if the uninitialized internal representation for b is a positive even number

see http://www.pvv.org/~oma/UnspecifiedAndUndefined_ ACCU_Apr2013.pdf for detailed explanation of this phenomenon

In practice, what do you think are possible outcomes when this function is called?

foo.c
#include <stdio.h>
#include <stdbool.h>
void foo(void)
{
bool b;
if (b)
printf("true\n");
if (!b)
printf("false\n");
}
Here is what | can observe on my machine:* Here is what “could” also happen:
icc clang gcc X y

false

* if the uninitialized internal representation for b is a positive even number

see http://www.pvv.org/~oma/UnspecifiedAndUndefined_ ACCU_Apr2013.pdf for detailed explanation of this phenomenon

In practice, what do you think are possible outcomes when this function is called?

foo.c

#include <stdio.h>
#include <stdbool.h>

void foo(void)

{
bool b;

if (b)
printf("true\n");

if ('b)
printf("false\n");

Here is what | can observe on my machine:* Here is what “could” also happen:

icc clang y
42 missiles

gcc X Y
false

* if the uninitialized internal representation for b is a positive even number

see http://www.pvv.org/~oma/UnspecifiedAndUndefined_ ACCU_Apr2013.pdf for detailed explanation of this phenomenon

YOU CAN NOT REASON ABOUT UNDEFINED BEHAVIOR!

#1nclude <stdio.h>
#include <limits.h>

void foo(void)

{
int i = INT_MAX - 3;
while (i > 0)
printf("%d\n", i++);
}

int main(void)

{
}

foo () ;

* with optimization

#1nclude <stdio.h>
#include <limits.h>

void foo(void)

{ int i = INT MAX - 3;
while (i > 0)
printf("%d\n", i++);
}
int main(void)
{
foo () ;
}

Here is what happens on my machine:’

* with optimization

#1nclude <stdio.h>
#include <limits.h>

void foo(void)

{ int i = INT MAX - 3;
while (i > 0)
printf("%d\n", i++);
}
int main(void)
{
foo () ;
}

Here is what happens on my machine:’

icc

* with optimization

#1nclude <stdio.h>
#include <limits.h>

void foo(void)

{ int i = INT MAX - 3;
while (i > 0)
printf("%d\n", i++);
}
int main(void)
{
foo () ;
}

Here is what happens on my machine:’

icc
2147483644

* with optimization

#1nclude <stdio.h>
#include <limits.h>

void foo(void)

{ int i = INT MAX - 3;
while (i > 0)
printf("%d\n", i++);
}
int main(void)
{
foo () ;
}

Here is what happens on my machine:’

icc

2147483644
2147483645

* with optimization

#1nclude <stdio.h>
#include <limits.h>

void foo(void)

{ int i = INT MAX - 3;
while (i > 0)
printf("%d\n", i++);
}
int main(void)
{
foo () ;
}

Here is what happens on my machine:’

icc

2147483644
2147483645

2147483646

* with optimization

#1nclude <stdio.h>
#include <limits.h>

void foo(void)

{ int i = INT MAX - 3;
while (i > 0)
printf("%d\n", i++);
}
int main(void)
{
foo () ;
}

Here is what happens on my machine:’
icc
2147483644
2147483645

2147483646
2147483647

* with optimization

#1nclude <stdio.h>
#include <limits.h>

void foo(void)

{ int i = INT MAX - 3;
while (i > 0)
printf("%d\n", i++);
}
int main(void)
{
foo () ;
}

Here is what happens on my machine:’

icc clang

2147483644
2147483645

2147483646
2147483647

* with optimization

#1nclude <stdio.h>
#include <limits.h>

void foo(void)

{ int i = INT MAX - 3;
while (i > 0)
printf("%d\n", i++);
}
int main(void)
{
foo () ;
}

Here is what happens on my machine:’

icc clang

2147483644 2147483644
2147483645 2147483645

2147483646 2147483646
2147483647 2147483647

* with optimization

#1nclude <stdio.h>
#include <limits.h>

void foo(void)

{ int i = INT MAX - 3;
while (i > 0)
printf("%d\n", i++);
}
int main(void)
{
foo () ;
}

Here is what happens on my machine:

icc clang

2147483644 2147483644
2147483645 2147483645

2147483646 2147483646
2147483647 2147483647

-2147483648

* with optimization

#1nclude <stdio.h>
#include <limits.h>

void foo(void)

{ int i = INT MAX - 3;
while (i > 0)
printf("%d\n", i++);
}
int main(void)
{
foo () ;
}

Here is what happens on my machine:

icc clang gcc

2147483644 2147483644
2147483645 2147483645

2147483646 2147483646
2147483647 2147483647

-2147483648

* with optimization

#1nclude <stdio.h>
#include <limits.h>

void foo(void)

{ int i = INT MAX - 3;
while (i > 0)
printf("%d\n", i++);
}
int main(void)
{
foo () ;
}

Here is what happens on my machine:

icc clang gcc

2147483644 2147483644
2147483645 2147483645
2147483646 2147483646

2147483644
2147483645
2147483646

2147483647 2147483647 2147483647

-2147483648

-2147483648
-2147483647
-2147483646

* with optimization

#1nclude <stdio.h>
#include <limits.h>

void foo(void)

{
int i = INT MAX - 3;
while (i1 > 0)

printf("%d\n", i++);

}

int main(void)

{
foo () ;

}

Here is what happens on my machine:’ Here is what “could” also happen:
icc clang gec

2147483644 2147483644
2147483645 2147483645
2147483646 2147483646

2147483644
2147483645
2147483646

2147483647 2147483647 2147483647

-2147483648

-2147483648
-2147483647
-2147483646

* with optimization

#1nclude <stdio.h>
#include <limits.h>

void foo(void)

{
int i = INT MAX - 3;
while (i1 > 0)

printf("%d\n", i++);

}

int main(void)

{
foo () ;

}

Here is what happens on my machine:’ Here is what “could” also happen:
icc clang gcc X

2147483644 2147483644
2147483645 2147483645
2147483646 2147483646

2147483644
2147483645
2147483646
2147483647

core dump

2147483647 2147483647
-2147483648

-2147483648
-2147483647
-2147483646

* with optimization

#1nclude <stdio.h>
#include <limits.h>

void foo(void)

{
int i = INT MAX - 3;
while (i1 > 0)
printf("%d\n", i++);
}
int main(void)
{
foo () ;
}
Here is what happens on my machine:’ Here is what “could” also happen:
icc clang gcc X 4

2147483644 2147483644
2147483645 2147483645
2147483646 2147483646

2147483644 3.14169265

2147483645
2147483646

2147483647 2147483647 2147483647

-2147483648

-2147483648
-2147483647
-2147483646

* with optimization

#1nclude <stdio.h>
#include <limits.h>

void foo(void)

{
int i = INT MAX - 3;
while (i1 > 0)
printf("%d\n", i++);
}
int main(void)
{
foo () ;
}
Here is what happens on my machine:’ Here is what “could” also happen:
icc clang gcc X Y Z

2147483644 2147483644
2147483645 2147483645
2147483646 2147483646

2147483644 3.14169265

2147483645 42 missiles
2147483646

2147483647 2147483647 2147483647

-2147483648

-2147483648
-2147483647
-2147483646

* with optimization

repeat after me:

repeat after me:

you can not reason about undefined behavior!

repeat after me:

you can not reason about undefined behavior!
you can not reason about undefined behavior!

repeat after me:

you can not reason about undefined behavior!
you can not reason about undefined behavior!

YOU CAN NOT REASON ABOUT UNDEFINED BEHAVIOR!

about integers

int midpoint(int a, int b)
{

;

return (a + b) / 2;

int midpoint(int a, int b)
{

;

return (a + b)) / 2;

What is the potential problem
with this function?

int midpoint(int a, int b)

{
return (a + b) / 2;

What is the potential problem
with this function?

Signed integer overflow is
undefined behavior.

int midpoint(int a, int b)
{

;

return (a + b) / 2;

int midpoint(int a, int b)

{
return (a + b) / 2;
!
int a = 3;
int b = 7;
int m = midpoint(a, b);

pr1ntf(”%d\n”, m) ;

int midpoint(int a, int b)

{
return (a + b) / 2;
!
int a = 3;
int b = 7;
int m = midpoint(a, b);

pr1ntf(”%d\n”, m) ;

int midpoint(int a, int b)

{
return (a + b) / 2;
}
int a = 3;42;7’
int b =
int m = m1dp01nt(a b) ;

pr1ntf(”%d\n”, m) ;

int midpoint(int a, int b)

{
return (a + b) / 2;
!
int a = -3;
int b = -7;
int m = midpoint(a, b);

pr1ntf(”%d\n”, m) ;

int midpoint(int a, int b)

{
return (a + b) / 2;
!
int a = -3;
int b = -7;
int m = midpoint(a, b);

pr1ntf(”%d\n”, m) ;

int midpoint(int a, int b)

{
return (a + b) / 2;
!
int a = -3;
int b = -7;
int m = midpoint(a, b);

pr1ntf(”%d\n”, m) ;

int midpoint(int a, int b)

{
return (a + b) / 2;
]
int a = 2000000003;
int b = 2000000007 ;
int m = midpoint(a, b);

pr1ntf(”%d\n”, m) ;

int midpoint(int a, int b)

{
return (a + b) / 2;
]
int a = 2000000003;
int b = 2000000007 ;
int m = midpoint(a, b);

pr1ntf(”%d\n”, m) ;

-147483643

int midpoint(int a, int b)

{
return (a + b) / 2;
]
int a = 2000000003;
int b = 2000000007 ;
int m = midpoint(a, b);

pr1ntf(”%d\n”, m) ;

core dump

int midpoint(int a, int b)

{
return (a + b) / 2;
]
int a = 2000000003;
int b = 2000000007 ;
int m = midpoint(a, b);

pr1ntf(”%d\n”, m) ;

launching 42 missiles

int midpoint(int a, int b)

{
return (a + b) / 2;
]
int a = 2000000003;
int b = 2000000007 ;
int m = midpoint(a, b);

pr1ntf(”%d\n”, m) ;

N

you might want to consider the -ftrapyv flag to

Launchin g 42 Mi1sSsS1 signal failure on sign integer overflow

,\

int midpoint(int a, int b)

{
return (a + b) / 2; «—
]
int a = 2000000003;
int b = 2000000007 ;
int m = midpoint(a, b);

pr1ntf(”%d\n”, m) ;

launching 42 missiles

int midpoint(int a, int b)

{
return a/2 + b/2;
]
int a = 2000000003;
int b = 2000000007 ;
int m = midpoint(a, b);

pr1ntf(”%d\n”, m) ;

int midpoint(int a, int b)

{
return a/2 + b/2;
]
int a = 2000000003;
int b = 2000000007 ;
int m = midpoint(a, b);

pr1ntf(”%d\n”, m) ;

2000000004

int midpoint(int a, int b)

{
return a/2 + b/2; <«
]
int a = 2000000003;
int b = 2000000007 ;
int m = midpoint(a, b);

pr1ntf(”%d\n”, m) ;

2000000004

int midpoint(int a, int b)
{

return a + (b - a) / 2;

!

int a = 2000000003;

int b = 2000000007 ;

int m = midpoint(a, b);

pr1ntf(”%d\n”, m) ;

int midpoint(int a, int b)

{
return a + (b - a) / 2;
)
int a = 2000000003;
int b = 2000000007 ;
int m = midpoint(a, b);

pr1ntf(”%d\n”, m) ;

2000000005

int midpoint(int a, int b)

{
return a + (b - a) / 2;
)
int a = 2000000003;
int b = 2000000007 ;
int m = midpoint(a, b);

pr1ntf(”%d\n”, m) ;

2000000005

int midpoint(int a, int b)
{

return a + (b - a) / 2;

!

int a = 2000000000;

int b = -2000000000;

int m = midpoint(a, b);

pr1ntf(”%d\n”, m) ;

int midpoint(int a, int b)

{
return a + (b - a) / 2;
)
int a = 2000000000;
int b = -2000000000;
int m = midpoint(a, b);

pr1ntf(”%d\n”, m) ;

launching 42 missiles

int midpoint(int a, int b)
{

;

return ((long)a + (long)b) / 2;

int midpoint(int a, int b)
{

;

return ((long long)a + (long long)b) / 2;

int midpoint(int a, int b)
{

;

return ((intmax t)a + (intmax t)b) / 2;

int midpoint(int a, int b)
{

return ((intmax t)a + (intmax t)b) / 2;

4)

There are systems out there where int, long
and long long all have the same precision. Then
this idea will not work.

\ ~\

pool 1s pos(int a) { return a >= 0; }
pool 1s neg(int a) { return a < 0; }
pool 1s even(int a) { return !(a % 2); }
pool 1s odd(int a) { return a % 2; }

int midpoint(int a, int b) {

if (a > b) {
int tmp = a;
a = b;
b = tmp;

}

if (is _pos(a) && 1s _pos(b))
return a + (b - a) / 2;

if (i1s neg(a) && 1s pos(b))
return (b + a) / 2;

if (1s _odd(a) != 1s odd(b))
return a + (b - a) / 2 + 1;

return a + (b - a) / 2;

| look forward to someone sending me a better solution

X

X

or

or

signed int result;
if (si_a >0) { /* si _a is positive */
if (si b >0) { /* si _a and si_b are positive */
if (si_a > (INT_MAX / si b)) {
/* Handle error */
}
} else { /* si_a positive, si_b nonpositive */
if (si_ b < (INT_MIN / si_a)) {
/* Handle error */
}
} /* si_a positive, si_b nonpositive */
} else { /* si_a is nonpositive */
if (si b > 0) { /* si_a is nonpositive, si_b is positive */
if (si_a < (INT_MIN / si b)) {
/* Handle error */
}
} else { /* si_a and si_b are nonpositive */
if ((si_a !=0) && (si_b < (INT _MAX / si_a))) {
/* Handle error */
}
} /* End if si_a and si_b are nonpositive */
} /* End if si_a 1is nonpositive */

result = si_a * si_b;

signed int result;

if (si a > 0) {
if (si b > 0) {

/* si_a
/* si

*b
or

is positive */

~a and si_b are positive */

if (si_a > (INT_MAX / si_b)) { "
/* Handle error */ " © |

/* Handle error */

h
} /* End if si

~a and si

}
} else { /* si_a positive
if (si_b < (INT_M
/* Handle=""
P el ntee®
~\ exax\ ,32:(23 —<Si1 b is positive */
\ re that ® @ QNT
TS .xa(yqex g
\YegU&&"’/s1 a and si_b are nonpositive */
\/_ (si a !=0) & & (si b < (INT_MAX / si_a))) {

b are nonpositive */

} /* End if si_a 1is nonpositive */

result = si_a * si_b;

or

signed int result;
if (si_a > 0) { /* si_a is positive */
if (si_b>0) { /* si _a and si_b are positive */
if (si_a > (INT_MAX / si_b)) { — \

Jv Endle errer =/ - o ”
} __— »
} else { /* si_a positive—""

\
if (si b < (INT_M \
/* Handle—" 40 (\Ot \
\\/\ /;Y .‘? .. 0 S.‘%“

\ o 1ONS

E‘QS ' .X“ oV / —
\Yggﬂﬁx /,f/§7;a and si_b are nonpositive */

T (si_a != 0) && (si_b < (INT_MAX / si_a))) {
/* Handle error */

}

} /* End if si_a and si_b are nonpositive */
} /* End if si_a 1is nonpositive */

result = si_a * si_b;

https://www.securecoding.cert.org/

unsigned int midpoint(unsigned int a, unsigned int b)

{
;

return (a + b)) / 2;

unsigned int midpoint(unsigned int a, unsigned int b)

{
;

return (a + b)) / 2;

What is the potential problem
with this function?

unsigned int midpoint(unsigned int a,

{

return (a + b)) / 2;

unsigned int b)

What is the potential proble
with this function?

L

-

Unsigned integers can not overflow but even
well defined wrapping can give surprising
results.

\

¢

,\

unsigned int midpoint(unsigned int a, unsigned int b)

{
;

return (a + b)) / 2;

unsigned int midpoint(unsigned int a, unsigned int b)

{
return (a + b)) / 2;

;
unsigned int a = 2;
unsigned int b = 4;
unsigned int m = midpoint(a,b);

printf("%u\n", m);

unsigned int midpoint(unsigned int a, unsigned int b)

{
return (a + b)) / 2;

;
unsigned int a = 2;
unsigned int b = 4;
unsigned int m = midpoint(a,b);

printf("%u\n", m);

unsigned int midpoint(unsigned int a, unsigned int b)

{
;

return (a + b)) / 2;

unsigned int a

2;47
unsigned int b 4
unsigned int m midpoint(a,b);
printf("%u\n", m);

unsigned int midpoint(unsigned int a, unsigned int b)

{
return (a + b)) / 2;

;
unsigned int a = 2;
unsigned int b = 4;
unsigned int m = midpoint(a,b);

printf("%u\n", m);

unsigned int midpoint(unsigned int a, unsigned int b)

{
return (a + b)) / 2;

;
unsigned int a = 4000000002;
unsigned int b = 4000000004,
unsigned int m = midpoint(a,b);

printf("%u\n", m);

unsigned int midpoint(unsigned int a, unsigned int b)

{
return (a + b)) / 2;

;
unsigned int a = 4000000002;
unsigned int b = 4000000004 ;
unsigned int m = midpoint(a,b);

printf("%u\n", m);

unsigned int midpoint(unsigned int a, unsigned int b)

{
return (a + b)) / 2;

;
unsigned int a = 4000000002;
unsigned int b = 4000000004 ;
unsigned int m = midpoint(a,b);

printf("%u\n", m);

1852516355

unsigned int midpoint(unsigned int a, unsigned int b)

{

return (a + b) / 2; «—

;
unsigned int a = 4000000002;
unsigned int b = 4000000004 ;
unsigned int m = midpoint(a,b);

printf("%u\n", m);

1852516355

unsigned int midpoint(unsigned int a, unsigned int b)

{

return a + (b - a) / 2;

;
unsigned int a = 4000000002;
unsigned int b = 4000000004 ;
unsigned int m = midpoint(a,b);

printf("%u\n", m);

unsigned int midpoint(unsigned int a, unsigned int b)

{

return a + (b - a) / 2;

;
unsigned int a = 4000000002;
unsigned int b = 4000000004 ;
unsigned int m = midpoint(a,b);

printf("%u\n", m);

4000000003

unsigned int midpoint(unsigned int a, unsigned int b)

{

return a + (b - a) / 2;

;
unsigned int a = 4000000002;
unsigned int b = 4000000004 ;
unsigned int m = midpoint(a,b);

printf("%u\n", m);

4000000003

unsigned int midpoint(unsigned int a, unsigned int b)

{

return a + (b - a) / 2;

;
unsigned 1nt a = 4000000004,
unsigned int b = 4000000002;
unsigned int m = midpoint(a,b);

printf("%u\n", m);

unsigned int midpoint(unsigned int a, unsigned int b)

{

return a + (b - a) / 2;

;
unsigned 1nt a = 4000000004,
unsigned int b = 4000000002;
unsigned int m = midpoint(a,b);

printf("%u\n", m);

1852516355

unsigned int midpoint(unsigned int a, unsigned int b)
{
if (a < b)
return a + (b - a) / 2;
else
return b + (a - b) / 2;

void foo(void)

{
unsigned int a = 2;
1f (a > -1)
printf ("Foo\n") ;
else

printf("Bar\n");

void foo(void)

{
unsigned int a = 2;
if (a > -1)
printf("Foo\n");
else
pr intft ("Bar\n”) : [What do you think this codel
} snippet will print?

void foo(void)

{
unsigned int a = 2;
if (a > -1)
printf("Foo\n") ;
else
pr intf ("Bar\n"”) : [What do you think this codel
} snippet will print?

void foo(void)

{
unsigned int a = 2;
— 1f (a > -1)
printf ("Foo\n") ;
else

pr-lntf(Bar\n)’ [Whatdoyouthinkthiscodel

snippet will print?

void foo(void)
{
unsigned int a = 2;
if (a > -1L)
printf ("Foo\n") ;
else
printf("Bar\n");

void foo(void)

{
unsigned int a = 2;
if (a > -1L)
printf ("Foo\n") ;
else
printf("Bar\n");
!

void foo(void)

{
unsigned int a = 2;
it (a > -1L)
printf ("Foo\n") ;
else
printf("Bar\n");
!

void foo(void)

{
unsigned int a = 2;
if (a > -1L)
printf ("Foo\n") ;
else
printf("Bar\n");
!

on systems where sizeof(long) > sizeof(int)

Bar

void foo(void)

{
unsigned int a = 2;
if (a > -1L)
printf ("Foo\n") ;
else
printf("Bar\n");
!

on systems where sizeof(long) > sizeof(int)

Bar

on systems where sizeof(long) == sizeof(int)

void foo(vojd)/o/,/¢~

SC |
TP odel W __—
| 1 e 822 D000 _—ooTh") ;
\ v AN
| Undet® mﬁﬁ&gf

on systems where sizeof(long) > sizeof(int)

void foo(void)

‘char a = -2
1f (42 + a > 42)

printf("Foo\n");
else
printf("Bar\n");

void foo(void)
{
char a = -2;
1t (42 + a > 42)
printf ("Foo\n") ;
else
printf("Bar\n");

void foo(void)

{

char a -2

1if (42 + a > 42)
printf ("Foo\n") ;

else
printf("Bar\n");

on systems where default char is unsigned

Bar

on systems where default char is signed

void foo(void)

https://www.securecoding.cert.org
(~250 rules and recommendations)

CERT C Rules and Recommendations

* Preprocessor (PRE)

* Declarations and Initialization (DCL)
* Expressions (EXP)

* Integers (INT)

* Floating Point (FLP)

* Arrays (ARR)

* Characters and Strings (STR)

* Memory Management (MEM)

* Input Output (FIO)

* Environment (ENV)

* Signals (SIG)

* Error Handling (ERR)

» Application Programming Interfaces (API)
* Concurrency (CON)

CERT C Rules and Recommendations

* Preprocessor (PRE)

* Declarations and Initialization (DCL)
* Expressions (EXP)

e Integers (INT)

* Floating Point (FLP)

* Arrays (ARR)

* Characters and Strings (STR)

* Memory Management (MEM)

* Input Output (FIO)

* Environment (ENV)

* Signals (SIG)

* Error Handling (ERR)

» Application Programming Interfaces (API)
* Concurrency (CON)

CERT C Rules and Recommendations about integers

Understand the data model used by your implementation(s) (INT00-C)

Use rsize t or size t for all integer values representing the size of an object (INT01-C)

Understand integer conversion rules (INT02-C)

Enforce limits on integer values originating from tainted sources (INT04-C)

Do not use input functions to convert character data if they cannot handle all possible inputs (INT05-C)
Use strtol() or a related function to convert a string token to an integer (INT06-C)

Use only explicitly signed or unsigned char type for numeric values (INT07-C)

Verify that all integer values are in range (INT08-C)

Ensure enumeration constants map to unique values (INT09-C)

Do not assume a positive remainder when using the % operator (INT10-C)

Do not make assumptions about the type of a plain int bit-field when used in an expression (INT12-C)
Use bitwise operators only on unsigned operands (INT13-C)

Avoid performing bitwise and arithmetic operations on the same data (INT14-C)

Use intmax_t or uintmax_t for formatted IO on programmer-defined integer types (INT15-C)

Do not make assumptions about representation of signed integers (INT16-C)

Define integer constants in an implementation-independent manner (INT17-C)

Evaluate integer expressions in a larger size before comparing or assigning to that size (INT18-C)
Ensure that unsigned integer operations do not wrap (INT30-C)

Ensure that integer conversions do not result in lost or misinterpreted data (INT31-C)

Ensure that operations on signed integers do not result in overtflow (INT32-C)

Ensure that division and remainder operations do not result in divide-by-zero errors (INT33-C)

Do not shift an expression by a negative number of bits or by greater than or equal to the number of bits that exist in the operand (INT34-C)
Use correct integer precisions (INT35-C)

Converting a pointer to integer or integer to pointer (INT36-C)

beware of unspecified behavior

beware of unspecified behavior

and

beware of unspecified behavior

and

you can not reason about undefined behavior!

ExpErT C
PROGRAMMING

e

-

POTER AN DR LD

THE CERT C
~ CobING
STANDARD

S sD |

Resources

"C Programming Language" by Kernighan and Ritchie is
a book that you need to read over and over again.
Security vulnerabilities and bugs in C are very often just
a result of not using the language correctly. Instead of
trying to remember everthing as it is formally written in
the C standard, it is better to try to understand the
spirit of C and try to understand why things are
designed as they are in the language. Nobody tells this
story better than K&R.

| got my first serious journey into deeper
understanding of C came when | read Peter van der
Linden wonderful book "Expert C

programming” (1994). 1 consider it as one of the best
books ever written about C.

The CERT C Coding Standard contains a lot of
good advice and insightful recommendations.While
| don't recommend anyone to blindly follow all the
guidelines here (some of them are rather silly), but
there is a lot of wisdom in most of the guidelines.

The @

andard

ANDRIW KOENIG

[s

and P

s
| 0’//ia

IND EDITION

HACKING

THE ART OF EXPLOITATION

JON ERCESON

)
-/

All professional C programmers should have a copy of the C
standard and they should get used to regularly look up terms
and concepts in the standard. It is easy to find cheap PDF-
version of the standard ($30), but you can also just download
the latest draft and they are usually 99,93% the same as the
real thing. | also encourage everyone to read the Rationale for
C99 which is available for free on the WG 4 site.
http://www.open-std.org/jtc|/sc22/wgl 4/

"C traps and pitfalls" by Andrew
Koenig (1988) is also a very good
read.

This is a really nice book about how to hack into
systems and programs written in C.The book
also has a surprisingly concise and well written
introduction to C as a programming language.

http://www.google.no/search?hl=no&tbo=p&tbm=bks&q=inauthor:%22Andrew+Koenig%22
http://www.open-std.org/jtc1/sc22/wg14/

