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Some tricks for insecure coding in C and C++

#0 Never ever let other programmers review your code
#1 Write insecure code by depending on a particular evaluation order
#2 Write insecure code by doing sequence point violations

#3 Write insecure code where the result depends on the compiler
#4 Know the blind spots of your compilers

#5 Write insecure code by messing up the internal state of the program.

#6 Write insecure code by only assuming valid input values

#7 Understand how the optimizer can and will remove apparently critical code
#8 Write code that allows buffer overflows

#9 Disable stack protection

#10 Disable ASLR whenever you can.

#11 Avoid hardware and operating systems that enforce DEP/W”X/NX-bit
#12 Make it easy to find many ROP gadgets in your program

#13 Skip integrity checks when installing and running new software.

#14 Write insecure code by leaking information
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http://www.pvv.org/~oma/lnsecureCodingC_Bangalore_Nov20|4.pdf













just a quick recap of the most important thing |
covered at SecConX Bangalore last year



On undefined behavior anything can happen!
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it to make demons fly out of your nose” [comp.std.c]

[When the compiler encounters [a given undefined construct] it is legal fork




you can not reason about undefined behavior!



In practice, what do you think happens if you run this program on your machine?

foo.c

#include <stdio.h>

int main(void)

{
int v[] = {0,2,4,6,8};
int 1 = 1;
int n =1 + v[++i] + v[++i];

printf ("%d\n", n);
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In practice, what do you think happens if you run this program on your machine!?

foo.c
#include <stdio.h>
int main(void)
{
int v[] = {0,2,4,6,8};
int 1 = 1;
int n =i+ v[++i] + v[++i];
printf ("%d\n", n);
;
Here is what happens on my machine: Here is what “could” also happen:
clang

icc

gcc X )4 Z
42 missiles

see http://www.pvv.org/~oma/UnspecifiedAndUndefined_ ACCU_Apr2013.pdf for detailed explanation of this phenomenon
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In practice, what do you think are possible outcomes when this function is called?

foo.c

#include <stdio.h>
#include <stdbool.h>
void foo(void)
{

bool b;

it (b)

printf("true\n");
it (!b)

printf("false\n");
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YOU CAN NOT REASON ABOUT UNDEFINED BEHAVIOR!
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about integers
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What is the potential problem
with this function?

Signed integer overflow is
undefined behavior.
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N

you might want to consider the -ftrapyv flag to

Launchin g 42 Mi1sSsS1 signal failure on sign integer overflow

,\
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{
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int midpoint(int a, int b)
{

return a + (b - a) / 2;
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int a = 2000000000;

int b = -2000000000;

int m = midpoint(a, b);

pr1ntf(”%d\n”, m) ;
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{
return a + (b - a) / 2;
)
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int midpoint(int a, int b)
{

;

return ((long)a + (long)b) / 2;



int midpoint(int a, int b)
{

;

return ((long long)a + (long long)b) / 2;



int midpoint(int a, int b)
{

;

return ((intmax t)a + (intmax t)b) / 2;



int midpoint(int a, int b)
{

return ((intmax t)a + (intmax t)b) / 2;

4 )

There are systems out there where int, long
and long long all have the same precision. Then
this idea will not work.

\ ~\




pool 1s pos(int a) { return a >= 0; }
pool 1s neg(int a) { return a < 0; }
pool 1s even(int a) { return !(a % 2); }
pool 1s odd(int a) { return a % 2; }

int midpoint(int a, int b) {

if (a > b) {
int tmp = a;
a = b;
b = tmp;

}

if (is _pos(a) && 1s _pos(b))
return a + (b - a) / 2;

if (i1s neg(a) && 1s pos(b))
return (b + a) / 2;

if (1s _odd(a) != 1s odd(b))
return a + (b - a) / 2 + 1;

return a + (b - a) / 2;

| look forward to someone sending me a better solution
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signed int result;
if (si_a >0) { /* si _a is positive */
if (si b >0) { /* si _a and si_b are positive */
if (si_a > (INT_MAX / si b)) {
/* Handle error */
}
} else { /* si_a positive, si_b nonpositive */
if (si_ b < (INT_MIN / si_a)) {
/* Handle error */
}
} /* si_a positive, si_b nonpositive */
} else { /* si_a is nonpositive */
if (si b > 0) { /* si_a is nonpositive, si_b is positive */
if (si_a < (INT_MIN / si b)) {
/* Handle error */
}
} else { /* si_a and si_b are nonpositive */
if ( (si_a !=0) && (si_b < (INT _MAX / si_a))) {
/* Handle error */
}
} /* End if si_a and si_b are nonpositive */
} /* End if si_a 1is nonpositive */

result = si_a * si_b;



signed int result;

if (si a > 0) {
if (si b > 0) {

/* si_a
/* si

*b
or

is positive */

~a and si_b are positive */

if (si_a > (INT_MAX / si_b)) { "
/* Handle error */ " © |

/* Handle error */

h
} /* End if si

~a and si

}
} else { /* si_a positive
if (si_b < (INT_M
/* Handle=""
P el ntee®
~\ exax\ ,32:(23 —<Si1 b is positive */
\ re that ® @ QNT
TS .xa(yqex g
\YegU&&"’/s1 a and si_b are nonpositive */
\/_ (si a !=0) & & (si b < (INT_MAX / si_a))) {

b are nonpositive */

} /* End if si_a 1is nonpositive */

result = si_a * si_b;



or

signed int result;
if (si_a > 0) { /* si_a is positive */
if (si_b>0) { /* si _a and si_b are positive */
if (si_a > (INT_MAX / si_b)) { — \

Jv Endle errer =/ - o ”
} __— »
} else { /* si_a positive—""

\
if (si b < (INT_M \
/* Handle—" 40 (\Ot \
\\/\ /;Y .‘? .. 0 S.‘%“

\ o 1ONS

E‘QS ' .X“ oV / —
\Yggﬂﬁx /,f/§7;a and si_b are nonpositive */

T (si_a != 0) && (si_b < (INT_MAX / si_a))) {
/* Handle error */

}

} /* End if si_a and si_b are nonpositive */
} /* End if si_a 1is nonpositive */

result = si_a * si_b;
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unsigned int midpoint(unsigned int a, unsigned int b)

{
;

return (a + b)) / 2;



unsigned int midpoint(unsigned int a, unsigned int b)

{
;

return (a + b)) / 2;

What is the potential problem
with this function?




unsigned int midpoint(unsigned int a,

{

return (a + b)) / 2;

unsigned int b)

What is the potential proble
with this function?

L

-

Unsigned integers can not overflow but even
well defined wrapping can give surprising
results.

\

¢
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unsigned int midpoint(unsigned int a, unsigned int b)

{
;

return (a + b)) / 2;



unsigned int midpoint(unsigned int a, unsigned int b)

{
return (a + b)) / 2;

;
unsigned int a = 2;
unsigned int b = 4;
unsigned int m = midpoint(a,b);

printf("%u\n", m);



unsigned int midpoint(unsigned int a, unsigned int b)

{
return (a + b)) / 2;

;
unsigned int a = 2;
unsigned int b = 4;
unsigned int m = midpoint(a,b);

printf("%u\n", m);



unsigned int midpoint(unsigned int a, unsigned int b)

{
;

return (a + b)) / 2;

unsigned int a

2;47
unsigned int b 4
unsigned int m midpoint(a,b);
printf("%u\n", m);




unsigned int midpoint(unsigned int a, unsigned int b)

{
return (a + b)) / 2;

;
unsigned int a = 2;
unsigned int b = 4;
unsigned int m = midpoint(a,b);

printf("%u\n", m);



unsigned int midpoint(unsigned int a, unsigned int b)

{
return (a + b)) / 2;

;
unsigned int a = 4000000002;
unsigned int b = 4000000004,
unsigned int m = midpoint(a,b);

printf("%u\n", m);



unsigned int midpoint(unsigned int a, unsigned int b)

{
return (a + b)) / 2;

;
unsigned int a = 4000000002;
unsigned int b = 4000000004 ;
unsigned int m = midpoint(a,b);

printf("%u\n", m);



unsigned int midpoint(unsigned int a, unsigned int b)

{
return (a + b)) / 2;

;
unsigned int a = 4000000002;
unsigned int b = 4000000004 ;
unsigned int m = midpoint(a,b);

printf("%u\n", m);

1852516355



unsigned int midpoint(unsigned int a, unsigned int b)

{

return (a + b) / 2; «—

;
unsigned int a = 4000000002;
unsigned int b = 4000000004 ;
unsigned int m = midpoint(a,b);

printf("%u\n", m);

1852516355



unsigned int midpoint(unsigned int a, unsigned int b)

{

return a + (b - a) / 2;

;
unsigned int a = 4000000002;
unsigned int b = 4000000004 ;
unsigned int m = midpoint(a,b);

printf("%u\n", m);



unsigned int midpoint(unsigned int a, unsigned int b)

{

return a + (b - a) / 2;

;
unsigned int a = 4000000002;
unsigned int b = 4000000004 ;
unsigned int m = midpoint(a,b);

printf("%u\n", m);

4000000003



unsigned int midpoint(unsigned int a, unsigned int b)

{

return a + (b - a) / 2;

;
unsigned int a = 4000000002;
unsigned int b = 4000000004 ;
unsigned int m = midpoint(a,b);

printf("%u\n", m);

4000000003



unsigned int midpoint(unsigned int a, unsigned int b)

{

return a + (b - a) / 2;

;
unsigned 1nt a = 4000000004,
unsigned int b = 4000000002;
unsigned int m = midpoint(a,b);

printf("%u\n", m);



unsigned int midpoint(unsigned int a, unsigned int b)

{

return a + (b - a) / 2;

;
unsigned 1nt a = 4000000004,
unsigned int b = 4000000002;
unsigned int m = midpoint(a,b);

printf("%u\n", m);

1852516355



unsigned int midpoint(unsigned int a, unsigned int b)
{
if (a < b)
return a + (b - a) / 2;
else
return b + (a - b) / 2;






void foo(void)

{
unsigned int a = 2;
1f (a > -1)
printf ("Foo\n") ;
else

printf("Bar\n");



void foo(void)

{
unsigned int a = 2;
if (a > -1)
printf("Foo\n");
else
pr intft ( "Bar\n” ) : [What do you think this codel
} snippet will print?




void foo(void)

{
unsigned int a = 2;
if (a > -1)
printf("Foo\n") ;
else
pr intf ( "Bar\n"” ) : [What do you think this codel
} snippet will print?




void foo(void)

{
unsigned int a = 2;
— 1f (a > -1)
printf ("Foo\n") ;
else

pr-lntf( Bar\n )’ [Whatdoyouthinkthiscodel

snippet will print?




void foo(void)
{
unsigned int a = 2;
if (a > -1L)
printf ("Foo\n") ;
else
printf("Bar\n");



void foo(void)

{
unsigned int a = 2;
if (a > -1L)
printf ("Foo\n") ;
else
printf("Bar\n");
!




void foo(void)

{
unsigned int a = 2;
it (a > -1L)
printf ("Foo\n") ;
else
printf("Bar\n");
!



void foo(void)

{
unsigned int a = 2;
if (a > -1L)
printf ("Foo\n") ;
else
printf("Bar\n");
!

on systems where sizeof(long) > sizeof(int)

Bar



void foo(void)

{
unsigned int a = 2;
if (a > -1L)
printf ("Foo\n") ;
else
printf("Bar\n");
!

on systems where sizeof(long) > sizeof(int)

Bar

on systems where sizeof(long) == sizeof(int)
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on systems where sizeof(long) > sizeof(int)



void foo(void)

‘char a = -2
1f (42 + a > 42)

printf("Foo\n");
else
printf("Bar\n");




void foo(void)
{
char a = -2;
1t (42 + a > 42)
printf ("Foo\n") ;
else
printf("Bar\n");



void foo(void)

{

char a -2

1if (42 + a > 42)
printf ("Foo\n") ;

else
printf("Bar\n");

on systems where default char is unsigned

Bar

on systems where default char is signed



void foo(void)
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CERT C Rules and Recommendations

* Preprocessor (PRE)

* Declarations and Initialization (DCL)
* Expressions (EXP)

* Integers (INT)

* Floating Point (FLP)

* Arrays (ARR)

* Characters and Strings (STR)

* Memory Management (MEM)

* Input Output (FIO)

* Environment (ENV)

* Signals (SIG)

* Error Handling (ERR)

» Application Programming Interfaces (API)
* Concurrency (CON)
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* Declarations and Initialization (DCL)
* Expressions (EXP)

e Integers (INT)

* Floating Point (FLP)

* Arrays (ARR)

* Characters and Strings (STR)

* Memory Management (MEM)

* Input Output (FIO)

* Environment (ENV)

* Signals (SIG)

* Error Handling (ERR)

» Application Programming Interfaces (API)
* Concurrency (CON)



CERT C Rules and Recommendations about integers

Understand the data model used by your implementation(s) (INT00-C)

Use rsize t or size t for all integer values representing the size of an object (INT01-C)

Understand integer conversion rules (INT02-C)

Enforce limits on integer values originating from tainted sources (INT04-C)

Do not use input functions to convert character data if they cannot handle all possible inputs (INT05-C)
Use strtol() or a related function to convert a string token to an integer (INT06-C)

Use only explicitly signed or unsigned char type for numeric values (INT07-C)

Verify that all integer values are in range (INT08-C)

Ensure enumeration constants map to unique values (INT09-C)

Do not assume a positive remainder when using the % operator (INT10-C)

Do not make assumptions about the type of a plain int bit-field when used in an expression (INT12-C)
Use bitwise operators only on unsigned operands (INT13-C)

Avoid performing bitwise and arithmetic operations on the same data (INT14-C)

Use intmax_t or uintmax_t for formatted IO on programmer-defined integer types (INT15-C)

Do not make assumptions about representation of signed integers (INT16-C)

Define integer constants in an implementation-independent manner (INT17-C)

Evaluate integer expressions in a larger size before comparing or assigning to that size (INT18-C)
Ensure that unsigned integer operations do not wrap (INT30-C)

Ensure that integer conversions do not result in lost or misinterpreted data (INT31-C)

Ensure that operations on signed integers do not result in overtflow (INT32-C)

Ensure that division and remainder operations do not result in divide-by-zero errors (INT33-C)

Do not shift an expression by a negative number of bits or by greater than or equal to the number of bits that exist in the operand (INT34-C)
Use correct integer precisions (INT35-C)

Converting a pointer to integer or integer to pointer (INT36-C)



beware of unspecified behavior



beware of unspecified behavior

and



beware of unspecified behavior

and

you can not reason about undefined behavior!
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Resources

"C Programming Language" by Kernighan and Ritchie is
a book that you need to read over and over again.
Security vulnerabilities and bugs in C are very often just
a result of not using the language correctly. Instead of
trying to remember everthing as it is formally written in
the C standard, it is better to try to understand the
spirit of C and try to understand why things are
designed as they are in the language. Nobody tells this
story better than K&R.

| got my first serious journey into deeper
understanding of C came when | read Peter van der
Linden wonderful book "Expert C

programming” (1994). 1 consider it as one of the best
books ever written about C.

The CERT C Coding Standard contains a lot of
good advice and insightful recommendations.While
| don't recommend anyone to blindly follow all the
guidelines here (some of them are rather silly), but
there is a lot of wisdom in most of the guidelines.
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All professional C programmers should have a copy of the C
standard and they should get used to regularly look up terms
and concepts in the standard. It is easy to find cheap PDF-
version of the standard ($30), but you can also just download
the latest draft and they are usually 99,93% the same as the
real thing. | also encourage everyone to read the Rationale for
C99 which is available for free on the WG 4 site.
http://www.open-std.org/jtc|/sc22/wgl 4/

"C traps and pitfalls" by Andrew
Koenig (1988) is also a very good
read.

This is a really nice book about how to hack into
systems and programs written in C.The book
also has a surprisingly concise and well written
introduction to C as a programming language.


http://www.google.no/search?hl=no&tbo=p&tbm=bks&q=inauthor:%22Andrew+Koenig%22
http://www.open-std.org/jtc1/sc22/wg14/

