
  

A quick and dirty introduction

Olve Maudal (oma!at!pvv.org), 24. September 2007

This is a quick and dirty introduction to the current status of C++0x as of September 2007. 
Through small code snippets, I will illustrate some of the proposals that have already been 
accepted and integrated into the current working paper (N2369) for C++0x. Please refer to 
N2389 for a complete and accurate status report.

Disclaimer: My actual understanding of what WG21 is working on is very limited. I make no 
attempt to be complete or accurate. Also, beware that if you are reading this in October 
2007 or later, the information is probably out of date. 

C++0x



  

Generalized Constant Expressions

constexpr int square(int x) { return x * x; }

int main() {
    int values[square(7)];
    // ...
}

This is supposed to work in C++0x.

Read more: N2235 



  

Static Assert
A static assert can evaluate an integral constant-expression and 
print out a diagnostic message if the program is ill-formed.

int main() {
    static_assert(sizeof(int) == 4, 
                  "This code only works for sizeof(int) == 4");
    // ... code depending on a particular size of the integer
}

With C++0x, this code might compile fine for a 32-bit machine, while 
it probably fails to compile for a 16-bit or 64-bit machine.

Read more: N1720



  

Variadic Templates

#include <iostream>

template <typename... Args>
void f(Args... args)
{
    std::cout << (sizeof... args) << std::endl;
}
    
int main() {
    f();
    f( 42, 3.14 );
    f( "one", "two", "three", "four" );
}

My experimental C++0x compiler prints out:

0
2
4

Read more: N2080



  

Right Angle Brackets

Two consecutive right angle brackets no longer need to be 
separated by whitespace.

#include <vector>

typedef std::vector<std::vector<int>> Table;

int main() {
    Table t;
    // ...
}

This code will compile cleanly.

Read more: N1757 



  

Scoped Enumerations

We now get a strongly typed version of enum. Eg,

enum class Color { red, green, blue };

int main() {
    Color c = Color::red;  // OK
    c = red;               // error
    int x = Color::blue;   // error
    // ...
}

Read more: N2347



  

Alignment Support

Two new keywords supporting alignment have been introduced:

- An alignof expression yields the alignment requirement of its operand type

- alignas can be used to request strict alignment requirements 

Eg,

template <std::size_t Len, std::size_t Alignment>
struct aligned_storage {
    typedef struct {
        alignas(Alignment) unsigned char __data[Len];
    } type;
};

int main() {
    aligned_storage<197,256> my_storage;
    std::size_t n = alignof(my_storage); // n == 256
    // ...
}

Read more: N2140



  

Decltype

Decltype let you get the type of an expression. Eg,

#include <iostream>
#include <vector>

int main() {
    std::vector<int> v;
    v.push_back(4);
    v.push_back(2);
    for ( decltype(v.begin()) i = v.begin(); i != v.end(); ++i ) {
        std::cout << (*i);
    }
}

Notice how we can now create an iterator without knowing the type. My 
experimental C++0x compiler prints out:

42

Read more: N2343



  

Auto

Auto is similar to decltype but with a nicer syntax. Eg,

int main() {
    auto a = 4;
    std::vector<int> v;
    v.push_back(a);
    v.push_back(2);
    for ( auto i = v.begin(); i != v.end(); ++i ) {
        // ...
    }
}

This is also supposed to work.

Read more: N1984 



  

Defaulted and Deleted Functions

You can now tell the compiler if you want the default special 
member functions or not.

Read more: N2326 

class Foo { 
public:
    Foo() = deleted;
    ~Foo() = deleted;
    Foo(const Foo&) = default;
    Foo& operator=(const Foo &) = default;
    // ...
private:
    // ...
}; 

class Foo { 
public:
    // default copy constructor is OK
    // default assignment operator is OK
    // ...
private:
    Foo();  // hide
    ~Foo(); // hide
    // ...
}; 

C++0x

C++98



  

Rvalue Reference

    * A reference type that is declared using & is called an lvalue reference.
    * A reference type that is declared using && is called an rvalue reference. 

My experimental C++0x compiler prints out:

lvalue
rvalue

Read more: N2118

#include <iostream>

struct Bar {
    int x;
    Bar(int i) : x(i) {}
};
    
void foo( Bar & b ) {
    std::cout << "lvalue" << std::endl;
}

void foo( Bar && b ) {
    std::cout << "rvalue" << std::endl;
}

int main() {
    Bar b(3);
    foo(b);
    foo(4);
}



  

Extending sizeof

In C++98, you would have to create an object to get the size of a 
member. In C++0x the following will be possible:

#include <iostream>

struct Foo {
    int x;
};

int main() {
    int i = sizeof(Foo::x);
    std::cout << i << std::endl;
}

Read more: N2150



  

Delegating Constructors

class Foo {
    int value;
public:
    Foo( int v ) : value(v) { 
        // some common initialization
    }
    Foo() : Foo(42) { }
    // ...
}

Finally, C++ will be able to do constructor delegation. Hurray!

Read more: N1986 



  

Learn more

! The C++ Standards Committe (WG21)
http://www.open-std.org/jtc1/sc22/wg21

! State of C++ Evalution, pre-Kona 2007 Meeting (N2389)
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2389.html

! C++ Library Working Group Status Report, pre-Kona 2007 Meeting (N2390)
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2390.html

! Working Draft (N2369)
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2369.pdf

! A video of a talk given by Bjarne Stroustrup at Univ of Waterloo in July 2007
http://csclub.uwaterloo.ca/media/C++0x%20-%20An%20Overview.html

! The C++0x branch of GCC
http://gcc.gnu.org/projects/cxx0x.html

! Bjarne Stroustrup's homepage
http://www.research.att.com/~bs/

! Herb Sutter's blog 
http://herbsutter.spaces.live.com/


