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Abstract

Two strategies for the numerical resolution of a two-fluid model have been investigated.
Both methods employ a Roe-type scheme. The first method (Roe4) solves the four-
equation, one-pressure, isentropic two-fluid model directly.

The second strategy (Roe5) is to add an evolution equation for the volume fraction. In
the present case, that results in a five-equation two-pressure model, where it is necessary
to employ pressure relaxation to calculate the typical two-phase problems that have
been tested: The water faucet and two benchmark shock-tube problems known from
the literature.

The numerical calculations showed that the Roe4 and Roe5 schemes converge to the
same solution when instantaneous pressure relaxation is employed in the Roe5 scheme.
This is true both with and without the use of high-resolution flux-limiter functions.
However, the Roe5 scheme was found to be significantly more diffusive than the Roe4
scheme. The diffusion is a strong function of the chosen time-step length, the grid size,
whether a limiter function is employed or not, and also the liquid speed of sound.

As the pressure-relaxation parameter in the Roe5 scheme was increased, the solution
gradually approached that obtained using instantaneous pressure relaxation.

Furthermore, the results indicate that the approach of two pressures and instanta-
neous pressure relaxation does not provide an easy way to overcome the problem of
complex eigenvalues in the one-pressure two-fluid model.
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1 Introduction

For the numerical solution of flow models, the approximate Riemann solver of
Roe (1981) is an attractive candidate, since it provides an upwind resolution
of all wave phenomena inherent in the models, and as it requires only the
solution of a linear Riemann problem at each cell interface. Among the problems
encountered for the two-fluid model, is the complicated eigenstructure, as well
as the appearance of non-conservative terms (Toumi, 1996).

Sainsaulieu (1995) introduced a Roe-type Riemann solver for the case of in-
compressible liquid droplets suspended in a gas, that is, for small liquid volume
fractions. More general configurations were considered by Toumi (1996), and
a Roe-type method for the isentropic two-fluid model was presented by Toumi
and Kumbaro (1996). However, also in the latter works, the liquid density was
assumed to be constant. That assumption was not used in the method by Evje
and Flåtten (2003).

A different approach has been to consider two-pressure models, whose mathe-
matical properties have been found preferable (Ransom and Hicks, 1984). On the
other hand, for many cases, the latter kind of methods needs a pressure-relaxation
procedure.

Saurel and Abgrall (1999) presented a two-velocity two-pressure two-phase
model of seven equations, where pressure and / or velocity relaxation could be
performed after the hyperbolic time step. The model can be thought of as an
extension of that of Baer and Nunziato (1986). It was expanded to several space
dimensions by Saurel and LeMetayer (2001), and it was stated to be suitable
for compressible multiphase flows with interfaces, shocks, detonation waves
and cavitation. Murrone and Guillard (2005) discussed a five-equation diffuse
interface model where the two phases had common pressures and velocities.
Different pressure-relaxation procedures were tested by Lallemand et al. (2005).

The approximate Riemann solver employed by Saurel and Abgrall (1999) was
a modified Harten, Lax and van Leer (hll) scheme. Other authors have later
presented similar methods using other solvers. Niu (2001) applied a modified
advection upstream splitting method (ausmd) and solved the seven-equation
model in one and two dimensions, also adding a k–ε turbulence model. A Roe-
type scheme for the seven-equation model was presented by Karni et al. (2004).

In this work, we perform a direct comparison between a one-pressure four-
equation approach, and a two-pressure five-equation approach, employing a
Roe-type method in each case. A priori, both strategies have advantages. For
the five-equation system, simple, analytical expressions for the eigenvalues and
eigenvectors are available. On the other hand, the four-equation system has one
less equation to be solved. Only the five-equation system can be used if the
physical system to be modelled has two independent pressures. Here we explore
the effect of varying pressure-relaxation parameter in the five-equation system.
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Section 2 briefly describes the two-fluid model formulation, including consti-
tutive relations. In Section 3, the equation systems are written in characteristic
form, and the Roe matrices are detailed. The Roe method is described in Sec-
tion 4. In Section 5, numerical tests are performed. Finally, in Section 6, the main
conclusions are drawn.

2 Model formulation

This section briefly presents the employed four-equation two-fluid model, the five-
equation formulation, including pressure relaxation, as well as the constitutive
relations.

2.1 Four-equation system

The one-dimensional, inviscid, isentropic multiphase flow is customarily de-
scribed by the continuity equation

∂
∂t
(αkρk)+

∂
∂x
(αkρkuk) = 0, (1)

and the momentum equation

∂
∂t
(αkρkuk)+

∂
∂x

(
αkρku2

k
)
+αk

∂pk
∂x

+ (pk − pik)
∂αk
∂x

= αkρkgx, (2)

when mass transfer, wall friction, interface friction, and other possible effects are
neglected. In practical applications, one or more of these effects can be important.
In the numerical study presented here, on the other hand, we wish to focus on
the mathematically essential parts of the two-fluid model, keeping the number of
parameters low. Such a practise is common (see e.g. Abgrall and Saurel, 2003;
Evje and Flåtten, 2003; Cortes et al., 1998) and facilitates a comparison of results
obtained by different researchers.

Due to the term pik∂αk/∂x , the equation system cannot be written in conser-
vation form in terms of the variables αkρk and αkρkuk. Therefore, special care
is needed for the spatial discretization of the system.

In addition to the above equations, an equation of state (eos) is needed. Here
we take

pk = c2
k(ρk − ρ◦k), (3)

where the speed of sound, ck, and the ‘reference density’, ρ◦k, are constants
for each phase. In this work we consider two phases, air and water, with the
properties given in Table 1. These values correspond to the ones used by Evje and
Flåtten (2003). The equation of state (3) with constant coefficients is an implicit
assumption of isothermal flow. This can be shown using basic thermodynamic
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relations (see e.g. Munkejord, 2005). As can be seen from Toumi (1996), the
entropy waves are advected with the fluid velocities, that is, they are uncoupled
from the remaining wave structure, which can therefore be studied by considering
an isentropic model.

Moreover, an expression is needed for the relation between the pressures in
the phases, for example

pk = pl + σkl ∀k ≠ l, (4)

where σkl is a constant pertaining to the relation between the phases k and l. In
this work we shall take σkl = 0. Finally, of course, a relation for the interfacial
pressure pik must be specified.

The equation system that has been described in this subsection will be called
the four-equation system.

2.2 Five-equation system

It is natural to assume that the volume fraction αk is advected with the flow, that
is

∂αk
∂t
+uik

∂αk
∂x

= 0, (5)

whereuik is the average interface velocity of phase k. Equation (5) is the ensemble-
average (see Drew and Passman, 1999, Section 11.2) of the topological equation
derived by Drew and Passman (1999, Section 9.1.3). It can be added to the basic-
equations system (1)–(2), as was similarly done by Saurel and Abgrall (1999); Baer
and Nunziato (1986).

2.2.1 Interfacial-velocity models

Some model has to be specified for the average interface velocity, which is the
‘grad α-weighted’ average of the local interface velocity νik:

uik =
E (νik ·∇χk)
∂αk/∂x

, (6)

where χ is the phase-indicator function (characteristic function), E (·) denotes
the ensemble-averaging operator, and the volume fraction is given by

αk = E (χk) . (7)

Table 1: Constants in the equation of state

ck (m/s) ρ◦k (kg/m3)
air (g)

√
105 0

water (`) 1000 999.9
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Saurel and Abgrall (1999) took the average interface velocity to be the mass-
weighted velocity:

uik = ui =
∑
∀kαkρkuk∑
∀kαkρk

. (8)

This will be the default model in the present work.

2.2.2 Pressure relaxation

When the energy equation is disregarded, the Saurel and Abgrall model can be
written as

∂αg

∂t
+ui

∂αg

∂x
= rp(pg − p`), (9)

∂
∂t
(αkρk)+

∂
∂x
(αkρkuk) = 0, (10)

∂
∂t
(αkρkuk)+

∂
∂x

(
αkρku2

k
)
+αk

∂pk
∂x

+ (pk − pik)
∂αk
∂x

= sk + ru(ul −uk).
(11)

Herein, sk is a momentum-source term. The parameters ru and rp deserve some
attention. ru is a velocity-relaxation parameter, and a large value of ru will force
equality of the two phasic velocities. In this work we shall not consider velocity
relaxation, and henceforth

ru ≡ 0. (12)

rp is a pressure-relaxation parameter. It is the inverse of the compaction vis-
cosity discussed by Baer and Nunziato (1986), something which can be confirmed
by checking that the unit of rp is the inverse of that of the molecular viscosity.
For rp = 0, the two phasic pressures are linearly independent, and when rp →∞,
they are equal.

The system (9)–(11) with (12) will be referred to as the five-equation system.
With the addition of the equation (9) to the system, the condition (4) is no longer

needed. However, for many two-phase flows, including the ones considered here,
the phasic pressures are not independent. This dependence is accounted for by
the pressure-relaxation procedure. That procedure was discussed by Saurel and
Abgrall (1999) for the full seven-equation system. Here the situation is somewhat
simpler, since the energy equation is not considered.

Finite pressure relaxation Since the source term in the equation (9) may be
large, it is necessary to solve the five-equation system using a suitable numerical
method. Here, we employ a fractional-step method: First, the ‘hyperbolic part’ of
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the system (9)–(11) (that is, with rp ≡ 0) is advanced one step, ∆t, in time using a
method to be described in the following. Next, the ‘relaxation part’ is considered:

∂αg

∂t
= rp(pg − p`), (13)

∂
∂t
(αkρk) = 0, (14)

∂
∂t
(αkρkuk) = 0. (15)

With the solution from the hyperbolic step as initial condition, the above system
can be also be advanced one step ∆t in time, using an ode solver. The resulting
solution is then passed to the hyperbolic solver for the next time step, etc.

Instantaneous pressure relaxation Specific values for the pressure-relaxation
parameter rp are most often unknown. However, the assumption of equal phasic
pressures is widespread. Such situations can be catered for by setting rp to
a large value. However, instead of solving the system (13)–(15) of differential
equations, it is numerically more efficient to solve the problem directly. After the
hyperbolic operator has been applied, the volume fraction is modified so as to
render the two pressures equal, keeping αkρk and αkρkuk constant. This leads
to a second-degree equation with positive solution

α` =
−ψ2 −

√
ψ2

2 − 4ψ1ψ3

2ψ1
, (16)

where

ψ1 = c2
`ρ
◦
` − c

2
gρ◦g, (17)

ψ2 = −c2
`
(
α`ρ` + ρ◦`

)
+ c2

g
(
−αgρg + ρ◦g

)
, (18)

and

ψ3 = c2
`α`ρ`. (19)

When solving the five-equation system, we will be employing instantaneous
pressure relaxation, unless otherwise stated. For the case of instantaneous
pressure relaxation, the volume-fraction equation (9) becomes singular. A differ-
ence between the phasic pressures would then cause an immediate change in
the volume fraction so as to render the pressures equal. Since the rest of the
five-equation system is equal to the four-equation system, the solution of the
former should approach that of the latter. Indeed, it is hypothesized that the
five-equation system with instantaneous pressure relaxation can be regarded as
providing an alternative numerical method for solving the four-equation two-fluid
model.
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2.3 Interfacial-pressure models

Several models for the interfacial pressure have been proposed in the literature.
However, their physical content is often debatable.

The model of Soo (1990, pages 319–321) reads

pk − pik = (1− Bk)pk, (20)

where Bk is a ‘displacement factor’ close to unity, which can be regarded as a
simplified model for forces causing dispersion of the volume-fraction profile, e.g.
in intermittent flow.

Saurel and Abgrall (1999) suggested taking

pk − pik = pk −
∑
∀k
αkpk (21)

in conjunction with their seven-equation model. This seems like a reasonable first
approximation. Unfortunately, it yields complex eigenvalues in the four-equation
model.

In the cathare code, the following expression was employed for non-stratified
flows (Bestion, 1990):

pk − pik = ∆pik = γ
αgα`ρgρ`
αgρ` +α`ρg

(ug −u`)2, (22)

where γ is a factor not appearing explicitly in Bestion (1990). It is remarkable that
the above expression was employed without physical argumentation, but rather
‘simply to provide the hyperbolicity of the system’, which, indeed, it normally
does, at least when there is slip between the phases, that is, (ug − u`)2 ≠ 0.
On the other hand, the cathare expression has the redeeming feature that it
approaches zero in the case of stagnant fluids, which seems reasonable when
no surface-tension effects are accounted for. Because of this, and because it
is commonly cited, the cathare model will be our default expression for the
interfacial pressure difference, and we will take γ = 1.2, following Evje and
Flåtten (2003), unless otherwise stated.

3 Characteristic form of the basic equations

To be able to employ the Roe method, we seek to write the system of transport
equations in the following quasi-linear form:

∂q
∂t
+ A(q)

∂q
∂x
= s(q). (23)

7



3.1 Characteristic form of the four-equation system

With

q =
[
αgρg α`ρ` αgρgug α`ρ`u`

]T
, (24)

the coefficient matrix for the four-equation system can be shown to be

A(q) =



0 0 1 0
0 0 0 1

αgρ` +∆pigα`/c2
`

κ
−u2

g

αgρg −∆pigαg/c2
g

κ
2ug 0

α`ρ` +∆pi`α`/c2
`

κ
α`ρg +∆pi`αg/c2

g

κ
−u2

` 0 2u`

 , (25)

where

κ = α`ρg/c2
` + ρ`αg/c2

g , (26)

∆pik = pk − pik. (27)

The vector of source terms becomes

s =
[
0 0 αgρggx α`ρ`gx

]T
. (28)

It is unfeasible to derive exact closed-form expressions for the eigenvectors
and eigenvalues of A, and in the present calculations, they have therefore been
found numerically.

3.2 Characteristic form of the five-equation system

3.2.1 System matrix

For

q =
[
αg αgρg αgρgug α`ρ` α`ρ`u`

]T
, (29)

the coefficient matrix for the five-equation system has been found to be

A(q) =


ui 0 0 0 0
0 0 1 0 0

∆pig − ρgc2
g c2

g −u2
g 2ug 0 0

0 0 0 0 1
−∆pi` + ρ`c2

` 0 0 c2
` −u

2
` 2u`

 , (30)

with the source-term vector

s(q) =
[
0 0 αgρggx 0 α`ρ`gx

]T
. (31)
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3.2.2 Eigenstructure and hyperbolicity

The matrix A of the five-equation system has one advantage over its counterpart
in Section 3.1 in that its eigenvalues are available as simple analytical expressions:

λ =
[
ui ug − cg ug + cg u` − c` u` + c`

]T
. (32)

These eigenvalues are always real, and moreover, they are mostly distinct, except
for the ‘transonic difficulty’ when one of the phasic velocities passes through the
phasic speed of sound. The eigenvector matrix, R, with the right eigenvectors ri
of A as its columns, was found as

R =



1 0 0 0 0

−
(−∆pig + ρgc2

g)
(ug −ui)2 − c2

g
1 1 0 0

−
(−∆pig + ρgc2

g)ui

(ug −ui)2 − c2
g

λ2 λ3 0 0

(−∆pi` + ρ`c2
`)

(u` −ui)2 − c2
`

0 0 1 1

(−∆pi` + ρ`c2
`)ui

(u` −ui)2 − c2
`

0 0 λ4 λ5



, (33)

where λi is element i of the vector λ in equation (32). Further, the eigenvector ri
corresponds to the eigenvalue λi.

The matrix R−1, with the left eigenvectors lTj of A as its rows, is given by:

R−1 =



1 0 0 0 0

1
2

(−∆pig + ρgc2
g)

(λ2 −ui)cg

1
2
λ3

cg
− 1

2cg
0 0

−1
2

(−∆pig + ρgc2
g)

(λ3 −ui)cg
−1

2
λ2

cg

1
2cg

0 0

−1
2

(−∆pi` + ρ`c2
`)

(λ4 −ui)c`
0 0

1
2
λ5

c`
− 1

2c`
1
2

(−∆pi` + ρ`c2
`)

(λ5 −ui)c`
0 0 −1

2
λ4

c`
1

2c`



. (34)

Since here the left eigenvectors are taken from from R−1, the left and the right
eigenvectors are orthonormal: lTi rj = δij .
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For the five-equation system to be hyperbolic, the matrix A must be diagonaliz-
able with real eigenvalues. Therefore, the right eigenvectors ri must be linearly
independent, and it is easy to show that r2, r3, r4 and r5 are so. r1, on the other
hand, needs special attention. Ransom and Hicks (1984) studied a five-equation
two-pressure two-fluid model whose coefficient matrix was mathematically analo-
gous to the one considered here. They showed that the hyperbolicity depends on
the quantities

βk = −∆pik + ρkc2
k , (35)

and
γk = (uk −ui)2 − c2

k (36)

and they identified four cases, concerning the eigenvector r1 associated with
λ1 = ui:

1. When γg ≠ 0 and γ` ≠ 0, then r1 as given by the equation (33) is linearly
independent of the other eigenvectors for all values of βg and β`.

2. When γg = 0 and γ` ≠ 0, then there exists a linearly independent r1 if and
only if βg = 0. It is given by

r1 =
[

1 0 0
(−∆pi` + ρ`c2

`)
(u` −ui)2 − c2

`

(−∆pi` + ρ`c2
`)ui

(u` −ui)2 − c2
`

]T
. (37)

3. When γg ≠ 0 and γ` = 0, then there exists a linearly independent r1 if and
only if β` = 0. It is given by

r1 =
[

1 −
(−∆pig + ρgc2

g)
(ug −ui)2 − c2

g
−
(−∆pig + ρgc2

g)ui

(ug −ui)2 − c2
g

0 0

]T
. (38)

4. When γg = 0 and γ` = 0, then there exists a linearly independent r1 if and
only if βg = 0 and β` = 0. It is given by

r1 =
[
1 0 0 0 0

]T
. (39)

Here we mainly consider low-speed flows, and the restriction uk ± ck ≠ ui is
not thought to be of very much concern.

It is interesting to note that for the five-equation system, the interfacial pres-
sure difference ∆pik may very well be equal to zero. For the four-equation system,
on the other hand, this quantity must not be too small. This can be shown by
numerical experiments or analytical considerations (see e.g. Ramshaw and Trapp,
1978). As a result of this, several researchers have dedicated their efforts to in-
venting large-enough expressions for the interfacial pressure difference, leading,
conveniently, to a diagonalizable A. One example is Chung et al. (2002).
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Since the relaxation terms in (9)–(11) do not contain derivatives of q, the
hyperbolicity of the five-equation system is not influenced by them. However,
the case of instantaneous pressure relaxation might be interesting to study
mathematically in more detail, but that is outside the scope of the present work.

4 A Roe-type method for solving the two-fluid model

In this section, a Roe-type method for the multiphase equations will be described.

4.1 Framework

A high-resolution extension of Godunov’s method can be written as (LeVeque,
2002, Section 15.4)

Qn+1
i =Qni −

∆t
∆x

(
A−∆Qi+1/2 +A+∆Qi−1/2

)
− ∆t
∆x

(
F̃i+1/2 − F̃i−1/2

)
, (40)

where Qni denotes the numerical approximation to the cell average of the vector
of unknowns q(x, tn), that is, in control volume i at time step n. Quantities
without a time index are evaluated at time step n. The symbol A−∆Qi+1/2
denotes the net effect of all left-going waves at xi+1/2, that is, at the control-
volume boundary midway between xi and xi+1, whileA+∆Qi−1/2 measures the
net effect of all right-going waves at xi−1/2. The waves and wave speeds from the
approximate Riemann solution are used to define

A−∆Qi−1/2 =
m∑
p=1

(
spi−1/2

)−Wp
i−1/2,

A+∆Qi−1/2 =
m∑
p=1

(
spi−1/2

)+Wp
i−1/2,

(41)

where Wp
i−1/2 is the pth wave arising in the solution to the Riemann problem

at xi−1/2, that is, it is a vector with one component for each equation. m is the
number of waves, and since we will be using a linearized Riemann solver, it is
equal to the number of equations. spi−1/2 is the wave speed of the pth wave, and

(
spi−1/2

)+ =max(spi−1/2,0),
(
spi−1/2

)− =min(spi−1/2,0). (42)

The flux vector F̃i−1/2 is what LeVeque calls the high-resolution correction. It
is given by

F̃i−1/2 =
1
2

m∑
p=1

∣∣spi−1/2
∣∣(1− ∆t

∆x
∣∣spi−1/2

∣∣)W̃p
i−1/2, (43)
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where W̃p
i−1/2 is a limited version of the waveWp

i−1/2. With the correction terms,
the method approaches second order in space and time for smooth solutions.

In the present work, we have taken account of source terms by adding the term
∆tSi to the righ-hand side of (40).

4.2 Roe linearization

The Roe (1981) linearization of conservation laws is well explained by LeVeque
(2002, Section 15.3). Here some of the key points are repeated, after which the
multifluid extension is presented.

4.2.1 Basic considerations

To define an approximate Riemann solution, the nonlinear problem

∂q
∂t
+ ∂
∂x
f (q) = 0 (44)

is replaced by a linearized problem defined locally at each cell interface;

∂ q̂
∂t
+ Âi−1/2

∂ q̂
∂x
= 0. (45)

For the Roe solver, we have the interpretation that

A±∆Qi−1/2 = Â±i−1/2(Qi −Qi−1). (46)

Herein,
Â±i−1/2 = R̂i−1/2Λ̂±i−1/2R̂−1

i−1/2, (47)

where R̂i−1/2 is the matrix having the right eigenvectors r̂i−1/2 of Âi−1/2 as its
columns, and Λ̂+i−1/2 and Λ̂−i−1/2 are the diagonal matrices containing the positive

and negative eigenvalues, respectively, of Âi−1/2. Further, for the method to be
conservative, we must have that

Âi−1/2(Qi −Qi−1) =
m∑
p=1

spi−1/2W
p
i−1/2. (48)

The approximate Riemann solution consists of m waves proportional to the
eigenvectors r̂i−1/2 of Âi−1/2, propagating with speeds

spi−1/2 = λ̂
p
i−1/2 (49)
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given by the eigenvalues. The proportionality coefficients βpi−1/2 can be found by
solving the linear system

Qi −Qi−1 =
m∑
p=1

βpi−1/2r̂
p
i−1/2, (50)

and βpi−1/2 can be interpreted as wave strengths (Toro, 1999, Section 2.3.3). The
solution of the equation (50) is

βi−1/2 = R̂−1
i−1/2(Qi −Qi−1), (51)

whence the waves can be found as

Wp
i−1/2 = β

p
i−1/2r̂

p
i−1/2. (52)

One disadvantage of using a linearized Riemann solver is that the approximate
Riemann solution consists only of discontinuities, with no rarefaction waves
(LeVeque, 2002, Section 15.3.5). This may require the use of an entropy fix. For
the result presented here, no entropy fix is employed unless otherwise stated.

4.2.2 Multifluid extension

The multifluid equations pose a problem, since they cannot be written in the
conservation form (44). Nevertheless, a Roe-type method was derived by Toumi
(1996) for the multifluid equations (including the energy equation), and a version
for the isentropic multifluid equations was presented by Toumi and Kumbaro
(1996). In those articles, the liquid density was assumed to be constant. Under the
additional assumption of smooth solutions, the equation system could be written
in conservation form, and a Roe matrix was derived, using some manipulations.

In the present work, we do not wish to make the above-mentioned assumptions.
Hence we follow the approach of Evje and Flåtten (2003), who simply opted at
showing that their candidate for a Roe matrix fulfilled the ‘weak’ conditions of
Toumi and Kumbaro (1996). Here these conditions are given as stated by Evje
and Flåtten (2003):

1. Âi−1/2 is diagonalizable with real eigenvalues,

2. Âi−1/2 → A(q̄) smoothly as Qi−1,Qi → q̄,

3. Âi−1/2(Qi −Qi−1) = ∆F(Qi−1,Qi).
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The two first conditions are relatively straightforward. The last one involves
some trickery. Herein,

∆F(Qi−1,Qi) =


{αgρgug}
{α`ρ`u`}

{αgρgu2
g} + {αg∆pig} +αg{pg −∆pig}

{α`ρ`u2
`} + {α`∆pi`} +α`{p` −∆pi`}

 , (53)

where
{x} = xi − xi−1. (54)

The definition of ∆F(Qi−1,Qi) is motivated by regrouping terms in the mo-
mentum equation (2) on page 3, to get

∂
∂t
(αkρkuk)+

∂
∂x

(
αkρku2

k + (pk − pik)αk
)
+αk

∂pik
∂x

= αkρkgx. (55)

In the presence of discontinuities, the equations must be put in integral form
in order for a solution to exist. In the momentum equation cast as above, the
αk∂pik/∂x term poses problems, for the integral∫ q2

q1

αk
∂pik
∂ξ

dξ (56)

is dependent on the path ξ(q) between the two states q1 and q2. Toumi and
Kumbaro (1996) suggested writing such integrals as∫ q2

q1

αk
∂pik
∂ξ

dξ = αk
(
αk,1, αk,2

)(
pik,2 − pik,1

)
, (57)

defining the path ξ implicitly through the choice of an averaging function
αk(αk,1, αk,2). The expression derived by Toumi and Kumbaro (1996) was, some-
what inconveniently, not symmetric with respect to phasic indices. Evje and
Flåtten (2003) proposed

αk
(
(αk,1, αk,2

)
= 1

2

(
(αk,1 +αk,2

)
(58)

instead, which is adopted here. Evje and Flåtten (2003) used an average state
Q̂i−1/2 given by the following expressions, where the phasic indices have been
dropped:

û = ui−1
√
(αρ)i−1 +ui

√
(αρ)i√

(αρ)i−1 +
√
(αρ)i

,

α̂ = 1
2
(αi−1 +αi),

ρ̂ = 1
2
(ρi−1 + ρi),

∆̂p = 1
2
(∆pi−1 +∆pi),

(59)
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where ∆p is the interfacial pressure difference (27) on page 8. Putting all this
into the coefficient matrix (25), A(Q̂) = Â(Qi−1,Qi), using the equation of state
(3) to remove the densities, and assuming that the phasic pressures are different
only by a constant, one can confirm that condition 3 on page 13 is satisfied.

4.2.3 Considerations for the five-equation system

The verification of condition 3 on page 13 was performed for the four-equation
system. However, the same exercise can be performed for the five-equation
system, that is, the coefficient matrix (30). In doing that, it is necessary to
define the average interfacial velocity. Here, similarly to what was done in the
equation (58), we took

uik =
1
2
(uik,1 +uik,2), (60)

and, in addition to equation (59), we set

ûi =
1
2
(ui,i−1 +ui,i). (61)

Contrary to the case for the four-equation system, here the phasic pressures can
be linearly independent.

Karni et al. (2004) presented results for a somewhat different Roe-type scheme
for a seven-equation system, that is, including an energy equation for each phase.

5 Numerical tests

In this section, we analyse the Roe-type scheme for the four-equation system
(Roe4), and for the five-equation system (Roe5) by performing numerical simula-
tions.

For the numerical results presented here, simple boundary conditions were
used. The variables not being set as boundary conditions, were extrapolated
to the boundaries from the inner domain. A simple boundary treatment is
sufficient for the present discussion, since it concentrates on the numerical
scheme employed in the inner domain. More elaborate characteristic-based
boundary conditions are discussed by Munkejord (2006), taking the water-faucet
test case as an example.

5.1 Discontinuity moving in uniform flow

It is a basic test for numerical schemes that when no source terms are present, a
flow with a uniform velocity and pressure should remain so, that is, variations
should not be introduced in the velocities or in the pressure. This has sometimes
been referred to as the principle of Abgrall (1996).
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Figure 1: Discontinuity moving in uniform flow. First-order Roe4 and Roe5
schemes. Gas volume fraction (left abscissa) and gas velocity (right
abscissa).

The agreement with Abgrall’s principle was checked by performing a calculation
in a 12 m long horizontal tube, where the velocities are initially equal to ug =
u` = 10 m/s and the pressure is p = 10 · 105 Pa. At the middle of the tube, the
gas volume fraction jumps from 0.2 to 0.8. The results displayed in Figure 1 have
been calculated with the first-order Roe4 and Roe5 schemes on a 101-point grid
and using a cfl number of C = 0.9. Data are plotted at t = 0 and at t = 0.2 s.
As can be seen, the volume-fraction discontinuity is advected to the right while
being smeared. No disturbances are introduced in the gas velocity, and it remains
constant. The same is true for the liquid velocity and the pressure (not shown).
It can also be noted that the data produced by the Roe4 and the Roe5 schemes
are identical to plotting accuracy. This is expected, since in the present case, the
pressure is uniform and remains so, and hence the pressure relaxation should
have nothing to say.

There is nevertheless a subtlety. When the cathare expression (22) is empoyed
for the interfacial pressure difference, the coefficient matrix (25) for the four-
equation system is non-diagonalizable for equal phasic velocities, ug = u`. Here
this was overcome by employing the Soo model (20) with Bk = 1.0 − ε, where
ε = 1 · 10−10. That is to say, a miniscule amount of numerical diffusion was
introduced to render the coefficient matrix diagonalizable. While the effect of
that is to small to be seen on the graph, it is observable when scrutinizing the
numbers output by the numerical code in double precision.

For the Roe5 scheme, the above-mentioned measure was not necessary, and
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Figure 2: Sketch of the water-faucet test case. In the transient phase, a volume-
fraction discontinuity propagates towards the exit.

the velocities and the pressure remained constant to full precision. A priori,
this can be seen as an advantage for the Roe5 scheme compared to the Roe4
scheme, that is, the former is in some cases less sensitive to deficiencies in the
model equations. However, as will be seen in the following, the price to pay
is an increased numerical diffusion and a corresponding reduced accuracy for
slow-moving waves.

5.2 Water-faucet test case

The water-faucet case is described in Ransom (1987), and it has become a common
test case for one-dimensional two-fluid models.

5.2.1 Problem description

The problem consists of a vertical tube 12 m in length and 1 m in diameter. Here,
of course, it is represented one-dimensionally. A schematic is shown in Figure 2.
The top has a fixed volumetric inflow rate of water at a velocity of u◦` = 10 m/s, a
liquid volume fraction of α◦` = 0.8 and a temperature of T = 50 °C. The bottom
of the tube is open to the ambient pressure, p = 1.0 · 105 Pa, and the top of the
tube is closed to vapour flow.

Initially, the flow is uniform throughout the computational domain, and the
initial conditions are equal to the inlet conditions. A thinning of the liquid jet
will take place due to the effect of gravity.
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5.2.2 Analytical expressions for volume fraction and velocity

Ransom (1987) stated that when pressure variation in the vapour phase is ignored,
the transient problem has a simple analytical solution. Coquel et al. (1997)
provided the solution for the gas volume-fraction profile:

αg(x, t) =


1−

α◦`u
◦
`√

2gx + (u◦`)2
if x ≤ u◦`t +

1
2gt

2,

1−α◦` otherwise,
(62)

and the expression for the liquid velocity is given by Evje and Flåtten (2003):

u`(x, t) =


√
(u◦`)

2 + 2gx if x ≤ u◦`t +
1
2gt

2,
u◦` + gt otherwise.

(63)

A partial description of the solution procedure can be found in Trapp and Riemke
(1986).

5.2.3 Grid convergence and limiter functions

The grid convergence of the Roe4 method was tested on numerical grids ranging
from 51 to 1601 grid points, using different limiter functions. The time step was
set to ∆t = 1.97 · 10−5 s, which corresponds to a cfl number of C = 0.9 for the
finest grid.

First, liquid volume-fraction profiles are presented at time t = 0.6 s in Figure 3
on the following page. In Figure 3(a), no limiter function was employed; this
will be referred to as the first-order method. It is seen that the convergence was
steady, but slow. In fact, the convergence was less than first order, even if the
scheme is formally first-order accurate in space. This is due to the discontinuity
in the solution. For discontinuous solutions, the smooth-solution order of
the scheme can normally not be attained (see LeVeque, 2002, Section 8.7). In
Figure 3(a), a data set is added for 3201 grid points to further illustrate the
convergence. For this calculation, a cfl number of C = 0.9 was used, that is, the
time step was shorter than for the other grids.

Figure 3(b) shows the results for the monotonized central-difference (mc) lim-
iter (van Leer, 1977; see also LeVeque, 2002, Section 6.11). It is gave significantly
better resolution than the first-order method, except for the coarse 51-point
grid, where it gave overshoots. More details and calculations regarding limiter
functions, and convergence order of the schemes, can be found in Munkejord
(2005).
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Figure 3: Gas volume fraction for the water faucet. Grid convergence of the Roe4
method with and without a limiter function.
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Figure 4: Pressure for the water faucet. Grid convergence of the Roe4 method
with and without a limiter function.
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Figure 5: Velocities for the water faucet. Grid convergence of the Roe4 method.

Pressure The pressure is by far the most sensitive variable in the faucet case.
It is shown in Figure 4 on the previous page for the mc limiter and for the first-
order scheme. It can be observed that the first-order and the mc schemes seem
to converge to the same value, and that the latter converges much faster. The
pressure profile is also sensitive to the boundary treatment.

The remaining physical variables, namely the gas and liquid velocities, are
displayed in Figure 5. As shown in Figure 5(b), the Roe4 method reproduced the
analytical solution for the liquid velocity accurately, except just at the location of
the volume-fraction discontinuity.

A comparison between the first-order scheme and the high-resolution method
using the mc limiter function is given in Figure 6 on the next page. It is clear
that the first-order method needs over ten times more grid points than the
high-resolution method to produce a comparable volume-fraction profile.

Figure 7 on page 22 displays the results of computations performed using the
Roe5 method with the mc limiter and numerical grids from 26 to 10001 points.
The time-step length was the one corresponding to C = 0.9 for the finest grid,
in this case ∆t = 1.06 · 10−6 s. What is most striking about the figure, is that
the results for the grids between 101 and 10001 points are virtually identical.
This was not expected, and an explanation has yet to be found. Further, it can be
seen that the Roe5 method is much more diffusive than the Roe4 method for the
intermediate and fine grids. For the very coarse grid of 26 points, on the other
hand, the Roe5 results are surprisingly good, and better than those of Roe4.
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Figure 6: Gas volume fraction for the water faucet. Comparison of the first-order
and the MC-limiter methods with the Roe4 scheme.

Reference is made to Munkejord and Papin (2007), where results obtained with
the Roe5 scheme are shown to agree very well with those from a five-equation
version of the discrete-equation method of Abgrall and Saurel (2003). Further,
in Munkejord (2005, Chapter 4), the present test problems have been calculated
using the first-order centred scheme (force) of Toro (1999, Section 14.5.1).

5.2.4 Time-step convergence

The effect of time-step refinement, using the same 101-point grid and the mc
limiter, is shown in Figure 8 on page 23. Regarding the Roe4 scheme in Figure 8(a),
for cfl numbers below 0.5, the effect of time-step refinement is very slight.

Results for the Roe5 scheme are given in Figure 8(b) for the case of no limiter
(first-order), and in Figure 8(c) for the mc limiter. In the latter figure, the differ-
ences between the curves are striking compared to the miniscule ones for the
Roe4 method in Figure 8(a). Furthermore, the difference between the first-order
scheme and the mc-limiter scheme is very large. For the latter one, as can be seen
in Figure 8(c), for C = 0.9, the volume-fraction profile is very smeared indeed.
For C = 0.01, on the other hand, it lies between the profiles calculated using
the mc-limited and first-order Roe4 method (Figure 3 on page 19). As the cfl
number is reduced to miniscule values (C = 0.0001), the curves seem to converge.
Unfortunately, there is a slight overshoot to the left of the discontinuity.
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Figure 7: Water faucet. Grid refinement for the MC-limited Roe5 scheme.
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Figure 8: Gas volume fraction for the water faucet. Effect of time-step length on
the Roe4 and Roe5 schemes with and without MC-limiter.
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Figure 9: Gas volume fraction for the water faucet. Effect of liquid speed of sound
on the Roe5 scheme.

5.2.5 Effect of liquid speed of sound

The Roe5 scheme is rather diffusive, and it is tempting to try to remove some of
the diffusion. One way of doing that, is by reducing the liquid speed of sound.
While this changes the problem under consideration, it illustrates the behaviour
of the scheme. An investigation of the effect of the speed of sound is shown in
Figure 9. The calculations have been performed on a grid of 101 points, using the
mc limiter and the same time-step length of ∆t = 1.06 · 10−4 s, corresponding
to C = 0.9 for the case of the highest (that is, closest-to-physical) liquid speed
of sound. The only thing being varied, is the liquid speed of sound, c`, together
with a corresponding variation of ρ◦` to maintain the same initial liquid density,
ρ` = 1000 kg/m3.

First, we tried to obtain the same maximum eigenvalue as for the four-equation
system. At t = 0.6 s, the four-equation system has λmax ≈ 340 m/s, and the
maximum liquid speed is about 16 m/s. Hence the liquid speed of sound was set
to c` = 324 m/s. The figure shows that this gave less diffusion, but it is still far
from what one obtains using the Roe4 scheme.

Next, as an educated guess, c` = 55.5 m/s was tried. This helped considerably
on the volume-fraction profile, which is now better than the one produced with
the first-order Roe4 method on the same grid (see Figure 3(a) on page 19). Still,
it does not reach the volume-fraction profile from the mc-limited Roe4 method
(Figure 3(b)).

We remark that the phasic speeds of sound have an effect on the Roe4 scheme
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as well, but to a much lesser extent than on the Roe5 scheme. This is thought to
be due to the pressure-relaxation being performed in the latter scheme. Indeed, in
the pressure-relaxation procedure, the densities (and hence pressures) are tightly
linked to the volume fraction. Hence fast-moving pressure waves are transferred
to the volume fraction, and this may be an explanation of the smeared volume-
fraction profiles of the Roe5 scheme.

It is possible that the diffusion introduced by the pressure relaxation may be
reduced by the use of a low-Mach-number method. To analyse this is left for
future work.

5.2.6 Wave propagation speed

The different eigenvalues for the four-equation system and the five-equation
system might lead one into thinking that sonic waves in the two systems would
propagate at different speeds (for instance Flåtten, 2003, Section 3.3.1); for the
faucet case at t = 0.6 s, the maximum eigenvalue in the four-equation system is
about 340 m/s, while it is 1013 m/s in the five-equation system.

However, the above simple consideration does not take the instantaneous
pressure-relaxation procedure into account. To illustrate this, we study the
following example calculation: In the faucet case, a wave forms at the inlet at
t = 0, and it travels towards the outlet. This is shown in Figure 10 on the next
page. Calculations have been performed using the Roe4 and Roe5 schemes, on a
grid of 101 points. Both schemes were run using about C = 0.2 (that is, a shorter
time-step for the Roe5 scheme) and the mc limiter. Figure 10(a) shows snapshots
of (αρu)g at ∆t = 0.005 s intervals, while the time history of the same variable
at x = 12 m is shown in Figure 10(b).

Figure 10(a) clearly shows that the disturbance propagates with the same
velocity in the two schemes. Moreover, no faster-moving disturbances could be
observed in any of the variables in the Roe5 scheme.

As can be seen from Figure 10(b), the wave reached the boundary at about
t = 0.037 s. At this time, there was virtually no difference between the Roe4 and
the Roe5 schemes.

The wave propagation speed was found to be 12 m/0.037 s ≈ 324 m/s, whereas
the maximum eigenvalue of the coefficient matrix of the four-equation system
was 317 m/s at t = 0.005 m/s, increasing to 324 m/s at t = 0.2 m/s. The corre-
spondence is clear.

As can be seen for instance in Figure 10(b), (αρu)g immediately starts to
increase. The reason for this, is the action of gravity.
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Figure 10: Gas volumetric momentum for the water faucet. Comparison of wave
propagation in the Roe4 and the Roe5 schemes.

5.2.7 Non-hyperbolic underlying model

One of the advantages of the Roe5 method perceived in Section 3.2 on page 8, is
that the coefficient matrix remains hyperbolic, even when the ‘0 model’

∆pik = 0 (64)

is taken for the interfacial pressure difference. For such cases, the ‘underlying’
four-equation model is non-hyperbolic with complex eigenvalues.

Figure 11 on the next page shows the water-faucet gas volume-fraction profile
calculated on a grid of 101 points using the mc limiter and a quite short time-step
length of ∆t = 1.06 · 10−6 s. Two models have been employed for the interfacial
pressure difference; the cathare model (22) and the 0 model (64). Further, two
different liquid speeds of sound were tried; c` = 1000 m/s and c` = 55.5 m/s, as
commented upon in Section 5.2.5 on page 24.

As can be observed, the use of the 0 model for the interfacial pressure differ-
ence together with the low liquid speed of sound results in a severe undershoot
in front of the discontinuity, whereas the curve for the cathare model and the
low liquid speed of sound is quite well-behaved. This may indicate that the use
of Roe5 scheme and similar methods provides no easy way to avoid the problem
of complex eigenvalues in the four-equation model.

For the high liquid speed of sound, no anomalies were incurred by the 0 model.
This might be a result of the high liquid speed of sound providing ‘enough’
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Figure 11: Gas volume fraction for the water faucet. Roe5 scheme. Results for the
0 model and the CATHARE model for the interfacial pressure difference,
for two liquid speeds of sound, c` = 1000 m/s and c` = 55.5 m/s (with
�).

diffusion in the Roe5 scheme. Indeed, this was the case even on a fine grid of
20001 points.

Karni et al. (2004) reported undershoots for their Roe-type solver with pressure
relaxation and the 0 model for the interfacial pressure difference, even for
equation-of-state parameters giving a high liquid speed of sound, speculating
that this might be due to the ill-posedness of the underlying one-pressure two-
phase model. A similar effect was also observed by Munkejord (2005, Chapter 4)
for the first-order centred scheme force.

5.3 Large relative velocity shock tube

The large relative velocity (lrv) shock was investigated by Cortes et al. (1998);
Evje and Flåtten (2003). The initial left and right states are given in Table 2 on
the next page. The result of grid refinement for the Roe4 scheme is shown in
Figure 12 on the following page for the primitive variables at t = 0.1 s. The
calculations were run with a time-step length of ∆t = 2.35·10−5 s, corresponding
to C = 0.9 for the finest grid, and the mc limiter was used.

As Evje and Flåtten (2003) pointed out, the wedge that can be seen in the
volume fraction, and also in the gas velocity, at x = 50 m, is two volume-fraction
waves. This detail is shown for the volume fraction in Figure 13. In the figure,
data have been added for a grid of 40001 points and C = 0.9, something which
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Table 2: Initial conditions in the large relative velocity (LRV) shock tube

Quantity symbol (unit) left right
Gas volume fraction αg (–) 0.29 0.30

Pressure p (kPa) 265 265
Gas velocity ug (m/s) 65 50

Liquid velocity u` (m/s) 1 1
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Figure 12: LRV shock tube. Grid refinement for the Roe4 (MC) scheme.
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Figure 13: LRV shock tube. Close-up of volume-fraction waves for the Roe4
scheme.

clearly shows the convergence; both the fine-grid solutions are practically equal,
and they are also thought to be practically equal to the true solution to the
equation system.

The resolution of sonic waves is dependent on the cfl number. Time-step
refinement is shown in Figure 14 on the next page for a grid of 101 points. As
can bee seen, the resolution of the sonic waves (at about x = 25 m and x = 85 m)
improves with increasing cfl number, whereas the resolution of volume-fraction
waves (at x = 50 m) is largely unaffected. The latter effect was also seen for
the faucet case in the previous subsection. An improving sonic-wave resolution
with increasing cfl number is in accordance with what is known about upwind
methods. For instance, an upwind method can solve the advection equation
exactly for C = 1.

The effect of the limiter function is displayed in Figure 15 on the following page.
It can be observed that employing the mc limiter function gives a significantly
improved resolution of both the sonic waves (Figure 15(a)) and the volume-
fraction waves (Figure 15(b)). Still, the effect in the present case is perhaps
less striking that what was observed for the faucet case in Figure 3 on page 19.
The calculation of Figure 15(b) has been performed on a fine grid, since the
volume-fraction wedge is confined to a small area.

Figure 16 on page 31 shows the result of grid refinement for the Roe5 scheme
using the mc limiter. The time-step length was ∆t = 8.99 · 10−6 s, corresponding
to C = 0.9 on the finest grid of 10001 points. The results obtained with the
Roe4 method on the fine grid are drawn as a reference. The figure shows that
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Figure 14: Liquid velocity for the LRV shock tube. Time-step refinement for the
Roe4 (MC) scheme on a grid of 101 points. The reference solution is
calculated on a 10001-point grid.
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Figure 15: LRV shock tube. Effect of limiter function for the Roe4 scheme, with
fine-grid data as reference. C = 0.9.
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Figure 16: LRV shock tube. Grid refinement for the Roe5 (MC) scheme.
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Figure 17: Liquid velocity for the LRV shock tube. Time-step refinement for the
Roe5 (MC) scheme on a grid of 101 points. The reference solution is
calculated using the Roe4 (MC) scheme on a 10001-point grid.

the results of the Roe5 scheme converge towards those of the Roe4 scheme.
However, for the volume fraction wave at x = 50 m, the convergence is very
slow. This is thought to be mainly due to the high diffusivity of the Roe5 scheme,
and it can be seen in Figure 16(a) for the liquid volume fraction, where the
focus is on the middle of the shock tube. In that figure, results from the Roe5
method on a very fine grid of 40001 points, using C = 0.05, have been added to
illustrate the effect of further grid and time-step refinement. In addition to slow
convergence, the Roe5 method suffers from instabilities at the left-hand-side of
the volume-fraction wedge.

Time-step refinement is displayed in Figure 17 for a grid of 101 points. Similarly
to what was seen for the Roe4 method, the sonic waves are slightly better
resolved for the highest cfl number. Contrary to the Roe4 method, however,
the resolution of the liquid velocity at the discontinuity at x = 50 m is strongly
time-step dependent. Here, the resolution is increasingly poor for increasing cfl
numbers.

5.4 Toumi’s shock tube

The present problem was introduced as a test case by Toumi (1996) for his
Roe-type solver for a six-equation model. It has also been studied by Tiselj
and Petelin (1997); Paillère et al. (2003) and Evje and Flåtten (2005), the latter
researchers using a four-equation model. The initial values are given in Table 3,
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Table 3: Initial conditions in Toumi’s shock tube

Quantity symbol (unit) left right
Gas volume fraction αg (–) 0.25 0.10

Pressure p (MPa) 20 10
Gas velocity ug (m/s) 0 0

Liquid velocity u` (m/s) 0 0

and no source terms are considered.
Unfortunately, with the cathare expression (22) for the interfacial pressure

difference, the coefficient matrix (25) of the four-equation system is not diagonal-
izable for the initial condition ug = u`. Hence, an ad hoc approach was taken,
combining the cathare and the Soo models:

pk − pik = ∆pik = γ
αgα`ρgρ`
αgρ` +α`ρg

(ug −u`)2 + (1− Bk)pk, (65)

where the displacement factor was set to a high value; Bk = 0.999999, that is,
giving negligible additional diffusion, but making the coefficient matrix diagonal-
izable.

For Toumi’s shock tube, the ‘plain’ Roe4 scheme converges to physically implau-
sible results with an extra wave. In the present calculations, this was remedied
by employing the entropy fix of Harten (1983) (see also e.g. LeVeque, 2002,
Section 15.3.5).

The result of grid refinement for the Roe4 scheme using the mc limiter is shown
in Figure 18 on the following page. The time-step length was ∆t = 9.13 · 10−6 s,
which corresponds to C = 0.5 for the finest grid.

A comparison of the first-order Roe4 scheme employing Harten’s entropy
fix, and the first-order Roe5 scheme is shown in Figure 19 on page 35. The
grid size was 10001 points, and the cfl number was C = 0.9. No limiter was
employed in this case, since for the Roe5 scheme, the mc limiter introduced
instabilities at the middle of the tube. On the other hand, the Roe5 scheme
needed no additional diffusion in the form of an entropy fix or the use of the
combined interfacial pressure-difference model (65). For the temporal and spatial
resolutions investigated, the results were different in the middle section of the
shock tube, between about x = 50 m and x = 60 m. For the Roe5 scheme, the
volume fraction and the velocities in this section all had gradients, whereas the
Roe4 scheme produced plateaux. The latter behaviour corresponds to those
of other methods (Evje and Flåtten, 2005). Furthermore, the discontinuity at
x = 60 m is more sharply resolved by the Roe4 scheme.
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Figure 18: Toumi’s shock tube. Grid refinement for the Roe4 (MC) scheme em-
ploying Harten’s entropy fix.
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Figure 19: Liquid velocity for Toumi’s shock tube. Comparison of the first-order
Roe4 (with entropy fix) and Roe5 schemes on a grid of 10001 points.

5.5 Effect of the pressure-relaxation parameter

In the preceding subsections, instantaneous pressure relaxation was always
used in the Roe5 method. Now we will investigate the effect of varying the
pressure-relaxation parameter, rp, in the equation (9).

5.5.1 Water-faucet case

Consider Figure 20 on the following page, showing the gas volume fraction for the
water-faucet case. The calculations have been performed using a 101-point grid,
the mc limiter and a time-step length of ∆t = 1.06 · 10−6 s. The curve labelled
‘instant’ has been calculated with instantaneous pressure relaxation, and it is
equal to that already shown in Figure 7(a). The other curves have been calculated
using the fractional-step method outlined in Section 2.2.2 for a finite pressure-
relaxation coefficient. The analytical solution of Section 5.2.2 has been added for
reference. The effect of the pressure-relaxation parameter, rp, is clearly seen in
the figure: The smaller the rp, the flatter the volume-fraction profile becomes.
For rp = 0, the volume-fraction remains constant. This can be understood by
considering the volume-fraction evolution equation (9). Initially, ∂αg/∂x = 0,
and since rp = 0, ∂αg/∂t = 0, which means that the volume fraction does not
change.

It should also be noted that the transition between instantaneous and finite-rate
pressure relaxation is smooth.
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Figure 20: Gas volume fraction for the water faucet. Effect of pressure-relaxation
parameter rp on the Roe5 (MC) scheme for a grid of 101 points.

5.5.2 Toumi’s shock tube

A further example of the effect of the pressure-relaxation parameter is shown in
Figure 21 on the next page. Here, Toumi’s shock tube has been calculated on a
grid of 1001 points using no limiter and a time-step length of ∆t = 8.87 · 10−6 s.
However, as opposed to the case of the one-pressure calculations, here, the
results are shown at t = 0.04 s. This has been done to avoid interaction with the
boundaries.

Figure 21(b) shows an interesting plot of the liquid velocity. For a low value of
the pressure-relaxation parameter, rp, the two sonic waves can be seen to have
reached about x = 10 m and x = 90 m. As rp is increased, those two fast sonic
waves are gradually suppressed, and the effect of the gas phase becomes more
and more visible.

The approximate speed of the sonic waves can be read from the figure. For
a low rp, the average speed of the right-going wave is 40 m/0.04 s = 1000 m/s,
which closely corresponds to the eigenvalue u` + c`. As the pressure-relaxation
coefficient is increased, the sonic speed is reduced to that of the four-equation
model, as was seen for instance in Figure 19 on the preceding page.

The discontinuity at the middle of the tube moves to the right with a speed
corresponding to the interfacial velocity, ui, (see (8)), which is practically equal
to the liquid velocity.

The gas and liquid pressures are displayed in Figures 21(d) and 21(e), and it
can be observed how the two independent pressures converge to one as rp is
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Figure 21: Toumi’s shock tube at t = 0.04 s. Effect of the pressure-relaxation
parameter rp in the Roe5 (first-order) method for a grid of 1001 points.
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Figure 21: (Continued) Toumi’s shock tube at t = 0.04 s. Effect of the pressure-
relaxation parameter rp in the Roe5 (first-order) method for a grid of
1001 points.

increased.

5.6 Summary

A Roe-type scheme for the four-equation system (Roe4) has been tested on various
cases from the literature. In the present work, the high-resolution approach of
LeVeque (2002) has been successfully applied to the multifluid equations. For
discontinuity problems such as the water-faucet case, a significant improvement
was achieved compared to the conventional first-order Roe scheme.

In the large relative velocity (lrv) shock-tube problem, the effect of the high-
resolution correction was less pronounced than for the faucet case. The resolu-
tion of sonic waves was seen to be time-step dependent.

A Roe-type scheme for the five-equation system has been derived (Sections 3
and 4): The two-velocity, two-pressure two-fluid model is first advanced in time,
then a pressure-relaxation procedure is performed, yielding the same pressure in
the two phases. The resulting scheme, Roe5, has been tested and compared to
Roe4.

The Roe5 scheme was found to be significantly more diffusive than the Roe4
scheme, particularly for slow waves. The diffusion is a strong function of the
chosen time-step length, the grid size, whether a limiter function is employed or
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not, and also the liquid speed of sound.
Interestingly, for the faucet case, the mc-limited Roe5 scheme performed better

than the Roe4 scheme for the very coarse grid of 26 points.
For fine grids and short time steps, the Roe5 scheme mostly converges to the

same results as the Roe4 scheme. The differences seen are thought to be mainly
due to the high diffusivity of the Roe5 scheme.

It was found that the sonic wave-propagation speed is the same in the Roe4
and the Roe5 schemes.

For Toumi’s shock tube, it was required to use an entropy fix with the Roe4
scheme. For the Roe5 scheme, on the other hand, no fix was necessary, but the
produced results were slightly less plausible.

The coefficient matrix employed in the Roe5 scheme is diagonalizable with real
eigenvalues even in the case of zero interfacial pressure difference. This is a main
difference between the Roe5 and the Roe4 schemes. Even so, oscillations normally
associated with complex eigenvalues were produced for a low liquid speed of
sound in the water-faucet test case. This may indicate that the Roe5 scheme
and similar methods provide no easy remedy against complex eigenvalues in the
two-fluid model.

The effect of finite-rate pressure relaxation in the Roe5 method was tested.
As the pressure-relaxation parameter was increased, the solution gradually ap-
proached that obtained using instantaneous pressure relaxation.

The good correspondence between the results obtained using the Roe4 scheme
and those of the Roe5 scheme with instantaneous pressure relaxation, indicates
that the latter may be regarded as a numerical method to solve the four-equation
system.

6 Conclusions

• The Roe5 scheme with instantaneous pressure relaxation can be regarded
as a numerical method to solve the four-equation system. It is significantly
more diffusive than the Roe4 scheme, particularly for slow waves. This is
true with or without the use of high-resolution limiters.

• As the pressure-relaxation parameter in the Roe5 scheme is increased, the
instantaneous-relaxation results are recovered. Instantaneous pressure
relaxation annihilates the fastest waves, so that the solution approaches
that of the four-equation system.

• It appears that the approach of two pressures and instantaneous pres-
sure relaxation does not provide an easy way to overcome the problem of
complex eigenvalues in the four-equation system.
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