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A MUSTA SCHEME FOR A NONCONSERVATIVE
TWO-FLUID MODEL∗

SVEND TOLLAK MUNKEJORD†, STEINAR EVJE‡ , AND TORE FLÅTTEN§

Abstract. We present a multistage centered scheme, of the kind proposed by Toro [Appl.
Numer. Math., 56 (2006), pp. 1464–1479], for numerically resolving the simultaneous flow of two
fluids through a transport pipeline. This model contains nonconservative terms in both the temporal
and spatial derivatives, and an extension of the standard numerical framework for conservation laws
is needed. In this paper, we rewrite the model in an equivalent mathematical form, eliminating the
nonconservative time derivatives. This allows us to use the framework described by Parés [SIAM J.
Numer. Anal., 44 (2006), pp. 300–321]. We develop FORCE and MUSTA-type schemes which are
consistent with Parés’ formalism. Numerical simulations demonstrate a high degree of stability of
our proposed schemes. Comparisons with the Roe and Rusanov schemes indicate that convergence
to near-identical solutions is obtained when the nonconservative terms are discretized with respect
to the same evaluation of the path-dependent integrals. However, if the schemes are not mutually
formally path-consistent in the sense of Parés, different converged solutions are obtained.
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1. Introduction. A common way of modeling dynamic two-phase flows is by
formulating balance laws for mass, momentum, and energy for each phase, derived
from conservation principles [35]. Such models find extensive use in the petroleum [2,
23] and nuclear [4, 38] industries.

By neglecting viscous terms, as is often done in the context of such industrial
applications, one obtains a system of hyperbolic partial differential equations. In
particular, the system can be written in the general form

(1)
∂u

∂t
+

∂f(u)
∂x

+ Ã(u)
∂ṽ(u)

∂t
+ B̃(u)

∂w̃(u)
∂x

= s(u),

to be solved for the unknown vector u(x, t) ∈ S ⊂ R
N . In other words, we obtain

a system of conservation laws augmented with nonconservative products and source
terms. The incorporation of such terms into standard numerical schemes for conser-
vation laws is currently an active area of research [5, 6, 33, 41].

In this respect, much focus has been given to the design of well-balanced schemes
that properly recreate equilibria between the source and flux terms [3, 51], in particular
in the context of the shallow water equations [29, 32, 50]. For two-phase flow models,
the notion of well-balancedness is most naturally interpreted as the ability of the
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numerical scheme to maintain a pressure equilibrium under a uniform velocity field;
see [1, 9].

For hyperbolic conservation laws, it is well known that the weak solutions contain-
ing discontinuities are generally not unique; additional entropy requirements must be
imposed. Even further complications arise in the presence of nonconservative terms.
Here the integrals needed to define weak solutions are generally dependent on the in-
tegration path chosen over a given discontinuity. This means that for nonconservative
systems, it is needed to define more precisely how such a path should be selected so
that generalized Rankine–Hugoniot conditions can be posed.

Based on the definition of nonconservative products introduced in [14], Parés [33]
discusses this issue in detail and also introduces a generalization of the classic con-
cept of conservative numerical schemes. Parés originally termed such schemes path-
conservative. Provided the schemes converge in the sense of graphs [7], the weak
solutions will satisfy the generalized Rankine–Hugoniot conditions. However, this is a
strong form of convergence which is often violated in practice, meaning that a perfect
equivalent of the Lax–Wendroff theorem does not hold for nonconservative systems.
For this reason, it was suggested in the later work [7] that the schemes described by
Parés [33] should be termed formally path-consistent instead. Throughout this paper,
we will use this latter terminology.

In order to obtain formally path-consistent schemes, our two-fluid model must
be rewritten in a more suitable form. In particular, the nonconservative temporal
derivatives must be eliminated from (1) to obtain a system

(2)
∂u

∂t
+

∂f(u)
∂x

+ B(u)
∂w(u)

∂x
= s(u),

where B and w satisfy

(3) B(u)
∂w(u)

∂x
= Ã(u)

∂ṽ(u)
∂t

+ B̃(u)
∂w̃(u)

∂x

for smooth solutions. This transformation, detailed in section 2.3, allows us to con-
struct formally path-consistent versions of some classical schemes for our two-fluid
model.

In particular, we are interested in schemes that can provide upwind-type resolu-
tion of all the waves present in the system. In this respect, classical Riemann solvers
like the Roe and Godunov schemes are computationally expensive, as the underly-
ing wave structure of the model is generally not available through simple algebraic
expressions [13, 19].

An interesting alternative is the multistage numerical method denoted as MUSTA,
recently proposed by Toro [42, 43]. Here the main idea is to obtain the wave-
propagation information numerically by an iterative procedure. This leads to an
efficient and robust algorithm that so far has given promising results for the single-
phase Euler equations [39, 42, 43]. In [26], a MUSTA scheme was proposed for a
model describing two-phase mixtures.

In this paper, we investigate the method for a more general model with indepen-
dent velocities and energy transfers. The contributions of this paper may be summed
up as follows:

1: We rewrite the general two-fluid model in the form (2) in order to facilitate
the construction of numerical schemes.

2: Specifically, we construct and assess a MUSTA-type scheme for this model.
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Our paper is organized as follows: In section 2, we discuss the two-phase flow
model we will be working with. We briefly review some classic results in section 2.2,
before presenting some original results in section 2.3. In particular, we detail the
transformation that allows us to rewrite the model in the form (2).

In section 3 we first briefly review Parés’ notion of formally path-consistent schemes
[7, 33]. We then describe a natural way of constructing formally path-consistent ver-
sions of some classical numerical schemes, including the FORCE and MUSTA schemes
of Toro [40, 42], and describe the specific implementation for the two-phase flow model.

Section 4 is devoted to some numerical experiments. In particular, we are inter-
ested in the stability and accuracy of the MUSTA scheme. Finally, the main results
of the paper are summarized in section 5.

2. The two-phase flow model. The classical two-fluid model is based on bal-
ance equations for mass, momentum, and energy for a gas (g) and liquid (�) phase.
Each phase is equipped with an equation of state (EOS):

(4) pk = pk(ρk, ek)

for k ∈ {g, �}. Furthermore, we are interested in the limit of instantaneous pressure
relaxation between the phases, so we assume

(5) p = pg(ρg, eg) = p�(ρ�, e�).

2.1. The four-equation model. If we assume no mass transfer between the
phases and ignore all external forces but gravity, the mass and momentum equations
may be written as follows:

∂

∂t
(ρgαg) +

∂

∂x
(ρgαgvg) = 0,(6)

∂

∂t
(ρ�α�) +

∂

∂x
(ρ�α�v�) = 0,(7)

∂

∂t
(ρgαgvg) +

∂

∂x

(
ρgαgv

2
g

)
+ αg

∂p

∂x
+ τi = ρgαggx,(8)

∂

∂t
(ρ�α�v�) +

∂

∂x

(
ρ�α�v

2
�

)
+ α�

∂p

∂x
− τi = ρ�α�gx,(9)

where the interface momentum-exchange term τi will be discussed later. In addition,
the following nomenclature is assumed:

ρk - density,
vk - velocity,
αk - volume fraction,
sk - entropy,
ek - internal energy,
Tk - temperature,
p - pressure common to both phases,
gx - x-component of the gravitational acceleration.

Here the volume fractions satisfy

(10) αg + α� = 1.

The model (6)–(9) may be used as a stand-alone dynamic model, provided that the
EOS (4) may be reduced to

(11) pk(ρk, ek) = pk(ρk),
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for instance, by assuming constant entropy or temperature. This procedure has been
used by many authors; see for instance [13, 19, 31].

2.2. The six-equation model. For many cases of interest, dynamic energy
transfers become important and the system (6)–(9) should be augmented with appro-
priate energy-balance equations. For the special case of τi = 0, these equations are
commonly derived to satisfy the following criteria:

C1: The system should respect conservation of total energy in the absence of
external forces.

C2: The system should support reversible thermodynamics in the absence of
shocks.

The requirement C2 may be satisfied by imposing the following entropy-convection
equations:

(12)
∂

∂t
(ρkαksk) +

∂

∂x
(ρkαkskvk) = 0,

so that global entropy is conserved for smooth solutions.
As described by Stewart and Wendroff [35], energy-balance equations are now

obtained from (6)–(9) and (12), by using τi = 0, as well as the thermodynamic
differential

(13) dek = Tk dsk +
p

ρ2
k

dρk.

We obtain the following equations:

∂Eg

∂t
+

∂

∂x
(Egvg + αgvgp) + p

∂αg

∂t
= ρgαgvggx,(14)

∂E�

∂t
+

∂

∂x
(E�v� + α�v�p) + p

∂α�

∂t
= ρ�α�v�gx,(15)

where the total phasic energy Ek is the sum of the internal and kinetic energies of
phase k:

(16) Ek = ρkαk

(
1
2
v2

k + ek

)
.

Summing (14) and (15) yields an equation for the total energy that satisfies C1.

2.2.1. Phase-interaction terms. The considerations above lead to a formula-
tion of the energy equations for the special case τi = 0. However, when the momentum-
transfer term is present, it must also be accounted for in the energy equations. For
C1 to continue to hold, (14) and (15) are then most generally expressed as

∂Eg

∂t
+

∂

∂x
(Egvg + αgvgp) + p

∂αg

∂t
+ vτ · τi = ρgαgvggx,(17)

∂E�

∂t
+

∂

∂x
(E�v� + α�v�p) + p

∂α�

∂t
− vτ · τi = ρ�α�v�gx,(18)

where we only assume that vτ is some operator with the dimensions of a velocity. A
more precise description of this operator may be obtained through entropy consider-
ations. Here we will find it convenient to use the shorthand

τg = −τi,(19)
τ� = τi.(20)
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It will also be convenient to work with the material derivative defined as

(21)
DΦk

Dt
=

∂Φk

∂t
+ vk

∂Φk

∂x
,

for any phase k and variable Φ.
The momentum-exchange term τi now appears as an entropy-source term, as is

made precise by the following lemma.
Lemma 1. The energy equations (17) and (18) can be expressed as

(22)
∂

∂t
(ρkαksk) +

∂

∂x
(ρkαkskvk) =

1
Tk

(vτ − vk) τk.

Proof. The model (6)–(9), (17)–(18) can be expressed in terms of the material
derivative as

αk
Dρk

Dt
= −ρk

(
∂αk

∂t
+

∂

∂x
(αkvk)

)
,(23)

ρkαk
Dvk

Dt
+ αk

∂p

∂x
− τk = ρkαkgx,(24)

ρkαk
D

Dt

(
ek +

1
2
v2

k

)
+

∂(αkvkp)
∂x

+ p
∂αk

∂t
− vτ τk = ρkαkvkgx.(25)

Multiplying (24) with vk and subtracting from (25) we obtain

(26) ρkαk
Dek

Dt
= −p

∂(αkvk)
∂x

− p
∂αk

∂t
− (vk − vτ )τk.

By (23) and (26), it follows from the differential relation (13) that

(27) ρkαk
Dsk

Dt
=

1
Tk

(vτ − vk)τk.

From this, (22) follows from the mass conservation equations (6)–(7).

2.2.2. Entropy considerations. We first note that if the momentum-exchange
term τi satisfies

(28) (vg − v�)τi ≥ 0,

then momentum transfer will be positive for the faster phase and negative for the
slower; hence this term will have the effect of reducing |vg − v�|, as can be seen
from (8) and (9). This motivates the following definition.

Definition 1. The momentum-exchange term τi will be denoted as an interface
friction provided that (28) is satisfied.

We now consider a closed region R and define the total cross-sectional entropy ω:

(29) ω(x, t) = ρgαgsg + ρ�α�s�.

We further define the global entropy Ω:

(30) Ω(t) =
∫

R

ω(x, t) dx.
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Following [35], we now insist that the energy-transfer term must be chosen such that
interface friction is consistent with the second law of thermodynamics. In particular,
we have the following proposition.

Proposition 1. If τi is an interface friction, the second law of thermodynamics

(31)
dΩ
dt

≥ 0 ∀t

holds if vτ is a scalar, convex combination of vg and v�, i.e.,

(32) min(vg, v�) ≤ vτ ≤ max(vg, v�),

or equivalently

(33) vτ = βvg + (1 − β)v�, β ∈ [0, 1].

Proof. By (29)–(30) and Lemma 1, we have

(34)
dΩ
dt

=
∫

R

(
1
T�

(vτ − v�) −
1
Tg

(vτ − vg)
)

τi dx.

Now (31) holds if

(35)
(

1
T�

(vτ − v�) −
1
Tg

(vτ − vg)
)

τi ≥ 0.

Substituting (33) into (35) yields

(36)
(

β

T�
+

1 − β

Tg

)
(vg − v�)τi ≥ 0,

which by (28) and positivity of temperatures holds for all β ∈ [0, 1].
We will propose an explicit choice of β in section 2.3.1.

2.3. Canonical nonconservative form. By the analysis above, we recover a
rather standard formulation of the two-fluid model that has been used by several
authors [12, 20, 21, 31, 35]. If we assume τi = τi(u), the model is in the form (1):

(37)
∂u

∂t
+

∂f(u)
∂x

+ Ã(u)
∂ṽ(u)

∂t
+ B̃(u)

∂w̃(u)
∂x

= s(u),

with

(38) u =

⎡
⎢⎢⎢⎢⎢⎢⎣

ρgαg

ρ�α�

ρgαgvg

ρ�α�v�

Eg

E�

⎤
⎥⎥⎥⎥⎥⎥⎦

, f(u) =

⎡
⎢⎢⎢⎢⎢⎢⎣

ρgαgvg

ρ�α�v�

ρgαgv
2
g

ρ�α�v
2
�

(Eg + αgp)vg

(E� + α�p)v�

⎤
⎥⎥⎥⎥⎥⎥⎦

, s(u) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

ρgαggx − τi

ρ�α�gx + τi

ρgαgvggx − vτ τi

ρ�α�v�gx + vττi

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and

(39) Ã(u) = pI, ṽ(u) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
αg

α�

⎤
⎥⎥⎥⎥⎥⎥⎦

, B̃(u) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
αg

α�

0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

, w̃(u) = p.
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In this section, we perform the transformation needed to put the model in the form
(2):

(40)
∂u

∂t
+

∂f(u)
∂x

+ B(u)
∂w(u)

∂x
= s(u).

We begin by obtaining a useful differential.
Lemma 2. For a general equation of state in the form

(41) p = p(ρ, e),

the pressure differential dp may be expressed as

(42) dp =
(

c2 − γ
p

ρ

)
dρ + γρ de,

where c is the sound velocity given by

(43) c2 =
(

∂p

∂ρ

)
s

and γ here is the first Grüneisen parameter

(44) γ ≡ 1
ρCv

(
∂p

∂T

)
ρ

,

where Cv is the heat capacity at constant volume given by

(45) Cv =
(

∂e

∂T

)
v

.

Proof.

(46) dp =
(

∂p

∂ρ

)
s

dρ +
(

∂p

∂s

)
ρ

ds = c2 dρ +
(

∂p

∂s

)
ρ

ds.

Furthermore,

(47)
(

∂p

∂s

)
ρ

=
(

∂T

∂s

)
ρ

(
∂p

∂T

)
ρ

=
T

Cv
· ρCvγ = γρT,

so that (46) may be written as

(48) dp = c2 dρ + γρT ds.

By substitution of the fundamental differential (13) for ds in (48), Lemma 2 follows.
We are now in position to state the following proposition.
Proposition 2. The evolution equation for α� can be written as

(49) σ
∂α�

∂t
= ρgα�c

2
g

∂

∂x
(αgvg) − ρ�αgc

2
�

∂

∂x
(α�v�) + αgα�(vg − v�)

∂p

∂x
− τi (α�γg(vg − vτ ) + αgγ�(v� − vτ )) ,
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where

(50) σ = αgρ�c
2
� + α�ρgc

2
g.

Proof. We write the differential (42) as

(51) αk
Dp

Dt
=

(
c2
k − γkp

ρk

)
αk

Dρk

Dt
+ γkαkρk

Dek

Dt
.

By (23) and (26), this simplifies to

(52) αk
Dp

Dt
= −ρkc2

k

∂αk

∂t
− ρkc2

k

∂(αkvk)
∂x

− γk(vk − vτ )τk.

Now writing (52) for k = g, k = �, and taking into account that

(53)
∂αg

∂t
+

∂α�

∂t
= 0,

we recover (49) by eliminating ∂tp.

2.3.1. The interface velocity vτ . We now revisit the modeling of the interface-
velocity operator vτ , described in section 2.2.2. By energy conservation, the kinetic
energy released by any interface friction will be transformed into a combination of
deformation and heat. We are now able to state the following proposition.

Proposition 3. If the interface-velocity operator vτ is modelled as

(54) vτ =
α�γgvg + αgγ�v�

α�γg + αgγ�
,

i.e., in the context of (33):

(55) β =
α�γg

α�γg + αgγ�
,

we then get

(56)
∂

∂τi

(
∂ρk

∂t

)
= 0.

In other words, there is no deformation associated with τi, and the kinetic energy
released by the interface friction τi will therefore be fully converted into heat.

Proof. From (49) we have

(57)
∂

∂τi

(
∂α�

∂t

)
=

− (α�γg(vg − vτ ) + αgγ�(v� − vτ ))
σ

.

With (54), this simply becomes

(58)
∂

∂τi

(
∂α�

∂t

)
= 0.

Then

(59)
∂

∂τi

(
∂ρk

∂t

)
=

∂

∂τi

(
1
αk

∂

∂t
(ρkαk) − ρk

αk

∂αk

∂t

)
= 0,
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where we have used that the mass equations (6) and (7) are independent of τi.
Note that (54) satisfies the convexity requirement (33) as both the volume frac-

tions and Grüneisen parameters are nonnegative, when we assume well-behaved ther-
modynamics. Hence for the purpose of this paper, we will use (54) to model the
interface-velocity term in the energy equations. Although we do not claim that this
is generally the most realistic choice, it has the advantage of having a direct physical
interpretation.

2.3.2. The interface momentum-exchange term τi. The model (37)–(39),
with the interpretation that τi = τi(u) represents some interface friction, is sometimes
referred to as the basic equal-pressure model [35]. It is a well-known fact that this
particular model predicts complex velocities for the volume-fraction waves, meaning
that unbounded instabilities are expected at short wavelengths [24, 35]. In this case,
the equations do not have a well-defined mathematical solution.

Hence a common approach is to include differential terms in the modeling of τi

in order to render the system hyperbolic with real eigenvalues. We may write

(60) τi = τD + τF ,

where τD represents the added differential terms and τF = τF (u). Note that τD

does not necessarily have to satisfy (28). In particular, it has become more or less a
standard for numerical testing [11, 13, 16, 31, 44] to let τD represent the effect of a
pressure jump Δp at the gas-liquid interface. In this case, τD becomes

(61) τD = −Δp
∂α�

∂x
.

Physically, Δp could represent the effects of hydrostatics or surface tension. However,
here we follow previous works [9, 16, 27, 31] and use

(62) Δp = δ
αgα�ρgρ�

ρgα� + ρ�αg
(vg − v�)2,

which is motivated purely from mathematical considerations; here δ > 1 ensures a
hyperbolic model unless the velocity difference vg − v� becomes too large [4, 36]. In
this paper, we assume

(63) δ = 1.2

unless otherwise stated.

2.3.3. The rewritten model. The results of this section lead us to the following
proposition.

Proposition 4. If we choose

(64) vτ =
α�γgvg + αgγ�v�

α�γg + αgγ�

and

(65) τi = −Δp
∂α�

∂x
+ τF (u),

the model given by (6)–(9) and (17)–(18) can be expressed in the mathematically
equivalent form

(66)
∂u

∂t
+

∂f(u)
∂x

+ B(u)
∂w(u)

∂x
= s(u),
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with

(67) u =

⎡
⎢⎢⎢⎢⎢⎢⎣

ρgαg

ρ�α�

ρgαgvg

ρ�α�v�

Eg

E�

⎤
⎥⎥⎥⎥⎥⎥⎦

, f(u) =

⎡
⎢⎢⎢⎢⎢⎢⎣

ρgαgvg

ρ�α�v�

ρgαgv
2
g + αgΔp

ρ�α�v
2
� + α�Δp

(Eg + αgp)vg

(E� + α�p)v�

⎤
⎥⎥⎥⎥⎥⎥⎦

, s(u) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

ρgαggx − τF

ρ�α�gx + τF

ρgαgvggx − vττF

ρ�α�v�gx + vτ τF

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and

(68)

B(u) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
αg 0 0 0 −αg

α� 0 0 0 −α�

−ηαgα�(vg − v�) −vτΔp −ηρgα�c
2
g ηρ�αgc

2
� 0

ηαgα�(vg − v�) vτΔp ηρgα�c
2
g −ηρ�αgc

2
� 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

w(u) =

⎡
⎢⎢⎢⎢⎣

p
α�

αgvg

α�v�

Δp

⎤
⎥⎥⎥⎥⎦ ,

where

(69) η =
p

σ
=

p

αgρ�c2
� + α�ρgc2

g

.

Proof. From (49) and (64) we get

(70) σ
∂α�

∂t
= ρgα�c

2
g

∂

∂x
(αgvg) − ρ�αgc

2
�

∂

∂x
(α�v�) + αgα�(vg − v�)

∂p

∂x
.

Substitute this for ∂tα in the energy equations (17)–(18), using ∂tαg = −∂tα�. Fur-
thermore, substitute (65) in (8)–(9) and (17)–(18), and the result follows.

For practical simulations, further terms may be added to the framework (66)–
(69), for instance mass-transfer terms or heat-transfer terms; see [4, 35]. Aiming for
simplicity, here we follow previous authors [9, 11, 12, 31, 44] and neglect such terms
for the purpose of numerical benchmarking.

2.3.4. Canonical nonconservative form of the four-equation model. We
may also write the simpler four-equation model (6)–(9) in the form (66); we obtain

(71) u =

⎡
⎢⎢⎣

ρgαg

ρ�α�

ρgαgvg

ρ�α�v�

⎤
⎥⎥⎦ , f(u) =

⎡
⎢⎢⎣

ρgαgvg

ρ�α�v�

ρgαgv
2
g + αgΔp

ρ�α�v
2
� + α�Δp

⎤
⎥⎥⎦ , s(u) =

⎡
⎢⎢⎣

0
0

ρgαggx − τF

ρ�α�gx + τF

⎤
⎥⎥⎦ ,

and

(72) B(u) =

⎡
⎢⎢⎣

0
0
αg

α�

⎤
⎥⎥⎦ , w(u) = p − Δp.
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3. Numerical schemes. The model formulation (66)–(69) now allows us to use
the framework described by Parés [33]. Parés considered the general nonconservative
problem

(73)
∂u

∂t
+ A(u)

∂u

∂x
= 0,

where the vector u(x, t) belongs to an open subset S of R
N . Consider now a discon-

tinuity between two states uL and uR, connected by a family of paths Ψ(s; uL, uR).
Certain consistency requirements are needed for such families of paths, here we restate
Parés’ definition.

Definition 2. A family of paths in S ⊂ R
N is a locally Lipschitz map

(74) Ψ : [0, 1] × S × S → S,

such that
• Ψ(0; uL, uR) = uL and Ψ(1; uL, uR) = uR for any uL, uR ∈ S;
• for every arbitrary bounded set O ⊂ S, there exists a constant k such that

(75)
∣∣∣∣∂Ψ
∂s

(s; uL, uR)
∣∣∣∣ ≤ k|uR − uL|

for any uL, uR ∈ O and almost every s ∈ [0, 1];
• for every bounded set O ∈ S, there exists a constant K such that

(76)
∣∣∣∣∂Ψ
∂s

(s; u1
L, u1

R) − ∂Ψ
∂s

(s; u2
L, u2

R)
∣∣∣∣ ≤ K(|u1

L − u2
L| + |u1

R − u2
R|)

for any u1
L, u1

R, u2
L, u2

R ∈ O and almost every s ∈ [0, 1].
One may then state a generalized Rankine–Hugoniot condition for the propagation

velocity ξ of such discontinuities in nonconservative systems:

(77)
∫ 1

0

(ξI − A(Ψ(s; uL, uR)))
∂Ψ
∂s

(s; uL, uR) ds = 0.

Now ξ is independent of the choice of the family of paths only when A(u) is the
Jacobian of some flux function f(u); in this case, (77) reduces to the usual Rankine–
Hugoniot condition.

Hence a weak solution to a nonconservative system cannot be defined without the
specification of some family of paths Ψ. However, given such a choice of Ψ, Parés [33]
discusses the construction of numerical schemes that in a certain sense respect the
generalized Rankine–Hugoniot condition (77); such schemes are referred to as formally
consistent with Ψ [7].

3.1. Formally path-consistent schemes. Following Parés [33, 7], we may
state the following definition.

Definition 3. Given a family of paths Ψ, a numerical scheme for the equation
(73) is said to be formally consistent with Ψ if it can be written in the form

(78) un+1
j = un

j − Δt

Δx
(D+

j−1/2 + D−
j+1/2),

where

(79) D±
j+1/2 = D±(un

j−q, . . . , u
n
j+p),
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D− and D+ being two continuous functions from Sp+q+1 to S satisfying

(80) D±(u, . . . , u) = 0 ∀u ∈ S,

and

(81) D−(u−q, . . . , up) + D+(u−q, . . . , up) =
∫ 1

0

A(Ψ(s; u0, u1))
∂Ψ
∂s

(s; u0, u1) ds

for every choice of ui ∈ S, i = −q, . . . , p.
Furthermore, Parés [33] proves the following proposition.
Proposition 5. Let us suppose that (73) is a system of conservation laws; i.e.,

A is the Jacobian of some flux function f . Then, every numerical scheme which
is formally consistent with some family of paths Ψ is consistent and conservative in
the usual sense. Conversely, a consistent conservative numerical scheme is formally
consistent with every family of paths Ψ.

Hence the class of conservative numerical schemes for conservation laws is a special
case of the more general class of formally path-consistent numerical schemes.

To obtain a numerical scheme, one now needs to complete the followings tasks:
1. Select a particular family of paths Ψ.
2. Evaluate the path-dependent integrals (81).

In general, the choice of the family of paths should be based on physical considerations
applied to the given problem. Furthermore, useful results can be formally proved [28]
when the family of paths satisfies certain properties related to the integral curves
linking the states uL and uR.

However, in the context of our two-fluid model it is not clear how to select a
physical path, as the eigenstructure of the model cannot be expressed in terms of
simple analytical expressions [13, 16, 44]. And, even equipped with a choice of family
of paths Ψ, it remains a nontrivial task to compute the path-dependent integrals (81).

In the following section, we will discuss how the evaluation of the nonconservative
integrals and the construction of formally path-consistent numerical schemes can be
treated as independent problems.

3.1.1. A simplified framework. Now let

(82) A(u) ≡ ∂f(u)
∂u

+ B(u)
∂w

∂u
,

so that (66) can be written as

(83)
∂u

∂t
+ A(u)

∂u

∂x
= s(u).

Here the function w(u) ∈ T is a smooth mapping from S to a subset T of R
M .

Let us assume that a family of paths Ψ has been chosen. This naturally defines
a corresponding set of points in T through the mapping

(84) Φ : [0, 1]× S × S → T ,

given by

(85) Φ(s; uj , uj+1) = w(Ψ(s; uj , uj+1)).
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In the following, we will use the shorthand

(86) wj = w(uj).

Now define a cell-interface value Bj+1/2 as an average satisfying

(87)
Bj+1/2 (wj+1 − wj) =

∫ 1

0

B(Ψ(s; uj , uj+1))
∂Φ
∂s

(s; uj , uj+1) ds

=
∫ 1

0

(
B

∂w

∂u

)
(Ψ(s; uj , uj+1))

∂Ψ
∂s

(s; uj , uj+1) ds.

Furthermore, let fn
j+1/2 and wn

j+1/2 be consistent approximations to f(xj+1/2, t
n)

and w(xj+1/2, t
n) in the following sense:

C1: wj+1/2(uj−q , . . . , uj+p) and f j+1/2(uj−q , . . . , uj+p) are Lipschitz continuous
functions;

C2: wj+1/2(u, . . . , u) = w(u), f j+1/2(u, . . . , u) = f(u).
We may now state the following proposition.

Proposition 6. Given a system of balance laws in the form

(88)
∂u

∂t
+

∂f(u)
∂x

+ B(u)
∂w(u)

∂x
= 0,

where the matrix B is a sufficiently smooth function of the vector u, a scheme in the
form

(89)
un+1

j − un
j

Δt
+

f j+1/2 − f j−1/2

Δx
+

d+
j−1/2 + d−

j+1/2

Δx
= 0,

where

d+
j+1/2 = Bj+1/2

(
wj+1 − wj+1/2

)
,(90)

d−
j+1/2 = Bj+1/2

(
wj+1/2 − wj

)
,(91)

and f j+1/2 and wj+1/2 are consistent in the sense of C1 and C2, is formally consis-
tent with a family of paths Ψ, if the matrix Bj+1/2 satisfies (87). Conversely, given
an averaged matrix Bj+1/2, the scheme is formally consistent with any family of paths
Ψ that satisfies (87).

Proof. Define

D+
j+1/2 = f (uj+1) − f j+1/2 + d+

j+1/2,(92)

D−
j+1/2 = f j+1/2 − f (uj) + d−

j+1/2,(93)

to put (89) in the form (78). Note that by (90)–(91) and C2, (92) and (93) satisfy (80).
Furthermore, by using (90)–(93) in the requirement (81), we get

(94) f(uj+1) − f(uj) + Bj+1/2 (wj+1 − wj)

=
∫ 1

0

A(Ψ(s; uj , uj+1))
∂Ψ
∂s

(s; uj , uj+1) ds,
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or by (82)

(95) f(uj+1) − f(uj) + Bj+1/2 (wj+1 − wj)

=
∫ 1

0

(
∂f

∂u
+ B

∂w

∂u

)
(Ψ(s; uj , uj+1))

∂Ψ
∂s

(s; uj , uj+1) ds,

which simplifies to

(96) Bj+1/2 (wj+1 − wj) =
∫ 1

0

(
B

∂w

∂u

)
(Ψ(s; uj , uj+1))

∂Ψ
∂s

(s; uj , uj+1) ds

by evaluation of the conservative part of the integral and cancellation of terms. Hence
we have recovered our assumption (87), and the requirements of Definition 3 are
satisfied.

The usefulness of Proposition 6 lies in the fact that once a matrix Bj+1/2 that
satisfies (87) has been found, any consistent discretization of f j+1/2 and wj+1/2 au-
tomatically yields a formally path-consistent scheme. This allows us to quite straight-
forwardly state various formally path-consistent schemes for systems in the form (66)
in general, and the two-fluid model (67)–(69) in particular. This will be detailed in
the following sections.

Remark 1 (upwinding). Note that (90) and (91) properly reduce to an upwind
formulation when a one-sided evaluation is used for wj+1/2:

• If wj+1/2 = wj ∀j, then

(97) d+
j−1/2 + d−

j+1/2 = Bj−1/2 (wj − wj−1) .

• If wj+1/2 = wj+1 ∀j, then

(98) d+
j−1/2 + d−

j+1/2 = Bj+1/2 (wj+1 − wj) .

3.2. Some classical schemes. In this section, we describe nonconservative ver-
sions of some classical schemes for conservative systems. In particular, our noncon-
servative schemes will satisfy the following natural properties:

p1: The schemes should reduce to their standard conservative formulation if the
coefficient matrix B is constant. More precisely, when applied to the noncon-
servative system

(99)
∂u

∂t
+

∂f(u)
∂x

+ B
∂w(u)

∂x
= 0,

the schemes should precisely coincide with their standard conservative formu-
lation for the system

(100)
∂u

∂t
+

∂g(u)
∂x

= 0,

where

(101) g ≡ f + Bw

whenever B is constant.
p2: The schemes should be formally path-consistent in the sense of Proposition 6.
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De Vuyst [15] described and tested several nonconservative schemes in the con-
text of two-phase flows. In the following, we will use his proposed schemes as a basis
for constructing our formally path-consistent MUSTA scheme. We note that non-
conservative versions of both the Lax–Friedrichs and the Lax–Wendroff schemes, as
well as the FORCE, GFORCE, and MUSTA schemes, have already been proposed by
Castro et al. [8]. Here a slightly different strategy has been used to achieve formal
path-consistency, as well as higher-order accuracy.

3.2.1. The Lax–Friedrichs scheme. For the nonconservative system (88), De
Vuyst proposed the following Lax–Friedrichs-type discretization:

(102) fLF
j+1/2 =

1
2

(f(uj) + f(uj+1)) +
1
2

Δx

Δt
(uj − uj+1) ,

(103) d±
j+1/2 =

1
2
Bj+1/2 (wj+1 − wj)

in the context of the general scheme (89). This fits into our framework (90)–(91) if
we choose

(104) wLF
j+1/2 =

1
2

(wj + wj+1) ,

so that the property p2 holds. It may be easily checked that the property p1 also
holds.

3.2.2. The Rusanov scheme. By a straightforward modification of the Lax–
Friedrichs scheme, we obtain our formally path-consistent version of the Rusanov
scheme:

(105) fRUS
j+1/2 =

1
2

(f (uj) + f(uj+1)) +
SR

2
(uj − uj+1) ,

(106) wRUS
j+1/2 =

1
2

(wj + wj+1) ,

where

(107) SR = max
1≤p≤d

(|λp
j |, |λ

p
j+1|),

and d is the number of characteristic fields of the system.

3.2.3. The Richtmyer scheme. We consider the two-step Richtmyer version
of the Lax–Wendroff scheme. First evolve the cell-interface solution one half time step
using a simple Lax–Friedrichs scheme:
(108)

u
n+1/2
j+1/2 =

1
2

(
un

j + un
j+1

)
− Δt

2Δx

(
f (un

j+1) − f (un
j )

)
− Δt

2Δx
Bn

j+1/2

(
wn

j+1 − wn
j

)
.

Then, in the context of (89)–(91), the numerical cell-interface values are given as

(109) fLW
j+1/2 = f(un+1/2

j+1/2 ),

(110) wLW
j+1/2 = w(un+1/2

j+1/2 ).

A simple check reveals that this Richtmyer scheme also satisfies the properties p1 and
p2.
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3.2.4. The FORCE scheme. The FORCE (First-ORder-Centered) scheme has
been extensively analyzed by Toro and coworkers [10, 40]. It is optimal in the sense
that it has the least numerical dissipation of the first-order central schemes that are
stable for all Courant–Friedrichs–Lewy (CFL) numbers less than unity [10].

The FORCE numerical flux is expressed as the arithmetic mean of the Richtmyer
Lax–Wendroff flux and the Lax–Friedrichs flux, i.e.,

(111) fFORCE
j+1/2 =

1
2

(
fLF

j+1/2 + fLW
j+1/2

)
.

The most natural choice is to now use the same averaging for the cell-interface value
wj+1/2:

(112) wFORCE
j+1/2 =

1
2

(
wLF

j+1/2 + wLW
j+1/2

)
.

Again we may easily convince ourselves that this scheme satisfies the properties p1
and p2.

3.2.5. The MUSTA scheme. In the multistage (MUSTA) approach [39, 43],
the numerical flux f j+1/2 at the cell interface is found by employing a two-step proce-
dure: First, a numerical approximation to the solution of the cell-interface Riemann
problem produces two modified states at either side of the interface. These states
are then fed into a numerical flux function to obtain the sought flux, f j+1/2. There
are several conceivable choices for the numerical flux function. Titarev and Toro [39]
employed the FORCE flux, whereas Toro and Titarev [43] promoted a development
termed the GFORCE flux. We prefer the “classical” FORCE flux.

The MUSTA procedure employed here is similar to the previous ones for the Euler
equations [39, 43] and for the drift-flux model [26], but it is extended to account for
the nonconservative terms in the governing equations.

For calculating the numerical flux f j+1/2 and the nonconservative variables vector
wj+1/2, the Riemann problem at the cell interface xj+1/2 is transformed to a local
grid:

(113)
∂u

∂t
+

∂f (u)
∂ξ

+ B(u)
∂w(u)

∂ξ
= 0, u(ξ, 0) =

{
uj = uL if ξ < 0,

uj+1 = uR if ξ ≥ 0.

Herein, the position ξ = 0 corresponds to xj+1/2. This local Riemann problem is
then solved approximately by employing the FORCE scheme, where the local grid is
indexed by n, and, following Titarev and Toro [39], we set Δξ ≡ Δx:

(114)
um+1

n − um
n

Δtloc
+

fFORCE
n+1/2 − fFORCE

n−1/2

Δx

+
Bn−1/2(wn − wFORCE

n−1/2 ) + Bn+1/2(wFORCE
n+1/2 − wn)

Δx
= 0.

Herein, fFORCE
n+1/2 and wFORCE

n+1/2 are calculated as described in the preceding subsections,
while wn = w(un). Terms without a time index are evaluated at stage m. Regarding
the calculation of the matrix Bn+1/2 = Bn+1/2(un, un+1), more details are given in
section 3.3. The local pseudotime step Δtloc is calculated using the CFL criterion on
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. . .. . .

xj+1/2uj uj+1

0 1 N N + 1 2N 2N + 1

Fig. 1. Initial values and cell numbering for the local MUSTA grid.

the local grid:

(115) Δtloc =
rlocΔx

max
1≤n≤2N

(
max

1≤p≤d
|λp

n|
) ,

where d is the dimension of the system (66), and the local CFL number, rloc, is
a parameter in the method. In this work we follow Titarev and Toro [39] and set
rloc = 0.9 for all the computations. The maximum eigenvalues λ are approximated
using the estimates of Evje and Fl̊atten [16].

The initial conditions and the numbering of the local grid are illustrated in Fig-
ure 1. The M -stage MUSTA algorithm for the flux f and the vector w can be
summarized as follows:

1. For each local cell n = 1, . . . , 2N , compute the flux fFORCE,m
n+1/2 from (111),

the vector wFORCE,m
n+1/2 from (112), and the coefficient matrix Bm

n+1/2 using
data from stage m.

2. If m = M , then return fFORCE,M
N+1/2 and wFORCE,M

N+1/2, else continue.
3. Update the local solution using (114) for n = 1, . . . , 2N .
4. Apply extrapolation boundary conditions; um

0 = um
1 and um

2N+1 = um
2N .

Augment m and repeat from 1.
Thus, when the MUSTA scheme is used to solve (89)–(91), f j+1/2 and wj+1/2 are
found using the above algorithm, whereas Bj+1/2 and the other quantities are cal-
culated using data from the global grid, as usual. This ensures that property p2 is
satisfied. Furthermore, we note that the above procedure reduces to the standard con-
servative MUSTA algorithm [39, 43] when B is constant in time and space (property
p1).

It should be noted that to avoid spurious oscillations, it is necessary to choose
M ≤ 2N in the MUSTA algorithm [26]. In the following, we will denote the M -stage
MUSTA scheme with 2N local cells by MUSTAM−2N .

It is possible to save some computational time by refining the above MUSTA
algorithm. In fact, since we are solving a Riemann problem, and since we are only
interested in the solution at the mid cell interface, it is not necessary to include all the
local cells n = 1, . . . , 2N in all the local time steps, as noted in [39, 43]. For instance,
in the first local time step, only the two mid cells enter into the calculation. In the
next step, one cell has to be added at each side, as the waves propagate at most one
cell per time step. When the waves have reached the boundary of the local grid, one
cell can be excluded at each side, etc. This “diamond optimization” was suggested
by Toro and Titarev [43] and has been used for all the computations presented here.



2604 S. T. MUNKEJORD, S. EVJE, AND T. FLÅTTEN

3.3. Evaluation of the cell-interface matrix Bj+1/2. To calculate the cell-
interface matrix Bj+1/2 from (87), we need to specify a family of integration paths, Ψ.
Parés [33] discusses conditions when the path should be a parametrization of the inte-
gral curves linking the left-hand and right-hand states through the Riemann similarity
solution. Since the Riemann problem for the current models has no analytical solution
in general, we will instead define the family of paths indirectly by choosing the end
result Bj+1/2. In particular, we propose to calculate Bj+1/2 from some appropriate
average state of the cells j and j + 1. That is,

(116) Bj+1/2 = B(uj+1/2).

In the context of two-phase flow, similar approaches have previously been used by
Toumi and Kumbaro [45] as well as Evje and Fl̊atten [16].

In this paper, we will let uj+1/2 be given as the arithmetic average of some
parameter vector q(u):

(117) uj+1/2 = u(qj+1/2),

where the ith component qi,j+1/2 of qj+1/2 is found by arithmetic averaging:

(118) qi,j+1/2 =
1
2
(qi,j + qi,j+1).

One then sees that the definition (87) becomes a Roe-like condition on Bj+1/2 if the
value of the path integral is known. As that is not the case here, we will simply let q
represent a set of primitive variables to be defined in the following sections.

Remark 2. Ideally, we would like to have a well-founded explicit choice of family
of paths Ψ that satisfies (87). This is not trivial with our current approach. In
particular, we are not aware of any proof that some path Ψ corresponding to any
choice of Bj+1/2 always exists. However, Proposition 6 guarantees that our schemes
would be formally consistent with respect to any such implicitly defined path.

Nevertheless, as the schemes we study may be trivially adapted to more formally
derived cell-interface matrices Bj+1/2, the simple averaging (118) seems adequate for
heuristic purposes.

In particular, numerical tests indicate that schemes which are mutually formally
path-consistent (more precisely, based on the same averaging of Bj+1/2) converge to
solutions that are identical to plotting accuracy, as is discussed in more detail in
sections 4.4 and 4.6.

3.3.1. Six-equation system. For the six-equation system, the canonical form
(68) allows several choices for q. Here we take

(119) q =
[
αg p vg v� ρg ρ�

]T

for simplicity. With the average qi,j+1/2 from (118), all the remaining quantities in
Bj+1/2 can be calculated using the equation of state and constitutive relations.

3.3.2. Four-equation system. For the four-equation system, we use a reduced
version of (119):

(120) q =
[
αg p vg v�

]T
.
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This yields

(121) Bj+1/2 =

⎡
⎢⎢⎣

0
0

αg,j+1/2

α�,j+1/2

⎤
⎥⎥⎦ .

3.4. Second-order extension. To obtain second-order spatial accuracy, we pro-
pose to use a semidiscrete version of the monotone upwind-centered scheme for con-
servation laws (MUSCL) [49, 30]. Herein, a piecewise linear function is constructed
by using the data {uj(t)}. At each side of the interface xj+1/2 we have values from
the linear approximations in the neighboring cells. These are denoted by

(122) uR
j = uj +

Δx

2
lj and uL

j+1 = uj+1 −
Δx

2
lj+1,

where lj are the slopes calculated using a suitable slope-limiter function.
There are several possible choices of variables to use in the slope-limiting proce-

dure. The most accurate choice would be to use the characteristic variables. However,
for the general two-fluid model, the characteristic variables are only available through
a numerical diagonalization of the coefficient matrix of the equation system. Since one
of the main advantages of the MUSTA scheme is its simplicity, we have chosen to em-
ploy the primitive variables [αg, p, vg, v�, Tg, T�] instead. After this procedure, the flux
f j+1/2 and the vector wj+1/2 are computed from (uR

j , uL
j+1), precisely as described in

section 3.2. That is, the linear reconstruction (122) only affects the Riemann problem
(113) to be solved on the local grid. It should be noted that the cell-interface matrix is
still a function of the nonreconstructed variables. That is, (uR

j , uL
j+1) are not involved

in the evaluation of Bj+1/2. Consequently, the properties p1 and p2 still hold.
For use with the MUSCL scheme, the system of balance equations (66) is semi-

discretized:

(123)
duj

dt
+

f j+1/2 − f j−1/2

Δx
+

d+
j−1/2 + d−

j+1/2

Δx
= sj ,

where d±
j+1/2 are defined by (90)–(91). To obtain a second-order solution in time,

we employ the two-stage second-order strong-stability-preserving (SSP) Runge–Kutta
(RK) method (see for instance [22]). With (123) of the form

(124)
duj

dt
= L(uj),

the two-stage second-order SSP-RK scheme can be written as

(125)
u

(1)
j = un + ΔtL(un),

un+1 =
1
2
un +

1
2
u(1) +

1
2
ΔtL(u(1)).

Herein, un
j is the vector of unknowns from time step n, un+1

j is the sought values

at the next time step, while u
(1)
j represents intermediate values. In conjunction with

the first-order MUSTA scheme, we perform the time stepping using the forward Euler
method.
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4. Numerical simulations. In this section, the MUSTA scheme for the two-
fluid model is analyzed with respect to stability, accuracy, and robustness using
benchmark cases from the literature. Furthermore, it is compared to independent
schemes, namely a Roe scheme for the four-equation model (Roe4) and the Rusanov
scheme for the six-equation model.

The Roe4 scheme is described in more detail in [16, 27]. It directly provides
an upwind-type resolution of all waves. This makes it a suitable reference for the
accuracy and efficiency of the MUSTA scheme, which attempts to obtain this upwind
information numerically.

Furthermore, the Roe4 scheme is formally path-consistent with the MUSTA scheme,
in the sense that the nonconservative integrals are identically evaluated. The path-
consistency of the Roe4 scheme in this sense is discussed in [16, section 3.2].

Comparisons with the Roe scheme are made for the four-equation model in sec-
tion 4.4.1. A Roe scheme is not yet available for the full two-fluid model in the
canonical form of section 2.3.3. Instead, the Rusanov scheme is used in section 4.6 for
comparing the converged solutions of the six-equation model. As the Rusanov scheme
is highly diffusive for the slow waves, it is otherwise not suited as a benchmark for
the performance of the MUSTA scheme.

4.1. Thermodynamic submodels. The analysis presented so far is indepen-
dent of the equation of state, but to proceed with computations, a choice has to be
made. For the calculations performed using the four-equation model described in
section 2.1, the following equation of state is employed:

(126) p = c2
k(ρk − ρ◦k).

Herein, the speed of sound, ck, and “reference” density, ρ◦k, are constants for each
phase k. In the following calculations, we have adapted the parameters ck and ρ◦k in
each case, to produce results comparable to those of the six-equation model. Given
the composite variables [(αρ)g, (αρ)�, (αρv)g, (αρv)�], one can calculate the primitive
variables [αg, p, vg, v�] after employing a quadratic equation for the pressure. This
equation is found by writing (126) for each phase while noting the equality of pressure
in the two phases and using the relation αg + α� = 1.

The equation of state that has been used for the six-equation model (see sec-
tion 2.2) is

(127) p = (κk − 1)ρkek − κkp∞k ,

where the ratio of specific heats, κk, and the “reference” pressure, p∞k , are constants for
each phase. This stiffened-gas equation of state is common in the literature [31, 6, 9].
For all the presented six-equation calculations, we have used the parameters given
in Table 1 to facilitate comparison with results from the literature [31]. With the
composite variables [(αρ)g, (αρ)�, (αρv)g, (αρv)�, Eg, E�] one can calculate the primi-
tive variables [αg, p, vg, v�, Tg, T�] similarly to what is done in the four-equation case.
Herein, the temperature is found as

(128) Tk =
ek − p∞k /ρk

Cv,k
.

Further details are given by Paillère, Corre, and Garćıa Gascales [31].
We are now equipped to perform numerical calculations, which is the theme of

the following sections. Results labelled “MUSCL-MUSTA” have been calculated using



MUSTA SCHEME FOR A NONCONSERVATIVE TWO-FLUID MODEL 2607

Table 1

EOS parameters employed for the six-equation system.

κk p∞k Cp,k

(–) (Pa) (J/(kg K))
gas (g) 1.4 0.0 1008.7
liquid (�) 2.8 8.5 × 108 4186.0

Table 2

Initial state for the moving-discontinuity problem.

Quantity Symbol (unit) Left Right
Gas vol. frac. αg (–) 1 − ε ε
Pressure p (MPa) 0.1 0.1
Gas velocity vg (m/s) 100 100
Liq. velocity v� (m/s) 100 100
Temperatures Tg,� (K) 315.9 315.9

the second-order scheme, whereas the first-order scheme has been used for the results
labelled “MUSTA.” The numbers 4 or 6 will be appended to the scheme names to
indicate whether they are for the four-equation or six-equation system. For the cal-
culations, M = 4 stages and 2N = 4 local cells have been chosen as a default in the
MUSTA procedure, since this seems to be a reasonable compromise between accuracy
and speed. Other choices are sometimes preferable, and this will be indicated.

4.2. Moving discontinuity. It is a basic test for numerical schemes that when
no source terms are present, a flow with a uniform velocity and pressure should remain
so, that is, variations should not be introduced in the velocities or in the pressure.
This has sometimes been referred to as the principle of Abgrall [1].

The agreement with Abgrall’s principle was checked by performing a calculation
in a 12 m long horizontal tube, where the initial state consists of uniform velocities,
temperatures and pressure, but where there is a jump in the volume fraction; see
Table 2. At the middle of the tube, the gas volume fraction jumps from 1 − ε to
ε, where ε = 1 × 10−12. This gives practically single-phase flow on each side of
the discontinuity. A similar case was considered in [9]. The six-equation model was
employed, and the EOS parameters are those given in Table 1.

The results at time t = 0.03 s displayed in Figure 2 have been calculated using
the MUSCL-MUSTA64−4 scheme (four local steps and four local cells) with the van
Leer [47] slope on a 200-cell grid. The CFL number was r = 0.5. Ideally, the volume
fraction should be advected, but not smeared. As shown in Figure 2(a), some smear-
ing takes place, but the volume fraction is relatively sharply resolved. Figure 2(b)
demonstrates that no significant disturbances are introduced in the pressure. Let us
define the maximum relative pressure disturbance for the calculation as

(129) Ep =
1
p0

max
∀n

{∣∣∣∣max
∀j

pn
j − min

∀j
pn

j

∣∣∣∣
}

,

where p0 is the initial pressure, j is the spatial index, and superscript n denotes the
time step. Here, Ep ≈ 4 × 10−11, which is in the range of the round-off error. For
calculations performed with double double precision, Ep was reduced by 18 orders
of magnitude. Hence it is possible that Ep = 0 in exact arithmetic. An interesting
direction for further research would be to check this analytically.

It should be said that numerical instabilities caused the Roe4 scheme to fail in
this case with such a low value for ε.
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Fig. 2. Moving discontinuity (six-equation system). MUSCL-MUSTA64−4 using the van Leer
slope, 200 cells, r = 0.5.

4.3. Moving Gauss curve. This case has been designed to test the convergence
order of the schemes for smooth solutions. It is identical to the moving-discontinuity
case, except for the initial value of the gas volume fraction, which is a scaled Gauss
curve:

(130) αg,0 = (1 − 2ε) exp
(
− (x − μ)2

2σ2

)
+ ε,

where σ = 0.42 m, μ = 6 m, and where ε = 1 × 10−12 is the same as for the moving-
discontinuity case.

Calculations have been performed with periodic boundary conditions until t =
0.03 s, so that the exact solution is the same curve, centered at x = 9 m; see Figure 3.
It can be observed that there is an asymmetry in the data about the line x = 9 m.
This is a property of the slope limiter.

The error in the calculated gas volume fractions at a given time step has been
quantified using the 1-norm:

(131) ‖E (αg)‖1 = Δx
∑
∀j

|αg,j − αg,ref,j|,

where the subscript “ref” indicates the reference solution, which is the exact solution
in this case.

Table 3 shows the convergence order and 1-norm of the error for MUSTA64−4 and
MUSCL-MUSTA64−4. The former scheme was run with a CFL number of r = 0.9
and the latter with r = 0.5. As can be seen, the attained convergence order is as
expected: MUSTA6 is first order, while MUSCL-MUSTA6 is second order.

4.4. Water faucet. The water-faucet test case introduced by Ransom [34] con-
stitutes a standard test for one-dimensional two-fluid models and methods for their
numerical resolution. It has been studied for instance in [11, 46, 16, 31, 27].
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Fig. 3. Moving Gauss curve (six-equation system). Grid refinement for MUSCL-MUSTA64−4

using the van Leer slope. r = 0.5.

Table 3

Moving Gauss curve. Convergence order, n, and 1-norm of the error in the gas volume fraction
by grid refinement.

MUSTA64−4 MUSCL-MUSTA64−4

Δx(m) ‖E (αg)‖1 n ‖E (αg)‖1 n

0.015 1.195 × 10−1 − 2.222 × 10−3 −
0.0075 6.328 × 10−2 0.92 5.557 × 10−4 2.00
0.00375 3.263 × 10−2 0.96 1.375 × 10−4 2.01
0.001875 1.658 × 10−2 0.98 3.398 × 10−5 2.02
0.0009375 8.356 × 10−3 0.99 8.364 × 10−6 2.02

Initially, the state in the water faucet is uniform. The values are given in Ta-
ble 4. The inlet boundary conditions are equal to the initial values for the gas volume
fraction, and the gas and liquid velocities. A pressure equal to the initial pressure
is specified at the outlet. At time t = 0, gravity (g = 9.81 m/s2) is turned on, and
the liquid column starts thinning as a discontinuity moves towards the exit. In the
following, the results are given at t = 0.6 s. An approximate analytical solution is
available, and it can be found for instance in [16].

4.4.1. Four-equation system. We first consider the MUSTA4 scheme for the
four-equation system. The employed EOS parameters are shown in Table 5. Note
that they are different from the values previously used in [16, 27]. The modifications
have been performed to obtain speeds of sound similar to those produced by the
six-equation system with common parameter values for the stiffened-gas EOS [31].

Figure 4(a) shows the gas volume fraction calculated using the MUSTA44−4

scheme and a constant CFL number of r = 0.9. As the grid is refined, the solution
converges steadily, but slowly.

An important difference between MUSTA4 and Roe4 is illustrated in Figure 4(b),
which shows the effect of increasing the number of local time steps (M) and local
cells (2N) in the MUSTA4M−2N scheme. A 100-cell grid and r = 0.9 was used.
MUSTA41−2 is similar to FORCE and is, as expected, quite diffusive. However,
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Table 4

Initial state in the water-faucet test problem.

Quantity Symbol (unit) Value
Gas vol. frac. αg (–) 0.2
Pressure p (MPa) 0.1
Gas velocity vg (m/s) 0.0
Liquid velocity v� (m/s) 10.0

Table 5

Parameters employed in the water-faucet test problem (four-equation system).

ck (m/s) ρ◦k (kg/m3)

gas (g) 357.014 0.313824
liquid (�) 1542.80 999.978

MUSTA4 needed as much as 200 local time steps and 200 local cells to produce a
volume-fraction profile comparable to that obtained using the Roe4 scheme.

The faucet case has also been calculated with the MUSCL-MUSTA44−4 scheme.
Different slope-limiter functions were tested, namely the superbee and the minmod
slope (see [25, section 9.2]), the van Leer [47] slope (see also [48]), and the monotonized
central-difference (MC) slope [48]. The latter three slopes gave acceptable results,
whereas the superbee slope gave oscillations. The MC slope gave the best results in
this case, which are displayed in Figure 5. The CFL number was r = 0.5.

The volume-fraction profiles of MUSCL-MUSTA44−4 in Figure 5(a) can be com-
pared to those of the first-order MUSTA44−4 scheme in Figure 4(a), and it can be
seen that the MUSCL approach constitutes an improvement. However, the results are
not quite as good as those obtained using the Roe4 scheme [27] with characteristic
flux-limiting. The remaining physical variables are displayed in Figures 5(b)–5(d).
Data obtained using the Roe4 scheme with the MC flux-limiter on a 10000-cell grid
are given as reference solutions for the gas velocity and for the pressure, where an
analytical solution is not available. The velocities are accurately represented even
on relatively coarse grids, while finer grids are needed to resolve the pressure (see
Figure 5(b)).

Figure 6 illustrates the efficiency of MUSTA4M−2N and MUSCL-MUSTA4M−2N

for different combinations of M and 2N . The ordinate is the 1-norm (131) of the gas
volume fraction, where the reference solution is that obtained using the MC-limited
Roe4 scheme on a 10000-cell grid. The abscissa is the CPU time nondimensionalized
with the CPU-time of the Roe4 (MC) scheme on a 100-cell grid. The calculations have
been performed with the same settings as those explained previously for the faucet
case. In Figure 6, the rings (◦) denote the results from the second-order versions
of the schemes. It can be seen that for the faucet case, MUSCL-MUSTA42−2 is
the most efficient of the MUSTA schemes. The difference between the first-order
MUSTA schemes are small, but MUSTA44−4 seems to be optimal. Further, it is
evident that the MUSTA schemes are less efficient for the faucet case than their
Roe counterparts. For a given accuracy, Roe4 needs roughly 5 % of the CPU time
of MUSTA44−4, whereas (for a higher accuracy), Roe4 (MC) needs about 6–8 % of
the CPU time of MUSCL-MUSTA42−2. It should be noted that the CPU time also
depends on the specific implementation, so it must be understood that Figure 6 cannot
be interpreted absolutely. We do, however, believe that our implementation of the
schemes is sufficiently close to optimal that Figure 6 constitutes a fair comparison.
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Fig. 4. Volume fraction for the water faucet (four-equation system). Influence of grid, number
of stages, and number of local cells in the MUSTA4 scheme. r = 0.9.

4.4.2. Six-equation system. We now turn to the MUSTA6 scheme for the six-
equation system. The parameters employed in the EOS (127) are given in Table 1,
and the initial conditions are still the same as those of Table 4. However, additional
conditions are needed due to the energy equation. Here we set the initial gas and
liquid temperatures to Tg,0 = T�,0 = 315.9 K. This value was chosen to obtain a
liquid density of ρ�,0 = 1000.0 kg/m3.

The boundary conditions were also the same as those in the four-equation case,
but, in addition, the entropy s� = s�(p0, ρ�,0) was used at the left-hand side boundary,
and sg = sg(p0, ρg,0) was set at the right-hand side boundary. Herein,

(132) sk = Cv,k ln
(

pk + p∞k
ρκ

k

)
.

Figure 7 displays the physical variables obtained using the MUSCL-MUSTA64−4

scheme with the MC slope while refining the grid and keeping the CFL number at r =
0.5. The volume fraction, pressure, and velocities in Figures 7(a)–7(d) are practically
equal to those obtained with the four-equation model in Figures 5(a)–5(d), whereas,
of course, the temperatures in Figures 7(e)–7(f) have no counterparts in the four-
equation model. One can observe that the variation in liquid temperature is minuscule.
The quantity plotted in Figure 7(f) is the final temperature subtracted by the initial
temperature T�,0 = 315.9 K.

4.5. Toumi’s shock tube. The present problem was introduced by Toumi [44],
and it has been studied, e.g., in [37, 31, 17]. It consists of a tube divided by a
membrane in the middle. At t = 0, the membrane ruptures, and the flow starts
evolving. The initial conditions are displayed in Table 6, and the employed EOS
parameters are given in Table 1. Following [31, 17] we took δ = 2 in (62). No source
terms were considered.

The problem was analyzed with the full six-equation model. Figure 8 shows
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Fig. 5. Water faucet (four-equation system). Convergence of the MUSCL-MUSTA44−4 scheme
using the MC slope. r = 0.5.

the convergence of the four-step four-cell MUSCL-MUSTA64−4 scheme using the van
Leer slope and a CFL number of r = 0.5. The results are for the time t = 0.06 s.
As can be seen, the curves in Figure 8 are nonoscillatory. The error and convergence
order based on the 1-norm of the volume fraction are reported in Table 7, where the
numerical solution on a 10000-cell grid is used as reference. The convergence rate is
less than second order due to the discontinuities present in the solution. The present
plots can be compared with those in [31], and they seem to converge towards highly
similar solutions. However, the shocks and rarefactions in particular are more sharply
resolved in the present case.

4.6. Effect of integration path. In this section, we numerically investigate
the sensitivity of the numerical solution to the choice of averaging method of the
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Table 6

Initial state in Toumi’s shock tube.

Quantity Symbol (unit) Left Right
Gas vol. frac. αg (–) 0.25 0.10
Pressure p (MPa) 20 10
Gas velocity vg (m/s) 0 0
Liquid velocity v� (m/s) 0 0
Temperatures Tg,� (K) 308.15 308.15

cell-interface matrix Bj+1/2 described in section 3.3, and thus implicitly the family
of integration paths Ψ as described by Proposition 6. The test case is still Toumi’s
shock tube described in section 4.5.

In the context of (116)–(118), we consider here three different ways of calculating
the cell-interface matrix Bj+1/2. In particular, with

(133) Bj+1/2 = B(u(qj+1/2)),

we consider the following choices:

qj+1/2 = qj ,(134)

qj+1/2 = qj+1,(135)

qj+1/2 =
1
2

(
qj + qj+1

)
.(136)

These will be denoted as the left, right, and arithmetic averages, respectively.
Remark 3. Note that (134) corresponds to the limit ε → 0 for the family of paths

given by

(137) Ψ(s; uj , uj+1) =

{
uj for s ≤ 1 − ε,

uj + (uj+1 − uj) s+ε−1
ε for s > 1 − ε,
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Fig. 7. Water faucet (six-equation system). Convergence of the MUSCL-MUSTA64−4 scheme
using the MC slope. r = 0.5.
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Table 7

Toumi’s shock tube. MUSCL-MUSTA64−4 scheme. Convergence order, n, and 1-norm of the
error in the gas volume fraction by grid refinement.

Δx(m) ‖E (αg)‖1 n

1.0 1.630 × 10−1 −
0.5 1.204 × 10−1 0.44
0.25 6.940 × 10−2 0.79
0.1667 4.773 × 10−2 0.92
0.125 3.473 × 10−2 1.1
0.1 2.788 × 10−2 0.98

whereas (135) corresponds to the limit ε → 0 for the family of paths given by

(138) Ψ(s; uj , uj+1) =

{
uj + (uj+1 − uj) s

ε for s ≤ ε,

uj+1 for s > ε.

Hence these may be interpreted as the extremal left-biased and right-biased paths,
respectively.

To evaluate the above-mentioned averages in the MUSTA scheme, we employ the
Rusanov scheme as reference. In the Rusanov scheme, the arithmetic average (136) is
employed. In particular, the scheme will be formally consistent with respect to any
family of paths implicitly defined by this average. Based on the results in [7], we expect
the MUSTA scheme based on the arithmetic average (136) to converge to solutions
highly similar to those of the Rusanov scheme, whereas the extreme left-biased and
right-biased averages (134) and (135) are expected to yield different solutions.

Figure 9 shows the physical variables calculated with the MUSCL-MUSTA64−4

scheme using the van Leer slope and a CFL number of r = 0.5 on a fine grid of 10000
cells. The data are plotted for t = 0.06 s. The reference is obtained using the Rusanov
scheme with a CFL number of r = 0.9 and a very fine grid of 320000 cells. Figure 9
indicates that, to plotting accuracy, MUSTA with arithmetic averaging and Rusanov
converge to the same solution for all the variables. On the other hand, using different
averages for qj+1/2 in MUSTA results in different levels of two of the plateaux; see
for instance Figure 9(c).

It should be noted that since we cannot prove that our schemes converge uniformly
in the sense of graphs, we do not know if the converged solutions are really identical or
only near-identical. In fact, the latter may very well be most likely; see [7] for details.
Any such difference between the converged solutions would only clearly appear on
much finer grids than the ones considered here.

On the other hand, our results clearly illustrate how different choices of families
of paths may lead to different converged numerical solutions.

4.7. Water-air separation. The water-air separation problem was introduced
by Coquel, El Amine, and Godlewski [11] and has been studied in, among others,
[16, 31, 18]. It consists of a vertical tube of length L = 7.5 m, closed at both ends.
Initially it has a uniform pressure of p = 1 × 105 Pa, a volume fraction of α� = 0.5,
and a temperature of T = 315.9 K. At time t = 0, the phases start separating under
the influence of gravity.

In a frictionless model, the gas velocity may attain very large values at the end
of the tube, where the gas is disappearing. Similar problems were observed by Evje
and Fl̊atten [18], who included an interfacial drag term in the governing equations:

(139) τF = Fαgα�ρg(vg − v�).
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Fig. 9. Toumi’s shock tube (six-equation system). Effect of averaging method for qj+1/2.
MUSCL-MUSTA64−4, 10000 cells, r = 0.5.
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Fig. 10. Water-air separation at t = 0.6 s (six-equation system). Convergence of the
MUSTA62−2 scheme. r = 0.3.

Herein, the friction parameter F is positive. A similar formulation was also used
by Paillère, Corre, and Garćıa Gascales [31]. To limit the interfacial friction to the
near-single-phase liquid regions, we employ a friction parameter similar to the one of
Evje and Fl̊atten [18]:

(140) F = k1e−k2αg ,

where k1 = 5 × 104 s−1 and k2 = 50.
The water-air separation problem poses a great challenge regarding the robust-

ness of the scheme. Even with the above interfacial friction model, the gas velocity
develops a peak which can spur instabilities. Further challenges include steep gra-
dients combined with the volume fractions approaching 0 and 1. Notably, the Roe
scheme is not robust enough to be used for this problem.

We employ the six-equation system and the MUSTA62−2 scheme with a CFL
number of r = 0.3. The choice M = 2, 2N = 2 has been made to obtain a high degree
of robustness in the MUSTA procedure. Figure 10 shows data plotted at t = 0.6 s, that
is, before a steady state is reached. The analytical reference solutions are approximate
(more so than the ones for the faucet case) and can be found in [16]. Even so, they
agree well with the converged solutions. For a given grid, the present method does
not resolve the discontinuities particularly sharply, but it is robust and not prone to
numerical oscillations. The convergence order of the scheme is reported in Table 8,
where the approximate analytical solution is used as reference.

Data for t = 1.5 s, that is, when a steady state has ideally been reached, are
displayed in Figure 11. For fine grids, the expected sharp volume-fraction profile is at-
tained (Figure 11(a)), and likewise for the hydrostatic pressure profile (Figure 11(b)).
The physical interpretation of the calculated velocity profiles is not obvious, since the
velocity is nonzero mainly where the corresponding phase is practically absent (Fig-
ures 11(c) and 11(d)). A similar comment holds for the gas temperature (Figure 11(e)).
As for the liquid, the calculated temperature variations shown in Figure 11(f) are in
the order of milli-Kelvin.
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Fig. 11. Water-air separation at t = 1.5 s (six-equation system). Convergence of the
MUSTA62−2 scheme. r = 0.3.
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Table 8

Water-air separation, t = 0.6 s. MUSTA62−2 scheme. Convergence order, n, and 1-norm of
the error in the gas volume fraction by grid refinement.

Δx(m) ‖E (αg)‖1 n

0.075 9.931 × 10−1 −
0.0375 7.685 × 10−1 0.37
0.01875 5.747 × 10−1 0.42
0.009375 4.184 × 10−1 0.46
0.0046875 3.008 × 10−1 0.48

Figure 11(c) shows that the interfacial friction model has succeeded reasonably
well in limiting the gas velocity. One exception is at the interface, that is, where
the volume fraction varies strongly. There, the gas is still present, but the interfacial
friction is low due to the exponential term in (140).

5. Summary. Some steps towards a more formal numerical treatment of non-
conservative terms in a two-phase pipe flow model have been made. In particular,
we have presented a mathematical transformation eliminating nonconservative time
derivatives from a common six-equation model containing energy transfers. Further-
more, we have shown how formally path-consistent numerical schemes may be con-
structed for this model.

Our numerical experiments verify that numerical schemes which are not formally
consistent with respect to the same family of paths will converge to different weak
solutions. On the other hand, schemes that are mutually formally path-consistent (in
the weaker sense made precise in section 3.3) yield solutions that are close to identical;
any discrepancies between the converged solutions do not emerge even for relatively
fine grids. This is consistent with the results proved in [7].

Specifically, we have proposed a MUSTA multistage central-type scheme for our
nonconservative two-fluid model. The MUSTA scheme has been compared to a Roe
scheme for the four-equation model. In general, MUSTA did not achieve the same
accuracy and efficiency as Roe on moving-discontinuity problems such as the water-
faucet case. On the other hand, the MUSTA scheme was robust enough to handle
such cases as water-air separation, where the Roe scheme failed. On a wide range
of problems, the MUSTA scheme produced accurate and nonoscillatory results. This,
combined with its generality and relative ease of implementation, is its strength.

Acknowledgment. We are particularly indebted to the anonymous reviewers,
who contributed significant improvements to the clarity and scientific content of this
paper.
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