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Abstract

This article deals with partially-reflecting boundary conditions for the four-equation,
one-pressure, isentropic two-fluid model. Using pid controllers, this boundary treatment
allows waves to pass the boundaries, while keeping the boundary values close to their
set-point values, even when the equation system contains source terms.

We consider the water faucet test case. Using the partially-reflecting boundary
conditions, the method reaches the correct steady-state solution, and, moreover, in
the transient period, the pressure profiles closely resemble the ones produced using
non-reflecting boundary conditions.
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1 Introduction

Physical systems with inlets and outlets, have, unlike the numerical models used
to describe them, no abrupt boundaries. Therefore, the numerical boundary
conditions may be called artificial, but anyhow, they are required to arrive at a
numerical solution.

The specification of open boundaries for flow systems without source terms is
relatively straightforward (see e.g. Toro, 1999, Section 6.3.3). However, source
terms, such as gravity, often have to be considered. In such cases, the use of
the simple, open boundary conditions will most often lead to drifting boundary
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values. Hence, for example, one cannot maintain a constant pressure at the outlet
boundary.

Here we consider the four-equation, one-pressure, isentropic two-fluid model,
assuming both phases to be compressible. Little work has been published
regarding open boundary conditions for this system. Indeed, when numerical
methods are tested in the literature, the computations are usually halted before
the important waves reach the boundaries, to avoid reflected waves interacting
with the solution in the inner domain. While that is perfectly justifiable for
testing a numerical method, it is not difficult to conceive cases where it would be
of interest to conduct longer simulations of the system.

In the present work, we employ the boundary-specification method of Olsen
(2004, Chapter 3), who extended the single-phase method of Thompson (1987,
1990) to the two-fluid model, and introduced Proportional-Integral-Derivative
(pid) controllers to maintain the boundary quantities close to their desired values.
This boundary treatment can be called ‘partially-reflecting’, since a part of the
waves reaching the boundary is reflected. The theory of pid controllers can be
found in a control-engineering textbook (e.g. Haugen, 1994).

The focus of Olsen (2004) was on essentially stationary cases. The primary
aim of the present contribution is to demonstrate the applicability of the Olsen
method for a transient case. Furthermore, the pid-controller approach involves
three parameters. Hence it is our secondary aim to give an example of how these
parameters can be estimated.

Section 2 briefly describes the two-fluid model formulation, including con-
stitutive relations, while Section 5 reviews the characteristic-based boundary
treatment. Numerical tests are performed in Section 6, with the water-faucet case
as the main example. Conclusions are drawn in Section 7.

2 Model formulation

This section briefly presents the employed two-fluid model, and the constitutive
relations.

2.1 Four-equation system

The one-dimensional, inviscid, isentropic multiphase flow is customarily de-
scribed by the continuity equation

∂
∂t
(αkρk)+

∂
∂x
(αkρkuk) = 0, (1)

and the momentum equation

∂
∂t
(αkρkuk)+

∂
∂x
(
αkρku2

k
)
+αk

∂pk
∂x

+ (pk − pik)
∂αk
∂x

= αkρkgx, (2)
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Table 1: Constants in the equation of state.

ck (m/s) ρ◦k (kg/m3)
air (g)

√
105 0

water (`) 1000 999.9

when mass transfer, wall friction, interface friction, and other possible effects
are neglected. In practical applications, one or more of these effects can be
important. In the numerical study presented here, on the other hand, we wish to
focus on the mathematically essential parts of the two-fluid model, keeping the
number of parameters low.

The following nomenclature is employed: α is the volume fraction, ρ is the
density, u is the velocity, g is the acceleration of gravity, p is the phasic pressure
and pi is the interfacial pressure. Here we consider two phases, and the index
k can take the values g (gas) and ` (liquid). Hence, (1)–(2) represent a system of
four equations.

Due to the term pik∂αk/∂x , the equation system cannot be written in conser-
vation form in terms of the variables αkρk and αkρkuk.

In addition to the above equations, an equation of state is needed. Here we
take

pk = c2
k(ρk − ρ◦k), (3)

where the speed of sound, ck, and the ‘reference density’, ρ◦k, are constants for
each phase. In this work we consider air and water, with the properties given in
Table 1. These values correspond to the ones used by Evje and Flåtten (2003).
The equation of state (3) with constant coefficients is an implicit assumption of
isothermal flow. This can be shown using basic thermodynamic relations. As
can be seen from Toumi (1996), the entropy waves are advected with the fluid
velocities, that is, they are uncoupled from the remaining wave structure, which
can therefore be studied by considering an isentropic model.

Moreover, a relation is needed between the pressures in the phases, for example

pk = pl + σkl ∀k ≠ l, (4)

where σkl is a constant pertaining to the relation between the phases k and l. In
this work we shall take σkl = 0. Finally, of course, a relation for the interfacial
pressure pik must be specified.

The equation system described in this subsection will be called the four-
equation system.

2.2 Interfacial-pressure model

Several models for the interfacial pressure have been proposed in the literature.
However, their physical content is often debatable.
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In the cathare code, the following expression was employed for non-stratified
flows (Bestion, 1990):

pk − pik = ∆pik = γ
αgα`ρgρ`
αgρ` +α`ρg

(ug −u`)2, (5)

where γ is a factor not appearing explicitly in Bestion (1990). It is remarkable that
the above expression was employed without physical argumentation, but rather
‘simply to provide the hyperbolicity of the system’, which, indeed, it normally
does, at least when there is slip between the phases, that is, (ug − u`)2 ≠ 0.
On the other hand, the cathare expression has the redeeming feature that it
approaches zero in the case of stagnant fluids, which seems reasonable when
no surface tension effects are accounted for. Because of this, and because it is
commonly cited, the cathare model will be used for the interfacial pressure
difference, and we will take γ = 1.2, following Evje and Flåtten (2003).

3 Numerical algorithm

The numerical algorithm employed in the inner domain is described elsewhere,
and details may be found by following the references given here.

The governing equations were solved using the wave-propagation (flux-difference
splitting) form of Godunov’s method presented by LeVeque (2002, Chapter 15).
It is a ‘high-resolution’ method, that is, approaching second order for smooth
solutions. The solutions of the Riemann problems at the cell interfaces were
found by applying the approximate Riemann solver of Roe (1981) to the two-fluid
model (1)–(2). Roe-type methods have been developed for different types of
two-phase flow models (Sainsaulieu, 1995; Toumi, 1996; Toumi and Kumbaro,
1996; Karni et al., 2004). The method employed here was of a kind discussed by
Evje and Flåtten (2003). Details and discussion of the present numerical method
are provided by Munkejord (2005).

To be able to employ the Roe method, we write the system of transport
equations in the following quasi-linear form, which will be referred to in Section 5:

∂q
∂t
+ A(q)

∂q
∂x

= s(q), (6)

with the vector of composite variables

q =
[
αgρg α`ρ` αgρgug α`ρ`u`

]T
. (7)

The Roe-type method cited above will be called the Roe4 method, since it
applies to the four-equation two-fluid model (1)–(2).
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4 Steady-state solution

A steady-state solution of the governing equations may, if it exists, be found by
carrying out a simulation until the variation in the solution is small enough to be
called steady. Another, and computationally far cheaper method, is by making a
dedicated steady-state solver. In the present work, this was done by deleting the
transient term in (6) and solving the system

dv
dx

= B−1(v)ς(v), (8)

where v is the vector containing the chosen linearly independent primitive
variables:

v =
[
αg pg ug u`

]T
, (9)

and B is the coefficient matrix written in terms of v. ς(v) is the vector of source
terms. Here we only consider gravity:

ς =
[
0 0 gx gx

]T
. (10)

The system (8) can be solved numerically using a suitable ode solver if B is
invertible. It is invertible if it has non-zero eigenvalues.

Finding the steady-state solution using this method has advantages due to its
efficiency, for instance when one wants to test the effect of interface relations.
It is also instructive to test whether transient methods are able to attain the
steady-state solution.

5 Characteristic-based boundary treatment

The present boundary treatment is based on the work of Olsen (2004, Chapter 3),
who applied the method of Thompson (1987, 1990) to the four-equation system,
and introduced a pid controller to specify the conditions at the partially-reflecting
boundaries. Here we briefly review the key points of the Olsen approach.

While Olsen (2004) wrote the coefficient matrix A in terms of the primitive
variables v, here the composite variables q are employed instead, and this is
found to work equally well. This choice is based on practical reasons: The wish
to use the same vector of unknowns in the inner domain and at the boundaries.

Since A is diagonalizable with real eigenvalues, we have:

R−1AR = Λ = [λjδij], (11)

that is, Λ is a diagonal matrix with the eigenvalues of A along its diagonal.

5



Multiply the equation (6) by R−1 from the left:

R−1 ∂q
∂t
+ R−1A

∂q
∂x

= R−1s, (12)

and define the vector

L ≡ ΛR−1 ∂q
∂x

≡ R−1A
∂q
∂x
. (13)

Then component j of L becomes

Lj ≡ λjlTj
∂q
∂x
. (14)

The equation for the (time dependent) boundary conditions is

∂q
∂t
+ RL = s. (15)

We define the vector of characteristic variables, w, by the relation

dw = R−1 dq. (16)

Using the chain rule, we obtain from (6), neglecting source terms:

∂q
∂w

∂w
∂t

+ A
∂q
∂w

∂w
∂x

= 0, (17)

Multiply from the left by ∂w/∂q = R−1:

∂w
∂t

+Λ∂w
∂x

= 0, (18)

or

∂wj
∂t

+ λj
∂wj
∂x

= 0 (19)

in component form. This is an advection equation for each wj with λj as the
characteristic (advection) speed. A system of advection equations represents
waves, and λj is the wave speed. Therefore, the solution of the nonlinear system
(6) consists of several interacting waves.

The interpretation of L is less obvious, but the equations (18) and (13) show
that in the case with no source terms, L is equal to the negative of the time-
derivative of the vector of characteristic variables, w. Thus L is related to the
time-variation of the wave amplitude. The boundary conditions are therefore
specified in terms of L.
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Boundary conditions can only be specified for incoming characteristics. Hence
split the boundary-condition equation (15) in the following way:

∂q
∂t
+ R+L+ + R−L− = s. (20)

R+ contains the eigenvectors corresponding to the positive eigenvalues (and
zero-vectors otherwise), while R− does the converse.

Hence, for the left boundary, the L+j s must be specified as boundary conditions,

while the L−j s are calculated from the definition (14). Conversely, on the right

boundary, the L−j s are the boundary conditions, while the L+j s are calculated
from their definition (14).

To specify a function value qj at the boundary, one sets ∂qj/∂t = 0, so that
the equation (20) in component form gives:

R∓j L∓ = −R±j L± + sj . (21)

Here, Rj denotes row j of R.
It is also possible to specify a spatial gradient. The equation (13) implies that

(A−1R)jL =
∂qj
∂x

(22)

or

(A−1R∓)jL∓ =
∂qj
∂x

− (A−1R±)jL±. (23)

Non-reflecting boundaries are set by specifying L∓ ≡ 0. However, in several
cases with non-zero source terms, this may lead to ‘drifting’, or undetermined,
values at the boundaries (Olsen, 2004, Section 3.3).

Drifting values can be avoided by making the boundaries partially-reflecting. A
good way of doing that, is by thinking of the boundary treatment in terms of pid
controllers (Olsen, 2004, Chapter 3). Hence write

R∓j L∓ = (R∓j L∓)◦ +
kP

T
∆qj +

kI

T 2

∫ t
0
∆qj dτ + kD

∂qj
∂t
. (24)

Herein, (R∓j L∓)◦ is a start term. If the initial conditions are ‘good’, a suitable

value for the start term is −R±j L±+sj . ∆qj = qj−qref
j is the discrepancy between

the desired value qref
j and the actual one. kP, kI and kD are the proportional,

integral and differential constants, respectively. T is an integral time scale.
Substitute ∂qj/∂t in (24) by using the equation (20) in component form:

∂qj
∂t

= −R±j L± − R∓j L∓ + sj . (25)
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This gives:

R∓j L∓ = (1+ kD)−1[(R∓j L∓)◦ + kP

T
∆qj +

kI

T 2

∫ t
0
∆qj dτ − kD(R±j L± − sj)

]
. (26)

Using the above equations for the boundary conditions is here, as in Olsen (2004),
referred to as the mpcbc (multiphase characteristic-based boundary conditions)
method.

6 Numerical tests

We have chosen the water faucet of Ransom (1987) as a test case for the mul-
tiphase characteristic-based boundary conditions (mpcbc). Since gravity is in-
cluded, simply setting L∓ ≡ 0 would not work for specifying open boundary
conditions, as that would cause a drifting outlet pressure. Hence the approach of
the equation (26) is needed.

The results shown in the following have been calculated using the monoton-
ized central-difference (mc) limiter function. The resulting numerical scheme
approaches second order when the solution is smooth. Details and calculations
regarding limiter functions, and convergence order of the scheme, can be found
in Munkejord (2005).

6.1 Problem description

The water faucet case is described in Ransom (1987), and it has become a common
test case for one-dimensional two-fluid models. The problem consists of a vertical
tube 12 m in length and 1 m in diameter. Here, of course, it is represented one-
dimensionally. A schematic is shown in Figure 1 on the following page. The top
has a fixed volumetric inflow rate of water at a velocity of u◦` = 10 m/s, a liquid
volume fraction of α◦` = 0.8, and a temperature of T = 50 °C. The bottom of the
tube is open to the ambient pressure, p = 1.0 · 105 Pa, and the top of the tube is
closed to vapour flow.

Initially, the flow is uniform throughout the computational domain, and the
initial conditions are equal to the inlet conditions. A thinning of the liquid jet
will take place due to the effect of gravity.

6.2 Analytical expressions for volume fraction and velocity

Ransom (1987) stated that when pressure variation in the vapour phase is ignored,
the transient problem has a simple analytical solution. Coquel et al. (1997)
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(a) Initial
state

(b) Transi-
ent

(c) Steady
state

Figure 1: Sketch of the water faucet test case. In the transient phase, a volume-
fraction discontinuity propagates towards the exit.

provided the solution for the gas volume-fraction profile:

αg(x, t) =


1−

α◦`u
◦
`√

2gx + (u◦`)2
if x ≤ u◦`t +

1
2gt

2,

1−α◦` otherwise,
(27)

and the expression for the liquid velocity is given by Evje and Flåtten (2003):

u`(x, t) =


√
(u◦`)

2 + 2gx if x ≤ u◦`t +
1
2gt

2,
u◦` + gt otherwise.

(28)

A partial description of the solution procedure can be found in Trapp and Riemke
(1986).

6.3 Grid convergence

The grid convergence of the Roe4 method was tested on numerical grids ranging
from 101 to 1601 grid points. The time step was set to ∆t = 1.97 · 10−5 s, which
corresponds to a Courant–Friedrichs–Lewy (cfl) number of C = 0.9 for the finest
grid. This is shown in Figure 2 on the next page for the volume fraction, and the
gas and liquid velocities. For the volume fraction and the liquid velocities, where
analytical expressions are available, good correspondence is obtained, but the
convergence is less than second order. This is due to the discontinuity in the
solution. For discontinuous solutions, the smooth-solution order of the scheme
can normally not be attained (see LeVeque, 2002, Section 8.7).
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(a) Gas volume fraction
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(b) Gas velocity
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(c) Liquid velocity

Figure 2: Water faucet. Grid convergence of the Roe4 method.
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p (104 Pa)

0 2 4 6 8 10 12

9.96

9.97

9.98

9.99

10 101 points
201 points
401 points
801 points
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x (m)
(a) Fixed BC

p (104 Pa)

0 2 4 6 8 10 12

9.985

9.99

9.995

10

101 points
201 points
401 points
801 points
1601 points

x (m)
(b) MPCBC

Figure 3: Pressure for the water faucet. Grid convergence of the Roe4 method for
fixed and characteristic-based boundary conditions (MPCBC).

6.3.1 Pressure

The pressure is by far the most sensitive variable in the faucet case. It is shown
in Figure 3 for the for simple, fixed boundary conditions, and mpcbc. It can be
observed that the solution is quite different, depending on how the boundary
conditions are specified. The fixed boundary conditions employed in Figure 3(a)
give a larger pressure difference across the computational domain than the
mpcbc method shown in Figure 3(b). This is further discussed in the following.

For the volume fraction and the velocities, on the other hand, the effect of
the boundary treatment is not obvious until the volume-fraction discontinuity
reaches the outlet.

6.4 Estimation of controller parameters

Recall the equation (26) on page 8 for the pid-controller boundary condition. It
is necessary to estimate some reasonable values for the controller parameters
appearing there. Here, this was done by using a slightly modified version of the
closed-loop method by Ziegler and Nichols (1942) as presented in the control-
engineering textbook by Haugen (1994, Section 7.3).

In the present work, we assign the value T = 1 s for the time scale in the
equation (26), which is sufficient, since we shall not discuss the controller-
parameter values and the time scale independently. Assume that the ‘critical
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gain’, kc, and the corresponding ‘critical period’, Tc, can be estimated. Then the
Ziegler–Nichols method corresponds to setting

kP = 0.6kc, kI =
2kPT
Tc

, and kD =
kPTc

8T
, (29)

where kP, kI and kD, are defined by the equation (26).
The pressure, p, was used as the ‘control variable’ for determining kP, kI, and

kD. In normal control theory, the critical gain, kc, is determined by setting kI

and kD equal to zero and increasing the gain (corresponding to kP) until the
appearance of standing waves. Here, however, it is not the pressure, p, that is
controlled, but its time derivative. Hence a steady state could not be attained
without the integral term, and the proportional term was found instead by trial
and error.

The period Tc was estimated by setting reasonably good ‘trial-and-error’ values
for the controller parameters, and then measuring the period of the pressure
fluctuations at the outlet. Values of kP = 300, kI = 650 and kD = 0 were taken.
This gave a value for the period of Tc ≈ 0.18 s. The period was only a weak
function of the controller parameters in this region.

Setting kP = 150 gave, using Tc = 0.18 s, kI = 1667 and kD = 3.3. These
values gave satisfactory results, that is, not too large initial fluctuations, and
small fluctuations in the steady state. Doubling and halving kP was also tried,
calculating the corresponding kI and kD using Tc = 0.18 s each time. However,
kP = 300 gave unacceptably large fluctuations in the ‘steady’ state, and kP = 75
gave rather large initial fluctuations. Hence, kP = 150 was found to be a good
compromise and retained for all the faucet-case calculations by the Roe4 method.

The above method for determining the controller parameters is undoubtedly
improvable, but, as will be demonstrated in the following, it did indeed give
reasonable results.

6.5 Influence of boundary-condition ‘reflectiveness’

Consider Figure 4 on the following page. It is similar to Figure 3 on the previous
page, but instead of grid refinement, it shows the dependence on the choice of
boundary conditions on the inlet and the outlet. The label pairs shown in the
figure, for instance ‘fixed,pid’, indicate the boundary conditions on the left-hand
and on the right-hand sides, respectively. ‘pid’ means that the boundary condi-
tions are set using the equation (26), while ‘fixed’ indicates that the equation (21)
is used, that is, that the boundaries are reflecting. ‘Open’ means that the Ljs are
set to zero for incoming characteristics.

When the outlet boundary condition is ‘open’ (the �— curve), the pressure will
drop. Hence the curve for the open outlet condition is drawn using the right-hand
ordinate. The other curves relate to the left-hand ordinate. Both ordinates have
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p (104 Pa)

0 2 4 6 8 10 12

9.96

9.97

9.98

9.99

10

9.15

9.16

9.17

9.18

9.19

fixed,fixed
PID,PID
fixed,PID
PID,fixed
fixed,open

x (m)

Figure 4: Pressure for the water faucet. Dependence on choice of inlet and outlet
boundary conditions. The ‘fixed,open’ curve is related to the right-hand
ordinate.

the same span of 480 Pa, and the right-hand ordinate has been set such that the
outlet pressure corresponds to 10 · 104 Pa on the left-hand ordinate.

The boundary-specification method giving by far the lowest pressure change
across the domain, at the particular time of t = 0.6 s, was the use of pid con-
trollers at both boundaries. The use of fixed boundary conditions produced the
largest pressure changes at the inlet. When an open boundary was set at the
outlet, it did not matter whether the inlet condition was fixed or pid.

Among the different combinations of reflecting and partially-reflecting bound-
ary conditions, the one with a pid controller at both ends was the one that gave a
pressure profile that best matched the shape of the profile calculated using the
open boundary condition at the outlet. This shows that for the faucet case, the
pid-controller boundary conditions succeeded in

• Keeping the outlet pressure from deviating too far from the set-point
pressure of 1.0 · 105 Pa, and

• Giving results closely resembling those obtained using open boundary
conditions at the outlet.

For the volume fraction and the liquid velocity, all the boundary conditions gave
virtually the same result. Regarding the gas velocity, however, there were some
differences, as shown in Figure 5 on the following page. The three combinations of
pid conditions gave very similar gas-velocity profiles, whereas the most negative
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Figure 5: Gas velocity for the water faucet. Dependence on choice of inlet and
outlet boundary conditions.

velocity occurred for the fixed inlet–fixed outlet condition, and the least negative
velocity was calculated using the open-outlet condition.

The difference in pressure arising from the use of pid or fixed boundary
conditions is further illustrated in Figure 6. In Figure 6(a), a pid controller has
been used at both boundaries, and in Figure 6(b), fixed conditions were employed.
As can be seen, the amplitude of the pressure fluctuation at the inlet is about
three times larger in the case of fixed boundary conditions compared to pid-
controller conditions. Hence, if the pressure is important in itself, or if one
wants, for instance, to calculate mass transfer due to flashing, a proper choice of
boundary conditions is of significance.

6.6 Calculations towards steady state

The steady-state solution of the faucet case was calculated by two different
methods:

1. By carrying out simulations with the Roe4 method until t = 3 s, and

2. By solving the steady-state system (8) on page 5 using a standard ode
solver.

Again the pressure was the most sensitive variable, and the result is displayed in
Figure 7 on the following page. For Figure 7(a), the Roe4 method was run using
pid controllers at both boundaries. At t = 3 s, the correspondence between the

14



p (104 Pa)

0 2 4 6 8 10 129.92

9.94

9.96

9.98

10

10.02

Roe4, PID

t=0.4 st=0.2 s

t=1 s
t=0.6 s

t=0.8 s

x (m)
(a) PID controller at both boundaries
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(b) Fixed conditions at both boundaries

Figure 6: Pressure for the water faucet. Time series showing the influence of
boundary conditions.
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(a) Roe4 with PID-controller
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(b) Roe4 with fixed boundary conditions

Figure 7: Pressure for the water faucet. Comparison of steady-state solution as
obtained with the Roe4 solver with and without PID-controller boundary
conditions, and with the stationary solver.
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Roe4 solution and the stationary solution is very good, and this result is not
obtained by chance: Using a non-pid boundary condition at any boundary would
lead to the Roe4 method utterly failing to produce the stationary pressure profile.
This is shown in Figure 7(b). Note that the scale of the ordinate is different;
in Figure 7(b), the shown pressure interval is 2400 Pa, while it is 41.25 Pa in
Figure 7(a).

The pressure profiles obtained in Figure 7(a) are different from the linear shape
one would expect in a case where gravity is the only source term. In fact, this
is a result of the use of the cathare correlation (5) for the interfacial pressure
difference. Indeed, when calculations were performed with a vanishing interfacial
pressure difference, the pressure profile approached a linear shape. Physically,
this can be explained by considering the liquid falling in stagnant air. The air is
stagnant, and it will have a hydrostatic pressure profile. At the same time, it is
reasonable that the air and water have the same pressure at each cross section,
since no surface tension or other effects causing different phasic pressures are
present.

Remark Another question is how the pressure calculated using different bound-
ary conditions would compare with the pressure in the physical system for which
the faucet case is a simplified model. Furthermore, as can be seen from the
equation (14), the Ljs are proportional to the left eigenvectors, which are not
unique. Hence, the transient behaviour at a pid-controlled boundary is dependent
on the choice of eigenvectors as well as on the controller parameters. These are
two interesting issues for further studies.

7 Conclusions

For compressible flow, the specification of open boundary conditions is non-
straightforward when the system of equations contains source terms, because
they can cause drifting boundary values.

In this work, we have studied the one-dimensional one-pressure two-fluid
model, solving it using a Roe-type method. The multiphase characteristic-based
boundary condition (mpcbc) method of Olsen (2004) was employed. It uses pid
controllers at the boundaries to avoid drifting values, while keeping the solution
close to the desired set-point values.

We have aimed to demonstrate that the mpcbc method is applicable to transient
cases. Furthermore, we have illustrated how the pid-controller parameters can
be estimated. With the water-faucet case of Ransom (1987) as an example, it has
been shown that mpcbc can yield a reasonable approximation to physically ‘open’
boundary conditions. Specifically, during the transient period, the mpcbc method
gave a pressure profile closely resembling that of open boundary conditions, and
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the correct steady-state solution was attained. The pressure profile obtained
using fixed boundary conditions was noticeably different from that obtained
using pid controllers at the boundaries.

It is believed that the mpcbc method can be used for the simulation of systems
with open boundaries, even after important waves have reached the boundaries.

Acknowledgements

I am grateful to have received a doctoral fellowship from the Research Council of
Norway.

I would like to thank my colleague Robert Olsen for letting me use his numerical
code as a starting point for implementing the method tested in the present work.

Thanks are due to the referees for their constructive remarks on the first
version of this paper. The comments of Erik B. Hansen and Robert Olsen on the
manuscript are also acknowledged.

References

Bestion, D. The physical closure laws in the CATHARE code. Nuclear Engineering
and Design, volume 124, no. 3: pages 229–245, December 1990.

Coquel, F., El Amine, K., Godlewski, E., Perthame, B. and Rascle, P. A numerical
method using upwind schemes for the resolution of two-phase flows. Journal
of Computational Physics, volume 136, no. 2: pages 272–288, 1997.

Evje, S. and Flåtten, T. Hybrid flux-splitting schemes for a common two-fluid
model. Journal of Computational Physics, volume 192, no. 1: pages 175–210,
November 2003.

Haugen, F. Regulering av dynamiske systemer. Tapir Forlag, Trondheim, Norway,
1994. ISBN 82-519-1433-7.

Karni, S., Kirr, E., Kurganov, A. and Petrova, G. Compressible two-phase flows by
central and upwind schemes. ESAIM: Mathematical Modelling and Numerical
Analysis, volume 38, no. 3: pages 477–493, May–June 2004.

LeVeque, R. J. Finite Volume Methods for Hyperbolic Problems. Cambridge Univer-
sity Press, Cambridge, UK, 2002. ISBN 0-521-00924-3.

Munkejord, S. T. Analysis of the two-fluid model and the drift-flux model for
numerical calculation of two-phase flow. Doctoral thesis, Norwegian University
of Science and Technology, Department of Energy and Process Engineering,
Trondheim, November 2005. ISBN 82-471-7338-7.

17



Olsen, R. Time-dependent boundary conditions for multiphase flow. Doctoral
thesis, Norwegian University of Science and Technology, Department of Energy
and Process Engineering, Trondheim, September 2004. ISBN 82-471-6313-4.

Ransom, V. H. Faucet flow. In: G. F. Hewitt, J. M. Delhaye and N. Zuber, editors,
Numerical Benchmark Tests, volume 3 of Multiphase Science and Technology,
pages 465–467. Hemisphere/Springer, Washington, USA, 1987. ISBN 0-89116-
561-4.

Roe, P. L. Approximate Riemann solvers, parameter vectors, and difference
schemes. Journal of Computational Physics, volume 43, no. 2: pages 357–372,
October 1981.

Sainsaulieu, L. Finite-volume approximation of two phase-fluid flows based on
an approximate Roe-type Riemann solver. Journal of Computational Physics,
volume 121, no. 1: pages 1–28, October 1995.

Thompson, K. W. Time-dependent boundary conditions for hyperbolic systems.
Journal of Computational Physics, volume 68, no. 1: pages 1–24, January 1987.

Thompson, K. W. Time-dependent boundary conditions for hyperbolic systems,
II. Journal of Computational Physics, volume 89, no. 2: pages 439–461, August
1990.

Toro, E. F. Riemann solvers and numerical methods for fluid dynamics. Springer-
Verlag, Berlin, second edition, 1999. ISBN 3-540-65966-8.

Toumi, I. An upwind numerical method for two-fluid two-phase flow models.
Nuclear Science and Engineering, volume 123, no. 2: pages 147–168, 1996.

Toumi, I. and Kumbaro, A. An approximate linearized Riemann solver for a
two-fluid model. Journal of Computational Physics, volume 124, no. 2: pages
286–300, March 1996.

Trapp, J. A. and Riemke, R. A. A nearly-implicit hydrodynamic numerical scheme
for two-phase flows. Journal of Computational Physics, volume 66, no. 1: pages
62–82, September 1986.

Ziegler, J. G. and Nichols, N. B. Optimum settings for automatic controllers.
Transactions of the ASME, volume 64: pages 759–768, 1942.

18


	Introduction
	Model formulation
	Four-equation system
	Interfacial-pressure model

	Numerical algorithm
	Steady-state solution
	Characteristic-based boundary treatment
	Numerical tests
	Problem description
	Analytical expressions for volume fraction and velocity
	Grid convergence
	Pressure

	Estimation of controller parameters
	Influence of boundary-condition `reflectiveness'
	Calculations towards steady state

	Conclusions

