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1 Introduction

1.1 Background

Multiphase flows are relevant in a large and increasing amount of applica-
tions, including in the oil and gas industries, in the chemical and process
industries, in heat pumping applications, and in nuclear power plants.
Still, the mathematical modelling and numerical simulation of multiphase
flows is, as a whole, not a mature science. Only in specialized areas is the
state of the art satisfactory.

In the present paper, we focus on two-phase flows. In recent years, pro-
gress has been made regarding the understanding of the mathematical
properties and the proper spatial discretization of two-phase models.
However, these questions are challenging, and hence, in the research pa-
pers presented, one has often not been able to attend to the constitutive
terms in need of physical modelling and experimental verification.

Here we investigate ways to model the interfacial pressure in the frame-
work of the discrete-equation model of Abgrall and Saurel [1].

1.2 Previous work

Saurel and Abgrall [14] presented a two-velocity two-pressure two-phase
model of seven equations, where pressure and / or velocity relaxation
could be performed after the hyperbolic time step. The model was expan-
ded to several space dimensions by Saurel and LeMetayer [15], and it was
stated to be suitable for compressible multiphase flows with interfaces,
shocks, detonation waves and cavitation.

The approximate Riemann solver employed by Saurel and Abgrall [14]
was a modified Harten, Lax, and van Leer (hll) scheme. Other authors
have later presented similar methods using other solvers. Niu [12] applied
a modified advection upstream splitting method (ausmd) and solved the
seven-equation model in one and two dimensions, also adding a k–ε tur-
bulence model. A Roe-type scheme for the seven-equation model was
presented by Karni et al. [7].

One of the main difficulties of the above-mentioned two-phase model, is
the occurrence of non-conservative products. Abgrall and Saurel [1] pro-
posed a discrete-equation two-phase model aiming to avoid the problems
of the non-conservative terms by considering Riemann problems between
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pure phases. This approach leads to the phase interaction being defined
through the Riemann solver.

1.3 Outline of paper

The present paper analyses the interfacial pressure and the discrete-
equation model. Section 2 briefly presents the multiphase model. The
discrete-equation numerical scheme of Abgrall and Saurel [1] is revisited
in Section 3. Furthermore, similarities to, and differences from, the con-
tinuous model are pointed out, and the pure-phase Riemann problem is
explained. The continuous model used for comparisons is briefly referred
to in Section 4. Test calculations are presented in Section 5, and conclu-
sions are drawn in Section 6.

2 Multiphase model

The one-dimensional, inviscid, isentropic multiphase flow is customarily
described by the continuity equation

∂
∂t
(α(k)ρ(k))+ ∂

∂x
(α(k)ρ(k)u(k)) = 0, (1)

and the momentum equation

∂
∂t
(α(k)ρ(k)u(k))+ ∂

∂x

(
α(k)ρ(k)

(
u(k)

)2
)
+α(k)∂p

(k)

∂x
+(p(k)−p(k)int )

∂α(k)

∂x
= 0,

(2)
when gravity, mass transfer, wall friction, interface friction, and other
effects are neglected. This model is arrived at by volume-averaging the
governing equations for each phase, and by considering a cross-section
of a pipe. Due to the term p(k)int ∂α(k)/∂x, the equation system cannot be
written in conservative form. The Riemann problem for non-conservative
systems is not always unique, and it is in general difficult to define its
solution [2].

A discrete mathematical and numerical model for compressible mul-
tiphase flows was introduced by Abgrall and Saurel [1]. Since the two-
phase mixture was considered at the discrete, pure-phase level, the
problem of the ∇α terms, which render the system of equations non-
conservative [14], was avoided. For the sake of clarification, the main ele-
ments of the Abgrall and Saurel [1] model are given here in detail. Further,
we adapt their model to isentropic problems, something which represents
a simplification.
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2.1 Transport equations

For an inviscid, isentropic flow, each pure fluid k is governed by the (is-
entropic) Euler equations:

∂q(k)

∂t
+∇ · F (k) = 0, (3)

where q(k) is the vector containing the ‘conservative’ variables,

q(k) =
[
ρ(k), ρ(k)u(k)

]T
, (4)

and F (k) is the corresponding flux matrix:

F (k) =
[
ρ(k)u(k), ρ(k)u(k) ⊗ u(k) + p(k)I

]T
. (5)

Denote the phase-indicator function (characteristic function) for phase k
as X(k). It is equal to one inside phase k and zero otherwise. It is obvious
that phase k is advected with the velocity of phase k. Hence the same is
true for the phase-indicator function, which gives

∂X(k)

∂t
+ u(k) ·∇X(k) = 0. (6)

∇X(k) = 0, except at the interface of phase k. Therefore it is natural to
write

∂X(k)

∂t
+ u(k)int ·∇X(k) = 0, (7)

where u(k)int is the interface velocity of phase k. The above equation is
derived in detail by Drew and Passman [5, Section 9.1.3]. For two phases,
we have u(1)int = u(2)int = uint.

Here we follow the ensemble-averaging approach of Drew and Passman [5,
see Section 9.1 and Chapter 11]. The ensemble-averaging operator, E (·),
is assumed to commute with differentiation in space and time, so that

E (∇ψ) =∇E (ψ) , (8)

and

E
(∂ψ
∂t

)
= ∂
∂t

E (ψ) , (9)

where ψ is a general function. Further, we have, for example
∫

E (ψ) dx dt = E
(∫
ψdx dt

)
. (10)
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Drew and Passman [5] derived a relation for the ensemble average of the
gradient (or divergence) of a general function ψ:

E
(
X(k)∇ψ

)
=∇

(
E
(
X(k)ψ

))
− E

(
ψ(k)int∇X(k)

)
, (11)

which is similar to the Slattery averaging theorem [16, 19] for volume
averaging. The subscript ‘int’ denotes the value at the interface, which is
‘picked up’ by the ∇X(k) operator.

The expression for the ensemble average of a time derivative is

E
(
X(k)

∂ψ
∂t

)
= ∂
∂t

(
E
(
X(k)ψ

))
− E

(
ψ(k)int

∂X(k)

∂t

)
. (12)

Thus we can write the averaged balance equations for each phase as

∂E
(
X(k)ρ(k)

)

∂t
+∇· E

(
X(k)ρ(k)u(k)

)
= E

(
ρ(k)(u(k) −u(k)int ) ·∇X(k)

)
, (13)

and

∂E
(
X(k)ρ(k)u(k)

)

∂t
+∇ ·

[
E
(
X(k)ρ(k)u(k) ⊗u(k)

)
+ E

(
X(k)p(k)

)]
=

E
((
ρ(k)u(k) ⊗ (u(k) −u(k)int )+ p(k)I

) ·∇X(k)
)
. (14)

Defining the volume fraction of phase k as

α(k) = E
(
X(k)

)
, (15)

the average density as

ρ(k) = E
(
X(k)ρ(k)

)

α(k)
, (16)

the average velocity as

u(k) = E
(
X(k)ρ(k)u(k)

)

α(k)ρ(k)
, (17)

etc., assuming

E
(
X(k)ρ(k)u(k) ⊗u(k)

)
= α(k)ρ(k)u(k) ⊗u(k), (18)

and omitting the overline symbol for notational convenience, we get:

∂α(k)ρ(k)

∂t
+∇ · [α(k)ρ(k)u(k)] = E

(
ρ(k)(u(k) − u(k)int ) ·∇X(k)

)
, (19)
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and

∂α(k)ρ(k)u(k)

∂t
+∇ · [α(k)ρ(k)u(k) ⊗u(k) +α(k)p(k)I] =

E
((
ρ(k)u(k) ⊗ (u(k) −u(k)int )+ p(k)I

) ·∇X(k)
)
. (20)

Herein, the quantities on the left-hand side are averaged. The averaged
topological equation is

∂α(k)

∂t
+ E

(
u(k)int ·∇X(k)

)
= 0. (21)

2.2 Thermodynamics

In the present work, the energy equation is not considered, and the fol-
lowing equation of state is employed:

p(k) = (c(k))2(ρ(k) − ρ(k)◦
)
, (22)

where the speed of sound c(k) and the ‘reference density’ ρ(k)◦ are con-
stants for each phase. The above equation corresponds to the stiffened-
gas equation of state, p = (γ−1)ρe−γp◦, where e is the internal energy,
if one takes c2 = (γ − 1)e and γp◦ = c2ρ◦.

This equation of state (22) has been derived under the assumption of an
isentropic flow. In fact, it also implies isothermal flow. This can be seen
by considering the relation

ds = cv
T

dT +
(∂p
∂T

)

v
dv, (23)

which can be found in a thermodynamics textbook. Herein, the specific
volume v = 1/ρ. Differentiating (22) with respect to T while keeping ρ
constant, yields 0. At the same time, (22) has been derived under the as-
sumption of constant entropy, or ds = 0. Therefore, Equation (23) dictates
dT = 0, or isothermal flow.

Since we are interested in two-phase mixtures, pure single-phase flow has
not been explicitly accounted for. This restriction is not thought to be of
practical importance in most applications.
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3 Numerical scheme

Henceforth we treat only one spatial dimension for simplicity. Consider
the non-averaged balance equations (3) for each phase. They are multi-
plied by the phase-indicator function X(k) and integrated over a control
volume Ci as follows:

∫

Ci

X(k)
∂q(k)

∂t
dx +

∫

Ci

X(k)∇ · F (k) dx = 0, (24)

or ∫

Ci

X(k)
∂q(k)

∂t
dx +

∫

∂[Ci∩{X(k)=1}]
X(k)F (k) · nds = 0, (25)

where n is the outward-pointing unit normal vector. Using the commuta-
tion property (10), we can ensemble-average (24):

E

(∫

Ci

{∂X(k)q(k)
∂t

+∇ · (X(k)F (k))− q(k)∂X
(k)

∂t
− F (k) ·∇X(k)

}
dx
)
= 0,

(26)
and using (7), to obtain, analogously to (19) and (20):

∫

Ci

∂α(k)q(k)

∂t
dx +

∫

Ci

∇ · (α(k)F (k))dx =
∫

Ci

E
(
S(k)

)
dx, (27)

where

S(k) =



ρ(k)(u(k) −u(k)int ) ·∇X(k)
(
ρ(k)u(k) ⊗ (u(k) −u(k)int )+ p(k)I

) ·∇X(k)


 . (28)

However, the topological equation (7) cannot be written in the form (3),
and must therefore be treated differently. Still, we may integrate it,

∫

Ci

∂X(k)

∂t
dx +

∫

Ci

u(k)int ·∇X(k) dx, (29)

and take the ensemble average:

∫

Ci

∂E
(
X(k)

)

∂t
dx = −

∫

Ci

E
(
u(k)int ·∇X(k)

)
dx. (30)

Since we consider a two-phase flow at the discrete level, E
(
X(k)

) = X(k) =
1 inside phase k and 0 otherwise, and the above equation reads 0 = 0
except at the interface, where the size of the jump in X(k) equals 1.
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t0

t0 +∆t

xi−1/2
ξ0 ξ1 ξ2 · · ·· · · ξl ξN−1

xi+1/2
ξN

Ci

Figure 1. Space–time control volume.

3.1 Lagrangian fluxes

The right-hand sides of (27) and (30) give rise to the Lagrangian fluxes
F lag,(k) treated in Abgrall and Saurel [1]. They are sometimes called trans-
fer integrals in the multiphase literature. For example, in 1D we have

S(k) = F lag,(k)∂X(k)

∂x
, (31)

where
F lag,(k) = F (k) −u(k)intq(k). (32)

The phase velocity u(k) at the interface and the corresponding interface
velocity u(k)int are different if there is mass transfer between the phases.
Since in the present work we assume that no interphase mass transfer
takes place, we get:

S(k) =



0

p(k)I ·∇X(k).


 . (33)

Integrate (27) over Ci × [t0, t0 +∆t]:
∫∫

Ci×[t0,t0+∆t]

(∂α(k)q(k)
∂t

+ ∂α
(k)F (k)

∂x

)
dx dt =

∫∫

Ci×[t0,t0+∆t]
E
(
S(k)

)
dx dt.

(34)
Consider the space–time control volume shown in Figure 1. The shaded
areas are pure fluid k, where α(k) = X(k) = 1, and the white areas repres-
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ent the other fluid, where X(k) = 0. The dashed lines at xi−1/2 and xi+1/2
are the control-volume boundaries fixed in space. The dotted lines rep-
resent the trajectories of the interfaces between the two fluids. We can
use Green’s theorem, and the left-hand side of (34) becomes

∫∫

Ci×[t0,t0+∆t]

(∂α(k)q(k)
∂t

+ ∂α
(k)F (k)

∂x

)
dx dt

=
∫

Ci(t0+∆t)
α(k)(x, t0+∆t)q(k)(x, t0+∆t)dx−

∫

Ci(t0)
α(k)(x, t0)q(k)(x, t0)dx

+
∫ t0+∆t
t0

(
α(k)(xi+1/2, t)F (k)(xi+1/2, t)−α(k)(xi−1/2, t)F (k)(xi−1/2, t)

)
dt.

(35)

Inserting (35) in (34), dividing by ∆x and by ∆t and taking the limit as
∆t → 0 gives:

d

dt

(
α(k)i q

(k)
i

)
+ 1

∆x

(
E (XF)(k)i+1/2−E (XF)(k)i−1/2

)
= 1

∆x

∫

Ci

E
(
S(k)

)
dx. (36)

The right-hand side of the above equation can be estimated by assuming
a distribution of S(k) in the control volume Ci. First, we assume that S(k)

is constant in Ci, to obtain a first-order approximation. The second-order
scheme will be outlined in Section 3.3 on page 12.

The volume-fraction evolution equation (30) may also be integrated over
Ci × [t0, t0 +∆t]:
∫∫

Ci×[t0,t0+∆t]
∂α(k)

∂t
dx dt = −

∫∫

Ci×[t0,t0+∆t]
E
(
u(k)int ·∇X(k)

)
dx dt, (37)

or
∫

Ci(t0+∆t)
α(k)(x, t0 +∆t)dx −

∫

Ci(t0)
α(k)(x, t0)dx

= −
∫∫

Ci×[t0,t0+∆t]
E
(
u(k)int ·∇X(k)

)
dx dt. (38)

Divide by ∆x and ∆t and take the limit as ∆t → 0:

dα(k)i
dt

= −
∫

Ci

E
(
u(k)int ·∇X(k)

)
dx dt. (39)

This permits us to include the volume-fraction evolution equation into
our system of equations, by writing

d

dt

(
α(k)i q̃

(k)
i

)
+ 1

∆x

(
E
(
XF̃

)(k)
i+1/2

− E
(
XF̃

)(k)
i−1/2

)
= 1

∆x

∫

Ci

E
(
S̃(k)

)
dx,

(40)
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where

q̃(k) =
[
1, q(k)

]T
, (41)

F̃ (k) =
[
0, F (k)

]T
, (42)

and

S̃(k) =
[
−u(k)int ·∇X(k), S(k)

]T
. (43)

The discretization of the volume-fraction evolution equation is explained
by Abgrall and Saurel [1]. Henceforth we use q̃(k), F̃ (k), and S̃(k), but drop
the tilde for convenience.

A main hypothesis in the Abgrall and Saurel [1] article is that it is reason-
able to approximate the interface velocity u(k)int (ξl) by the velocity of the
contact discontinuity given by the Riemann problem between the states
to the left and right of ξl. This is denoted by

S(k)(x) =


−F lag,(k)(q(k)(x−),q(l)(x+)) if [X(k)] = −1,
F lag,(k)(q(l)(x−),q(k)(x+)) if [X(k)] = 1,

(44)

where k is the phase under consideration and l is the other phase. x− is
the coordinate to the left of x and x+ is to the right. The jump in X(k) at
x, [X(k)] = X(k),+ − X(k),− = ±1 is negative when we have phase k to the
left and phase l to the right, since then, X(k) = 0 to the left and X(k) = 1
to the right.

To estimate the right-hand side of (36), we must consider the boundar-
ies and the interior of the control volume Ci separately. At the boundary
xi−1/2, the discontinuity will only count if the interfacial velocity is pos-
itive, else it will be counted in the control volume to the left. Conversely,
at the boundary xi+1/2 the discontinuity will only count if the interfacial
velocity is negative.

It is also necessary to consider the probability of having phase k to the
left of xi+1/2 and phase l to the right, etc. These probabilities are denoted
by Pi+1/2(k, l), and, as explained by Abgrall and Saurel [1], reasonable
estimates are

Pi+1/2(k, k) =min(α(k)i , α
(k)
i+1),

Pi+1/2(k, l) =max(α(k)i −α(k)i+1,0),
(45)
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Using all this, we get for the boundary part of the right-hand side of (36):

∫

Ci

E
(
S(k)

)
bound

dx =
∫

Ci

E

(
F lag,(k)∂X(k)

∂x

)

bound

dx

= −max
{
0, sgn

[
u(k)int

(
q(k),−i−1/2,q

(l),+
i−1/2

)]}
Pi−1/2(k, l)F lag,(k)(q(k),−i−1/2,q

(l),+
i−1/2

)

+max
{
0, sgn

[
u(k)int

(
q(l),−i−1/2,q

(k),+
i−1/2

)]}
Pi−1/2(l, k)F lag,(k)(q(l),−i−1/2,q

(k),+
i−1/2

)

+min
{

0, sgn
[
u(k)int

(
q(k),−i+1/2,q

(l),+
i+1/2

)]}
Pi+1/2(k, l)F lag,(k)(q(k),−i+1/2,q

(l),+
i+1/2

)

−min
{

0, sgn
[
u(k)int

(
q(l),−i+1/2,q

(k),+
i+1/2

)]}
Pi+1/2(l, k)F lag,(k)(q(l),−i+1/2,q

(k),+
i+1/2

)
.

(46)

The part of the right-hand side of (36) arising from internal interfaces,
is called relaxation terms by Abgrall and Saurel [1]. Denote the expected
number of internal interfaces by Nint,i. Similarly to what was done above,
and using the midpoint rule, this gives:

∫

Ci

E
(
S(k)

)
relax

dx =
∫

Ci

E

(
F lag,(k)∂X(k)

∂x

)

relax

dx

= Nint,i

2

(
F lag,(k)(q(l)i ,q(k)i

)−F lag,(k)(q(k)i ,q(l)i
))
, (47)

where the second equality depends on the assumption that F lag,(k)∂X(k)/∂x
is constant in Ci. Hence,

∫

Ci

E
(
S(k)

)
dx =

∫

Ci

E
(
S(k)

)
bound

dx +
∫

Ci

E
(
S(k)

)
relax

dx, (48)

using (46) and (47).

3.2 Conservative fluxes

Now consider the flux terms on the right-hand side of (36). For the control-
volume boundary at xi+1/2, we have, of course, a contribution to the phase
k-equation if there is phase k on both sides. Moreover, there is a contribu-
tion if phase k exists on the left-hand side and phase l on the right-hand
side, if the interface velocity is positive (phase k exits), and finally there
is a contribution if phase l exists on the left-hand side and k on the right-
hand side, if the interface velocity is negative (phase k enters). If we have
phase l on both sides, there is no contribution to the phase k-equation.
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Hence,

E (XF)(k)i+1/2 =Pi+1/2(k, k)F (k)
(
q(k)i ,q

(k)
i+1

)

+max
{
0, sgn

[
u(k)int

(
q(k)i ,q

(l)
i+1

)]}
Pi+1/2(k, l)F (k)

(
q(k)i ,q

(l)
i+1

)

+max
{
0, sgn

[−u(k)int

(
q(l)i ,q

(k)
i+1

)]}
Pi+1/2(l, k)F (k)

(
q(l)i ,q

(k)
i+1

)
.

(49)

At the control-volume boundary at xi−1/2 the situation is similar.

3.3 Second-order scheme

With (46)–(49), we can advance (36) in time using an appropriate scheme.
Abgrall and Saurel [1] proposed to use a modified muscl-Hancock scheme
[18] [see 17, Section 14.4] to get second-order accuracy in space and time.
This will not be repeated here, except that one point will be made: Extra
terms arise in E

(
S(k)

)
bound for the second-order scheme. This is due to

the fact that for a first-order Godunov method, the variables are assumed
to be constant in each control volume Ci, whereas in the second-order
method, they are assumed to be linearly varying.

To see how the extra terms arise, divide the cell Ci into M + 1 sub-
cells (xi−1/2 = η0−1/2, . . . , ηj−1/2, . . . , ηM+1/2 = xi+1/2; j ∈ {0,1, . . . ,M +
1}; ∆η = ηj+1/2 − ηj−1/2 = ∆x/(M + 1)) in which the volume fraction

α(k)j is supposed to be constant. Both fluids can exist in each of these
M + 1 sub-cells. Then divide each of the sub-cells into N sub-sub-cells
containing pure phase k or l. Hence the first-order scheme previously
found can be directly applied to each of the M + 1 sub-cells. However,
since the volume fraction α(k)j is supposed to be constant for each j, it is
necessary to let M →∞ to obtain the assumed linear distribution.

Apply the semi-discrete scheme to the M + 1 sub-cells:

d
dt

(
α(k)j q

(k)
j

)
+ 1
∆η

(
E (XF)(k)j+1/2 − E (XF)(k)j−1/2

)

= 1
∆η

∫

x∈[ηj−1/2,ηj+1/2]

{
E
(
S(k)

)
bound

+ E
(
S(k)

)
relax

}
dx. (50)

To obtain an equation for the cell Ci, multiply the above equation with
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∆η and sum it term-wise. The first term becomes

M∑

j=0

∆η
d
dt

(
α(k)j q

(k)
j

)
=

M∑

j=0

∆x
M + 1

d
dt

(
α(k)j q

(k)
j

)

= ∆x d

dt

(
1

M + 1

M∑

j=0

α(k)j q
(k)
j

)
, (51)

that is, we calculate the mean of the conserved variables. The Eulerian
fluxes are evaluated in the following way:

M∑

j=0

(
E (XF)(k)j+1/2 − E (XF)(k)j−1/2

)
= E (XF)(k)M+1/2 − E (XF)(k)1/2 , (52)

that is, the sum telescopes. The right-hand side becomes

M∑

j=0

∫

x∈[ηj−1/2,ηj+1/2]

{
E
(
S(k)

)
bound

+ E
(
S(k)

)
relax

}
dx, (53)

where

∫

x∈[ηj−1/2,ηj+1/2]

{
E
(
S(k)

)
bound

+ E
(
S(k)

)
relax

}
dx =

−max
{
0, sgn

[
u(k)int

(
q(k)j−1,q

(l)
j
)]}

Pj−1/2(k, l)F lag,(k)(q(k)j−1,q
(l)
j
)

+max
{
0, sgn

[
u(k)int

(
q(l)j−1,q

(k)
j
)]}

Pj−1/2(l, k)F lag,(k)(q(l)j−1,q
(k)
j
)

+min
{
0, sgn

[
u(k)int

(
q(k)j ,q

(l)
j+1

)]}
Pj+1/2(k, l)F lag,(k)(q(k)j ,q(l)j+1

)

−min
{

0, sgn
[
u(k)int

(
q(l)j ,q

(k)
j+1

)]}
Pj+1/2(l, k)F lag,(k)(q(l)j ,q(k)j+1

)

+ Nint,j

2

(
F lag,(k)(q(l)j ,q(k)j

)−F lag,(k)(q(k)j ,q(l)j
))
. (54)

First consider the terms of the type F lag,(k)(q(k)m ,q(l)m+1

)
, that is,

M∑

j=0

{
min

{
0, sgn

[
u(k)int

(
q(k)j ,q

(l)
j+1

)]}
Pj+1/2(k, l)F lag,(k)(q(k)j ,q(l)j+1

)

−max
{
0, sgn

[
u(k)int

(
q(k)j−1,q

(l)
j
)]}

Pj−1/2(k, l)F lag,(k)(q(k)j−1,q
(l)
j
)}

=
M∑

j=0

{
min

{
0, sgn

[
u(k)int

(
q(k)j ,q

(l)
j+1

)]}
max(α(k)j −α(k)j+1,0)F

lag,(k)(q(k)j ,q(l)j+1

)

−max
{
0, sgn

[
u(k)int

(
q(k)j−1,q

(l)
j
)]}

max(α(k)j−1 −α(k)j ,0)F lag,(k)(q(k)j−1,q
(l)
j
)}
.

(55)
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Define
Vm =max(α(k)m −α(k)m+1,0)F lag,(k)(q(k)m ,q(l)m+1

)
, (56)

(
β(k,l)m−1/2

)+ =max
{
0, sgn

[
u(k)int

(
q(k)m−1,q(l)m

)]}
, (57)

and (
β(k,l)m+1/2

)− =min
{
0, sgn

[
u(k)int

(
q(k)m ,q

(l)
m+1

)]}
, (58)

so that the sum in (55) can be written as

M∑

j=0

{(
β(k,l)j+1/2

)−
Vj −

(
β(k,l)j−1/2

)+
Vj−1

}
=

M∑

j=0

(
β(k,l)j+1/2

)−
Vj −

M−1∑

j=−1

(
β(k,l)j+1/2

)+
Vj

=
(
β(k,l)M+1/2

)−
VM −

(
β(k,l)−1/2

)+
V0 −

M−1∑

j=0

Vj. (59)

The two first terms on the right-hand side above correspond to the inter-
actions with the cells Ci+1 and Ci−1, respectively. The last term is

M−1∑

j=0

Vj =
M−1∑

j=0

max(α(k)j −α(k)j+1,0)F
lag,(k)(q(k)j ,q(l)j+1

)

=
M−1∑

j=0

(ηj+1 − ηj)max(−δiα(k)i ,0)F lag,(k)(q(k)j ,q(l)j+1

)

=max(−δiα(k)i ,0)
M−1∑

j=0

(ηj+1 − ηj)F lag,(k)(q(k)j ,q(l)j+1

)

=max(δiα
(l)
i ,0)

M−1∑

j=0

(ηj+1 − ηj)F lag,(k)(q(k)j ,q(l)j+1

)
, (60)

where δiα(k)i is the slope of the volume fraction in the ith cell, given by
the chosen limiter function. The last sum is a Riemann sum, and therefore

lim
M→∞

M−1∑

j=0

Vj =max(δiα(l)i ,0)
∫ xi+1/2

xi−1/2

F lag,(k)(q(k)(η),q(l)(η))dη. (61)

The above integral can be estimated using the second-order midpoint
method:

∫ xi+1/2

xi−1/2

F lag,(k)(q(k)(η),q(l)(η))dη ≈ F lag,(k)(q(k)i ,q(l)i
)
∆x. (62)

Here, q(k)i is evaluated at (xi+1/2 − xi−1/2)/2 = xi.

Using exactly the same arguments, but reversing the phasic indices k
and l, we arrive at the corresponding expression for F lag,(k)(q(l)m ,q(k)m+1

)
,
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namely,

M∑

j=0

{
max

{
0, sgn

[
u(k)int

(
q(l)j−1,q

(k)
j
)]}

Pj−1/2(l, k)F lag,(k)(q(l)j−1,q
(k)
j
)

−min
{
0, sgn

[
u(k)int

(
q(l)j ,q

(k)
j+1

)]}
Pj+1/2(l, k)F lag,(k)(q(l)j ,q(k)j+1

)}

≈max(δiα(k)i ,0)F
lag,(k)(q(l)i ,q(k)i

)
∆x + boundary terms. (63)

For the relaxation terms, we obtain analogously, using the midpoint rule:

M∑

j=0

{Nint,j

2

(
F lag,(k)(q(l)j ,q(k)j

)−F lag,(k)(q(k)j ,q(l)j
))}

≈ Nint,i

2

(
F lag,(k)(q(l)i ,q(k)i

)−F lag,(k)(q(k)i ,q(l)i
))
, (64)

so that the final, second-order expression for phase-interaction terms be-
comes:

M∑

j=0

∫

x∈[ηj−1/2,ηj+1/2]

{
E
(
S(k)

)
bound

+ E
(
S(k)

)
relax

}
dx ≈

I




−max
{
0, sgn

[
u(k)int

(
q(k),−i−1/2,q

(l),+
i−1/2

)]}
Pi−1/2(k, l)F lag,(k)(q(k),−i−1/2,q

(l),+
i−1/2

)

+max
{
0, sgn

[
u(k)int

(
q(l),−i−1/2,q

(k),+
i−1/2

)]}
Pi−1/2(l, k)F lag,(k)(q(l),−i−1/2,q

(k),+
i−1/2

)

+min
{
0, sgn

[
u(k)int

(
q(k),−i+1/2,q

(l),+
i+1/2

)]}
Pi+1/2(k, l)F lag,(k)(q(k),−i+1/2,q

(l),+
i+1/2

)

−min
{
0, sgn

[
u(k)int

(
q(l),−i+1/2,q

(k),+
i+1/2

)]}
Pi+1/2(l, k)F lag,(k)(q(l),−i+1/2,q

(k),+
i+1/2

)

+Nint,i

2

(
F lag,(k)(q(l)i ,q(k)i

)−F lag,(k)(q(k)i ,q(l)i
))

II



−max(δiα(l)i ,0)F lag,(k)(q(k)i ,q(l)i

)
∆x

+max(δiα
(k)
i ,0)F lag,(k)(q(l)i ,q(k)i

)
∆x.

(65)

Herein, (I) represent the muscl method and relaxation terms, and (II) are
correction terms. Note that they involve Riemann problems between the
two phases, centred in the computational cells and not at the cell in-
terfaces. As shown above, they arise from the non-conservative terms,
F lag,(k), in (I). Further details are discussed by Papin [13, Part II, Chapter 3].
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3.4 Comparison with ‘conventional’ model

The ‘conventional’, continuous model given by (1) and (2) can be written
as

∂α(k)q̂(k)

∂t
+∇ · (αkF̂ (k)) = Ŝ(k), (66)

where

q̂(k) =
[
ρ(k), ρ(k)u(k)

]T
, (67)

F̂ (k) =
[
ρ(k)u(k), ρ(k)

(
u(k)

)2 + p(k)
]T
, (68)

and

Ŝ(k) =
[

0, p(k)int
∂α(k)

∂x

]T
. (69)

Recall the present (semi-) discrete model (40):

d
dt

(
α(k)i q

(k)
i

)
+ 1
∆x

(
E (XF)(k)i+1/2 − E (XF)(k)i−1/2

)

= 1

∆x

∫

Ci

{
E
(
S(k)

)
bound

+ E
(
S(k)

)
relax

}
dx, (70)

where

q(k) =
[
1, ρ(k), ρ(k)u(k)

]T
, (71)

F (k) =
[

0, ρ(k)u(k), ρ(k)
(
u(k)

)2 + p(k)
]T
, (72)

and

S(k) =
[
−u(k)int

∂X(k)

∂x
, 0, p(k)

∂X(k)

∂x

]T
. (73)

The system (70) has one more equation than (66); it is the volume-fraction
equation. Hence, (70) has a priori two independent pressures, while (66)
has only one (See Section 3.6 on page 20). In the ‘conventional’ model,
the volume fraction can be found using the equation of state (22), the
pressure equality, and the relation αg + α` = 1, whereas in the discrete-
equation model, the volume fraction is found from a transport equation.

Except for the above-mentioned differences, the left-hand sides are ana-
logous. q̂(k) is (implicitly) volume-averaged, while q(k) is ensemble-averaged.
F̂ (k) is implicitly volume-averaged, while the ensemble-averaging of F (k) is
shown explicitly.

The correspondence between the right-hand sides is more subtle. The
right-hand side of (70) can be substituted by the right-hand side of (65).
The expression Ŝ(k) for the ‘conventional’ model is simpler, but a lot of
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necessary modelling effort is hidden away in the interfacial pressure p(k)int .
Several of the interfacial-pressure models presented in the literature seem
to be chosen such that the eigenvalues of the resulting system coefficient
matrix are real for a range of suitable flow conditions. One of the main
advantages of the present method, on the other hand, is that it avoids
several problems regarding hyperbolicity. This is discussed somewhat
further in Section 3.7.

Note that the pressure p(k) in (73) is the pressure at the interface, hence
there is a connection to the ‘conventional’ model (69). However, in the dis-
crete model, the interfacial pressure and velocity come from the solution
of Riemann problems at the interface. We hypothesize that this might
be a useful point of view with respect to the modelling of the interfacial
quantities.

3.5 The Riemann problem

Due to the discrete nature of the present model, the Riemann problems to
be solved are between two pure fluids. Hence, the equations defining the
Riemann problems are the isentropic Euler equations with the addition
of an advection equation for the phase-indicator function. The employed
equation of state may have different parameters in the two states.

The solution to the Riemann problem for fluid dynamics is described by
Toro [17], LeVeque [10]. However, LeVeque [9] gives details with respect
to the isentropic Euler equations.

For the isentropic Euler equations, there is no contact discontinuity, there-
fore one cannot distinguish between the fluids on the right-hand and on
the left-hand sides. However, in the present case there is also an advec-
tion equation for the phase-indicator function, which adds the required
contact discontinuity. Hence the hypothesis of Abgrall and Saurel [1] that
the volume fraction is advected by the speed given by the corresponding
Riemann problem, often denoted by u∗, see Figure 2 on the next page. On
each side of the point moving with speed u∗, we have pure phase k or l.
Moreover, the Rankine-Hugoniot relations imply that at this point, there
must be equality of pressure (denoted by p∗) between the left-hand and
right-hand states. Therefore, the Riemann problem can be solved.
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Figure 2. Structure of the solution to the Riemann problem.

The equations defining the Riemann problem are

∂X(k)

∂t
+u(k)int

∂X(k)

∂x
= 0,

∂
∂t
(
X(k)ρ(k)

)+ ∂
∂x

(
X(k)ρ(k)u(k)

) = 0,

∂
∂t
(
X(l)ρ(l)

)+ ∂
∂x

(
X(l)ρ(l)u(l)

) = 0,

∂
∂t
(
X(k)ρ(k)u(k)

)+ ∂
∂x

(
X(k)ρ(k)u(k)u(k) +X(k)p(k)) = 0,

∂
∂t
(
X(l)ρ(l)u(l)

)+ ∂
∂x

(
X(l)ρ(l)u(l)u(l) +X(l)p(l)) = 0,

(74)

where we take u(k)int = u∗. Since either X(k) or X(l) is zero on each side of
the contact discontinuity, it suffices to solve the Riemann problem corres-
ponding to the pure-phase isentropic Euler equations, using the appropri-
ate equation of state.

Another way to look at (74), is to write

∂X(k)

∂t
+uint

∂X
∂x
= 0,

∂
∂t
(
ρ
)+ ∂

∂x
(
ρu

) = 0,

∂
∂t
(
ρu

)+ ∂
∂x

(
ρuu+ p) = 0,

(75)

where the equation of state is p = p(ρ,X(k)), that is, the equation of
state of phase k is employed when X(k) = 1 and the equation of state
of phase l is used otherwise. The velocity u is constant across the con-
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tact discontinuity, that is, u∗l = u∗r . Moreover u = uint there. Hence the
Rankine-Hugoniot conditions

[ρ(u−uint)] = 0,
[ρu(u−uint)+ p] = 0,

(76)

imply that p∗l = p∗r .

The velocity as a function of pressure through a rarefaction wave is given
by

u(k)(p(k)) = u(k)s ± c(k) ln
{
p(k) + ρ(k)◦ (c(k))2
p(k)s + ρ(k)◦ (c(k))2

}
, (77)

where the negative sign corresponds to the eigenvalue λ(k)1 = u(k) − c(k)
and the positive sign corresponds to λ(k)2 = u(k) + c(k). The subscript s
denotes the known state, that is, the left state for λ(k)1 and the right state
for λ(k)2 .

Across a shock, the velocity function is

u(k)(p(k)) = u(k)s ± p(k) − p(k)s
c(k)

√(
p(k) + ρ(k)◦ (c(k))2)(p(k)s + ρ(k)◦ (c(k))2)

, (78)

when the equation of state (22) is used, where again the negative sign
corresponds to the eigenvalue λ(k)1 = u(k)− c(k) and the positive sign cor-
responds to λ(k)2 = u(k) + c(k). If p∗ > pl, then the 1-wave is a shock, else
it is a rarefaction. Similarly, if p∗ > pr, then the 2-wave is a shock, else it
is a rarefaction. Using this, equations (77) and (78), as well as the proced-
ure described by Toro [17, Section 4.5], an exact Riemann solver has been
written. However, for the presently-considered test problems, an acous-
tic solver, or ‘primitive-variables Riemann solver’ (pvrs), [17, Section 9.3]
gave very similar results, and shorter (in the order of 50 %) cpu times.

The principle of the acoustic solver is a linearization of the shock and
rarefaction waves. In the present work, we have chosen to use the acous-
tic solver for two reasons: Simplicity and robustness. The robustness
is required since we solve Riemann problems between two pure fluids
with possibly very different equation-of-state parameters. Other possible
choices for approximate Riemann solvers are hll-type schemes, relaxa-
tion schemes, etc.

Consider the solution to the liquid–gas Riemann problem shown in Fig-
ure 3(a) on the following page. The left-hand state is gas, whereas the
right-hand state is liquid. The input data correspond to the ‘Shock tube
2’ test case, described in Section 5.2 on page 27. The curves in the figure
are plots of (77). The legend ‘q1l’ denotes the curve corresponding to λ1
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Figure 3. Solution to a liquid–gas Riemann problem.

going through the left-hand state. Analogously, ‘q2r’ is for λ2 and goes
through the right-hand state, etc. The curves for the liquid have a much
smaller gradient than those for the gas, since the liquid has a higher speed
of sound. The exact solution to the Riemann problem, denoted by ‘ex’ in
the figure, lies, in this case, on the intersection between the 1-rarefaction
from the left and the 2-rarefaction from the right. As can be observed
in Figure 3(b), the solution given by the acoustic solver (‘PVRS’) was not
much off; the predicted velocity was 0.02 % too high and the pressure was
0.9 % too low. The curves plotted using (77) and (78) were very nearly
linear and hardly distinguishable.

More physical phenomena, for instance surface tension, can be accounted
for in the discrete-equation model by including them in the Riemann-
problem definition. This, as well as viscous flows and other equations of
state, is discussed in more detail by Papin [13]. It is also possible to treat
phase transition [8].

3.6 Pressure relaxation

For the two-phase flows considered here, neglecting surface tension and
other effects, it is reasonable to assume pressure equality between the
phases. This has been achieved by performing an instantaneous pressure
relaxation at each time step, as described by Saurel and Abgrall [14]. The
present case was simpler, however, since the energy equation needed not
be accounted for. In short, after the hyperbolic operator has been applied,
the volume fraction is modified so as to render the two pressures equal,
keeping α(k)ρ(k) and α(k)ρ(k)u(k) constant. This leads to a second-degree
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equation with positive solution

α(`) = −ψ2 −
√
ψ2

2 − 4ψ1ψ3

2ψ1
, (79)

where

ψ1 =
(
c(`)

)2ρ(`)◦ − (c(g))2ρ(g)◦ , (80)

ψ2 = −
(
c(`)

)2(α(`)ρ(`) + ρ(`)◦
)+ (c(g))2(−α(g)ρ(g) + ρ(g)◦

)
, (81)

and

ψ3 =
(
c(`)

)2α(`)ρ(`). (82)

The instantaneous pressure relaxation can be thought of as eliminating
the volume-fraction equation. The present model is conditionally hyper-
bolic, whereas the equal-pressure models are dependent upon a suitable
choice for the interfacial pressure p(k)int , that is, they have more restrictive
conditions.

3.7 Interfacial-pressure modelling

When the expected number of internal interfaces Nint in a control volume
is larger than 0, the last term of (I) in (65) will tend to drive the ve-
locities and pressures of the two phases together, hence the name ‘re-
laxation term’. The effect increases with increasing Nint. In other words,
Nint is a relaxation parameter for both velocity and pressure, such that
a large Nint will cause equality of pressure and no slip (relative velocity)
between the phases. This is so because the present model is purely one-
dimensional: Fluid particles moving in only one dimension cannot pass
each other. The ‘conventional’ multiphase model has been averaged over
a control volume (or cross-section) and is therefore able to account for
some two-dimensional phenomena, such as slip. A similar cross-sectional
averaging could be performed for the present model. However, the calcu-
lations would be tedious and are outside the scope of the present paper.
Instead, we introduce these ‘two-dimensional’ effects in a more simplistic
manner, as described in the following, by setting Nint = 0 and by modify-
ing the expression for p∗.
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3.7.1 Standard p∗

A simple and linearized solution to the Riemann problem is given by
the acoustic solver, or ‘primitive variable Riemann solver (pvrs)’ [17, Sec-
tion 9.3]. The expression for the ‘star value’ of the pressure (see Figure 2
on page 18) is

p∗ = 1
al + ar

[
arpl + alpr + alar(ul −ur)

]
, (83)

where a ≡ ρc can be called the acoustic impedance and the subscripts
‘l’ and ‘r’ denote the left-hand and right-hand states, respectively. This
expression will be referred to as the ‘standard p∗’.

3.7.2 cathare model for p∗

In the cathare code, the following expression was employed for non-
stratified flows ‘simply to provide the hyperbolicity of the system’ [3]:

p(g) − p(g)int = p(`) − p(`)int = γ
α(g)α(`)ρ(g)ρ(`)

α(g)ρ(`) +α(`)ρ(g) (u
(g) −u(`))2. (84)

In Bestion [3], the factor γ does not appear explicitly. Evje and Flåtten [6]
took γ = 1.2.

Even though it might be difficult to derive the above expression in a rig-
orous way, we propose setting

p∗ = p − γ α(g)α(`)ρ(g)ρ(`)

α(g)ρ(`) +α(`)ρ(g) (u
(g) −u(`))2, (85)

with γ = 1.2 in the gas–liquid Riemann problems.

3.7.3 The 0 model for p∗

It is often beneficial to take a simple model when the applicability of
more complex models is unknown or difficult to evaluate. Consider the
following simple model for the interfacial pressure:

p(k) − p(k)int = 0. (86)

It is not in widespread use, however, for it yields complex eigenvalues in
the four-equation equal-pressure model. The present model, on the other
hand, does not, a priori, share this problem. Instead of the expression
(85), one may take

p∗ = 1

2
(p(`) + p(g)) = p, (87)
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where the last equality stems from the fact that we use instantaneous
pressure relaxation in the present work.

4 Reference method

To verify the numerical results obtained using the discrete-equation
model, we will compare them with those of an independent numerical
method, the ‘Roe5’ scheme, presented in Munkejord [11]. That scheme is
based on the continuous multiphase equations and instantaneous pres-
sure relaxation, and it uses a Roe-type Riemann solver.

Some care has to be taken when seeking to compare the results obtained
using the standard p∗ model (83) with those of a continuous model. It
is necessary to provide the continuous model with interface-models cor-
responding to the ones of the discrete model in the limit of a fine grid.
The continuous limit of the discrete-equation model has been studied by
Papin [13, Part II, Chapter 3] in two spatial dimensions, for Riemann solv-
ers whose ‘star values’ can be written in the form

p∗ = 1

a1 + a2

[
a1p2 + a2p1 + a1a2(u2 −u1)

]
, (88)

and

u∗ = 1

a1 + a2

[
a1u1 + a2u2 + p2 − p1

]
, (89)

for some choice of a1 and a2. Among the Riemann solvers fitting into the
above scheme are the acoustic solver, the hllc solver, and the relaxation
solver [13].

Here we present the limit expressions for 1D, and the case of no surface
tension. The interfacial pressure is

p(g)int = p(`)int =
1

a(g) + a(`)
[
a(g)p(`) + a(`)p(g) + a(`)a(g)(u(`) −u(g)) sgn(∂α(g)/∂x)

]
, (90)

whereas the interfacial velocity is given by

u(g)int = u(`)int =
1

a(g) + a(`)
[
a(g)u(g) +a(`)u(`)+ (p(`) −p(g)) sgn(∂α(g)/∂x)

]
.

(91)
Here we take a to be the acoustic impedance, and the above expressions
are equal to those for the ‘star values’ of the acoustic solver, except for
the appearance of the sign function.
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Table 1
Parameters used in the shock tube test problems.

Quantity Value Unit

cfl number, µ 0.9 –

Liquid speed of sound, c(`) 1000 m/s

Gas speed of sound, c(g)
√

105 m/s

Liquid reference density, ρ(`)◦ 999.9 kg/m3

Gas reference density, ρ(g)◦ 0 kg/m3

Number of interfaces per control volume, Nint 0 –

In the following, results from the Roe5 scheme will be shown together
with the present results for comparison.

5 Test calculations

Here we consider the two two-phase shock-tube problems investigated by
Evje and Flåtten [6]. They consist of a 100 m long tube, where the initial
state is constant in each half. These test problems enable the investigation
of various properties of the numerical scheme. However, it is difficult to
envisage a laboratory setup that might realize them.

The employed parameters are given in Table 1. The values for the speed of
sound and reference density used in the equation of state are equivalent
to the ones used by Evje and Flåtten [6]. The calculations have been per-
formed using the acoustic Riemann solver, our second-order scheme and
the van Leer slope-limiter function. The Courant-Friedrichs-Lewy (cfl)
number is defined by

µ = ∆t
∆x

max
∀k,∀i

(|u(k),∗i | + c(k)i
)
. (92)

5.1 Shock tube problem 1

This problem was introduced by Cortes et al. [4]. The initial states can be
found in Table 2 on the following page.
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Table 2
Initial states in Shock tube problem 1.

Quantity Left value Right value Unit

Liquid volume fraction, α(`) 0.71 0.70 –

Liquid velocity, u(`) 1.0 1.0 m/s

Gas velocity, u(g) 65 50 m/s

Liquid density, ρ(`) 1000.165 1000.165 kg/m3

Gas density, ρ(g) 2.65 2.65 kg/m3

Pressures, p(`) = p(g) 2.65 · 105 2.65 · 105 Pa

5.1.1 Standard p∗

The results are plotted in Figure 4 on the next page at time t = 0.1 s.
Here, the ‘standard’ expression (83) for p∗ has been employed. The graph
of the liquid volume fraction in Figure 4(a) is focused on the middle of
the tube, where differences between the grids appear more clearly.

Compared to the results of Evje and Flåtten [6] (see also Subsection 5.1.2),
some differences can be seen:

• The present method has less numerical diffusion (see e.g. the gas-
velocity profile for the 100-cell grid).

• There is an instability at x = 50 m in the liquid velocity plot, Figure 4(c)
on the following page.

• The ‘plateaux’ in the velocities are somewhat different.
• The jump in pressure at x = 50 m is larger in the present case, and

contrary to the case of Evje and Flåtten [6], the highest pressure is on
the left-hand side.

Figure 4 also shows results obtained using the Roe5 method on an
equidistant grid with a grid spacing, ∆x, equal to that of the 10000-cell
grid of the discrete-equation model. The employed interfacial closures
were the ones in Equations (90)–(91). It is clear that the discrete-equation
model and the Roe5 method give the same solution for fine grids.

5.1.2 cathare model for p∗

The case of the previous subsection has been recalculated employing the
cathare model (85) for p∗. The results are shown in Figure 5 on page 27.
The clearest difference from the preceding case, is that the pressure jump
at x = 50 m is much smaller. Moreover, the plateaux in the velocities and
in the pressure are straight, and in the case of the gas velocity, the levels
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Figure 4. Shock tube problem 1, calculated using the ‘standard’ p∗.

of the middle plateaux are slightly higher.

Figure 5 shows very close agreement between the present model and the
Roe5 scheme.

5.1.3 The 0 model for p∗

Results for the 0 model (87) are plotted in Figure 6 on page 28. As can
be observed, they are similar to the results in Figure 5 obtained using
the cathare model, except that the 0 model yields an undershoot in all
variables at x = 50 m, particularly in the liquid volume fraction and in
the liquid velocity. Furthermore, the undershoot increases with grid re-
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Figure 5. Shock tube problem 1, calculated using the cathare model for p∗.

finement. The results agree closely with those of the Roe5 scheme, which,
indeed, also displays undershoots at x = 50 m. This behaviour might be
a result of the complex eigenvalues of the ‘underlying’ one-pressure four-
equation two-phase model.

5.2 Shock tube problem 2

The second shock tube problem features a liquid velocity jump, as well
as a larger jump in the volume fraction. The initial states are displayed in
Table 3 on the next page.
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Figure 6. Shock tube problem 1, calculated using the 0 model for p∗.

Table 3
Initial states in Shock tube problem 2.

Quantity Left value Right value Unit

Liquid volume fraction, α(`) 0.70 0.10 –

Liquid velocity, u(`) 10 15 m/s

Gas velocity, u(g) 65 50 m/s

Liquid density, ρ(`) 1000.165 1000.165 kg/m3

Gas density, ρ(g) 2.65 2.65 kg/m3

Pressures, p(`) = p(g) 2.65 · 105 2.65 · 105 Pa
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Figure 7. Shock tube problem 2, calculated using the ‘standard’ p∗.

5.2.1 Standard p∗

Numerical results for the ‘standard’ expression for p∗ are shown in Fig-
ure 7. Again, the calculations performed using the discrete-equation model
agree very well with those of the Roe5 scheme. However, the pressure and
gas-velocity profiles are quite different from those of Evje and Flåtten
[6]. This has numerical, but above all, modelling reasons, as can be seen
by comparing with the results obtained using the cathare interfacial-
pressure model in Subsection 5.2.2.
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Figure 8. Shock tube problem 2, calculated using the cathare model for p∗.

5.2.2 cathare model for p∗

The results for the cathare model for p∗ are given in Figure 8. The fine-
grid results are quite similar to those of Evje and Flåtten [6].

Comparing with the results obtained using the standard p∗ in Figure 7
reveals that the main differences occur for the pressure (Figures 8(b) and
7(b)) and the gas velocity (Figures 8(d) and 7(d)), where the plateaux in
the middle section of the tube are on different levels. For the cathare
model, the pressure in the tube is nowhere higher than the initial value of
26.5 · 104 Pa. For the standard p∗ model, on the other hand, the pressure
in the middle-left section is 27 · 104 Pa. The situation for the gas velocity
is reversed: It is for the cathare model that gas velocities occur which
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Figure 9. Shock tube problem 2, calculated using the 0 model for p∗.

are higher than the initial value.

These differences are a result of the interfacial closure models, and there-
fore it would have been interesting to be able to compare the calculations
to experimental data.

5.2.3 The 0 model for p∗

Figure 9 shows the results obtained using the 0 model (87) for p∗. Like in
the case of Shock tube 1, the results are similar to those of the cathare
model for p∗. There are some differences, however: The pressure plateau
to the left of x = 50 m (Figure 9(b)) is lower than that of Figure 8(b), so
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that the pressure jump at x = 50 m is higher. Further, the plateau in the
gas velocity to the left of the middle of the tube in Figure 9(d) is higher
than that in Figure 8(d).

The plots for the 0 model in Figure 9 have more under- and overshoots
than those for the cathare model in Figure 8, but this is somewhat less
noticeable than for Shock tube 1 (Figures 6 and 5).

6 Conclusions

We have presented a five-equation isentropic version of the discrete
seven-equation two-phase model of Abgrall and Saurel [1]. In the discrete-
equation model, Riemann problems are solved between pure fluids.
Hence, the difficulty of non-conservative products is avoided while solv-
ing the Riemann problem. Another characteristic of the discrete-equation
model is that the properties of the Riemann solver influence the phasic
interaction.

We have shown how different interfacial-pressure expressions can be in-
corporated into the discrete-equation models. One example is the cath-
are expression, often cited in the literature.

Two shock-tube problems from the literature [6] have been considered.
The numerical results were strongly dependent on the employed expres-
sion for the interfacial pressure. The convergence properties of the scheme
were also affected.

When the cathare interfacial-pressure model was employed, our results
were similar to those presented by Evje and Flåtten [6].

The correspondence between the discrete-equation model and the ‘con-
ventional’ continuous model has been discussed. Continuous-limit ex-
pressions for the interfacial pressure and velocity were given for the dis-
crete model. These expressions were employed in the Roe5 scheme [11],
a continuous model. Very good agreement between the discrete-equation
model and the Roe5 scheme was obtained.

Acknowledgements

The first author has received a doctoral fellowship and an overseas fellow-
ship from the Research Council of Norway, and has had a one-semester

32



stay at Mathématiques Appliquées de Bordeaux (MAB).

The second author has received a PhD grant from the Commissariat à
l’Énergie Atomique of France and wishes to thank F. Coquel, Q. H. Tran
and N. Seguin for the interesting reflections at cemracs 2003 concerning
the system of equations considered here.

The authors are grateful to Rémi Abgrall at MAB for the fruitful discus-
sions during the preparation of the paper.

Thanks are due to Vincent Perrier at Mathématiques Appliquées de Bor-
deaux, and to Erik B. Hansen at NTNU.

The careful review of the referees is also acknowledged.

References

[1] Abgrall R., Saurel R. Discrete equations for physical and numerical
compressible multiphase mixtures. J. Comput. Phys. 186 (2) (2003)
361–396.

[2] Andrianov N., Warnecke G. The Riemann problem for the Baer–
Nunziato two-phase flow model. J. Comput. Phys. 195 (2) (2004)
434–464.

[3] Bestion D. The physical closure laws in the CATHARE code. Nucl.
Eng. Design 124 (3) (1990) 229–245.

[4] Cortes J., Debussche A., Toumi I. A density perturbation method
to study the eigenstructure of two-phase flow equation systems. J.
Comput. Phys. 147 (2) (1998) 463–484.

[5] Drew D.A., Passman S.L. Theory of Multicomponent Fluids, vol. 135
of Applied Mathematical Sciences. Springer-Verlag, New York, 1999.

[6] Evje S., Flåtten T. Hybrid flux-splitting schemes for a common two-
fluid model. J. Comput. Phys. 192 (1) (2003) 175–210.

[7] Karni S., et al. Compressible two-phase flows by central and upwind
schemes. ESAIM – Math. Model. Num. 38 (3) (2004) 477–493.

[8] Le Métayer O., Massoni J., Saurel R. Modelling evaporation fronts with
reactive Riemann solvers. J. Comput. Phys. 205 (2) (2005) 567–610.

[9] LeVeque R.J. Numerical Methods for Conservation Laws. Lectures
in Mathematics, ETH Zürich, Birkhäuser Verlag, Basel, Switzerland,
1990.

[10] LeVeque R.J. Finite Volume Methods for Hyperbolic Problems. Cam-
bridge University Press, Cambridge, UK, 2002.

[11] Munkejord S.T. Analysis of the two-fluid model and the drift-flux
model for numerical calculation of two-phase flow. Doctoral thesis,

33



Norwegian University of Science and Technology, Department of En-
ergy and Process Engineering, Trondheim, 2005. In progress.

[12] Niu Y.Y. Advection upwinding splitting method to solve a compress-
ible two-fluid model. Int. J. Numer. Meth. Fl. 36 (3) (2001) 351–371.

[13] Papin M. Contribution à la modélisation d’écoulements hypersoniques
particulaires. Étude et validation d’un modèle diphasique discret.
Thèse, Université Bordeaux 1, Mathématiques Appliquées, France,
2005.

[14] Saurel R., Abgrall R. A multiphase Godunov method for compressible
multifluid and multiphase flow. J. Comput. Phys. 150 (2) (1999) 425–
467.

[15] Saurel R., LeMetayer O. A multiphase model for compressible flows
with interfaces, shocks, detonation waves and cavitation. J. Fluid
Mech. 431 (2001) 239–271.

[16] Slattery J.C. Flow of viscoelastic fluids through porous media. AIChE
J. 13 (6) (1967) 1066–1071.

[17] Toro E.F. Riemann solvers and numerical methods for fluid dynamics.
Springer-Verlag, Berlin, second edn., 1999.

[18] van Leer B. On the relation between the upwind-differencing schemes
of Godunov, Engquist-Osher and Roe. SIAM J. Sci. Stat. Comp. 5 (1)
(1984) 1–20.

[19] Whitaker S. Advances in theory of fluid motion in porous media. Ind.
Eng. Chem. 61 (4) (1969) 14–28.

34


