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The deformation of a surfactant-covered, viscous drop suspended in a viscous fluid under the influence of an electric
field is investigated using numerical simulations. The full Navier–Stokes equations are solved in both fluid phases,
and the motion of the interface and the interfacial discontinuities are handled using the level-set method. The leaky-
dielectric model is used to take into account the effect of an electric field. The surfactant is assumed to be insoluble,
and an evolution equation for the motion of surfactant is solved along the drop surface. The surfactant concentration
and the interfacial tension are coupled through a non-linear equation of state.

The numerical results show that the effect of surfactant strongly depends on the relative permittivity and conductivity
between the fluids. The presence of surfactant can both increase and reduce the deformation, depending on the shape
of the deformation and the direction of the electrically induced circulation.
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I. INTRODUCTION

Electric fields are used to manipulate drops in several indus-
trial applications. These include taking advantage of induced
circulation to promote heat transfer in heat exchangers1 and
increasing the coalescence rate between water drops to en-
hance demulsification in crude oils2. It is common for such
fluid systems to contain surface-active agents (surfactants), ei-
ther naturally present as impurities or deliberately added to
modify the properties of the system. For the case of demul-
sification of crude oils, crude oils contain natural surfactants
such as asphaltenes, resins, waxes and naphthenic acids3, but
surfactants are also added to the system to act as a demulsifier.

The effect of surfactants on the steady-state deformation of
a drop has been studied by, among others, Milliken et al. 4 ,
Pawar and Stebe 5 and Eggleton and Stebe 6 , Eggleton et al. 7

for a drop in extensional flow and by Li and Pozrikidis 8 and
Lai et al. 9 for a drop in shear flow. Due to the external flow,
surfactant will be swept to the tips of the drop. This gives rise
to gradients in the interfacial tension which causes stresses
tangential to the surface, often denoted Marangoni stresses,
that try to redistribute the surfactant. The convection of sur-
factant gives a higher interfacial tension at the middle of the
drop and a lower interfacial tension at the tips compared to
a clean surface, which promotes a higher deformation. On
the other hand, as the drop is stretched, the surfactant concen-
tration is diluted due to the increase in interfacial area. For
high Marangoni stresses, the interfacial tension can increase
over the entire drop, and this dilatation can reduce deforma-
tion compared to a clean drop. For relatively dilute surfac-
tant concentrations, the Marangoni stresses are low, so that
the first effect dominates, and the deformation is larger than
that of a clean drop. For very high surfactant concentrations,
however, a small non-uniformity in surfactant gives rise to
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large Marangoni stresses, and the effect of dilatation becomes
dominant, resulting in lower deformation compared to a clean
drop. The influence of surfactants on breakup has been stud-
ied among others by Milliken et al. 4 and Eggleton et al. 10

for a drop in extensional flow and by De Bruijn 11 and Re-
nardy et al. 12 for a drop in shear flow. It was observed that
for dilute concentrations of surfactants, tip-streaming would
occur, where the drop tips would become highly curved and
emit small drops. In Teigen et al. 13 , surfactant solubility was
also found to have an appreciable influence on the breakup
dynamics.

When the velocity field is induced by an electric field as
opposed to externally applied through e.g. a shear flow, we
may expect the drop behavior to be different. Of particular
interest is the fact that a drop in an electric field may deform
into either a prolate shape or an oblate shape depending on
the electrical properties of the fluid system14,15. For the case
of prolate deformation, the induced circulation can in addi-
tion run both from pole to equator and vice-versa, which will
obviously affect the deformation when a surfactant is present.

To the authors’ knowledge, the only study of the com-
bined effect of electric fields and surfactants is by Ha and
Yang 16 . They demonstrated that for a relatively highly con-
ducting drop, the change in deformation is only due to a uni-
form lowering of interfacial tension. This is not surprising,
since for such a conductive drop, the electric field lines will
be close to perpendicular to the drop interface, and the electric
field inside the drop will be close to zero. Hence, the drop is
unable to support a tangential stress and as the drop reaches a
steady state the induced flow will tend to zero. The surfactant
will eventually redistribute itself due to diffusion and the de-
formation will become equal to that of a clean surface (given
the proper scaling of the electric field strength). For a leaky-
dielectric system in which the drop deformed into an oblate
shape, however, it was found that the presence of surfactant
gave a larger deformation than that of a clean surface.

The aim of this work is to study the deformation of a
surfactant-covered drop in an electric field using numerical
simulations. In Section II we give the mathematical formula-
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tion of the problem and present our numerical method. In Sec-
tion III we validate the method and investigate the steady-state
deformation for different configurations of electrical proper-
ties and the influence of surfactants. Concluding remarks and
proposals for future work are given in Section V.

II. MATHEMATICAL MODEL AND NUMERICAL METHOD

A. The level-set method

We consider a system of two immiscible phases separated
by an interface, 0. We use the level-set method17,18 to capture
this interface, which allows handling of the discontinuities at
the interface in a simple and accurate manner.

In the level-set method, the interface is defined implicitly
by the zero level set

0 = {x|φ(x, t) = 0}, (1)

where φ is the level-set function, which denotes the signed
distance to the interface. The level-set function moves with
the interface velocity uint according to

∂φ

∂t
+ u · ∇φ = 0. (2)

The standard level-set reinitialization procedure is used to
keep the level-set function as a signed distance function
throughout the computation. This is accomplished by solv-
ing

∂φ

∂τ
+ S(φ0)(|∇φ| − 1) = 0,

φ(x, 0) = φ0(x).
(3)

Reinitialization is performed every other time step.
With the level-set function as a signed distance function,

the normal vector (inward) can be calculated as

n = ∇φ|∇φ| , (4)

and the curvature as

κ = −∇ ·
( ∇φ
|∇φ|

)
. (5)

The density, ρ, viscosity, µ, permittivity, ε, and conduc-
tivity, σ , are discontinuous across the interface. We smooth
these properties over a narrow transition region using

ρ(H0) = ρ1 H0 + (1− H0)ρ2, (6)
µ(H0) = µ1 H0 + (1− H0)µ2, (7)

1
ε
= H0

ε1
+ 1− H0

ε2
, (8)

1
σ
= H0
σ1
+ 1− H0

σ2
, (9)

where H0 is the regularized Heaviside function, defined as

H0(φ) =


0 φ < −ε
1
2 + φ

2ε + 1
2π sin

(
πφ
ε

)
|φ| ≤ ε

1 φ > ε.

(10)

Here, ε is the smearing width. We employ a smearing width
of ε = 1.5h, where h is the grid spacing.

It was shown by Tomar et al. 19 that using a harmonic mean
for the electrical properties was beneficial over an arithmetic
mean.

We also define the regularized surface delta function,

δ0(φ) =
{

0 |φ| < ε

1
2ε

(
1+ cos πφ

ε

)
|φ| ≥ ε. (11)

B. Governing equations for the flow

We assume that the flow is governed by the axisymmetric
Navier–Stokes equations in each phase, with additional terms
accounting for interfacial-tension forces and electric forces.
The Navier–Stokes equations are

ρ

(
∂u
∂t
+ (u · ∇)u

)
= −∇p +∇ · [µ(∇u +∇uT )]
+ fc + fe,

∇ · u = 0,

(12)

where ρ is the density, u is the velocity, p is the pressure, µ
is the dynamic viscosity, fc is the capillary force and fe is the
electric force. The capillary force is given by the divergence
of the capillary-pressure tensor, Fc :

fc = ∇ · Fc = γ κ∇H0 − (∇0γ )δ0. (13)

Here, γ is the interfacial tension, δ0 is the regularized delta
function, I is the identity tensor, n is the inward-pointing nor-
mal vector, κ is the mean curvature and ∇0 = (I − n⊗ n)∇
the surface-gradient operator.

The electric force is given by the divergence of the Maxwell
stress tensor, fe = ∇ ·M , where

M = ε
[

E E − 1
2
(E · E)I

]
. (14)

Here, E is the electric field. We assume that the fluids are
leaky dielectric. That is, we assume that the volume charges
reach steady state in a much shorter time than the fluid. This
means that charges accumulate on the interface almost in-
stantly, and the equation for charge conservation,

Dqv
Dt
+∇ · J = 0, (15)

where J = σ E is the current density, can be simplified to

∇ · J = ∇ · (σ E) = 0, (16)
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where σ is the conductivity. Because the electric field is di-
vergence free, this can be written as

∇ · (σ∇9) = 0, (17)

where 9 is the electric potential.
We do not calculate the Maxwell tensor directly, but instead

calculate the electric force using an equivalent volume-force
representation given by

fe = −1
2
(E · E)∇ε + qvE, (18)

where qv = ∇ · (εE) is the volume-charge density.
Next, we assume that there is an insoluble surfactant

present on the interface, which modifies the interfacial ten-
sion. Here, we follow the approach introduced by Xu and
Zhao 20 and Xu et al. 21 , who developed a method for treating
surfactants using the level-set method. The dynamics of the
surfactant concentration, f , is governed by20,21

∂ f
∂t
+ u ·∇ f − n ·∇u · n f

= D f

(
∇2 f − n ·∇∇ · n f + κ(n ·∇ f )

)
,

(19)

where D f is the surfactant diffusion coefficient. We employ
the Langmuir equation of state to relate the interfacial tension
and surfactant concentration,

γ ( f ) = γ0

[
1+ β ln

(
1− f

f∞

)]
. (20)

Here, β = R̄T f∞/γ0 is the surface elasticity number, and f∞
is the maximum surfactant packing. R̄ is the universal gas
constant, T the temperature and γ0 is the interfacial tension of
the clean surface.

Since we assume that the surfactant is insoluble, it is only
defined on the interface. In order to solve the evolution equa-
tion numerically, we must therefore first extend the surfactant
concentration off the interface22. We do this by solving the
equation23

∂ f
∂τ
+ S(φ0)n · ∇ f = 0, (21)

where S is a sign function given by

S(φ) = φ√
φ2 + 21x2

. (22)

C. Non-dimensionalization

We solve the above equations in their dimensional form,
but express the results in terms of relevant non-dimensional
quantities. To cast the mathematical model in nondimensional
form, we introduce the following nondimensional variables,

denoted with a ∗,

x∗ = x
R
, t∗ =

√
γe

ρ2 R3 t, u∗ = u

√
ρ2 R
γe

, (23)

p∗ = pR
γe
, ρ∗ = ρ

ρ2
, µ∗ = µ

µ2
, (24)

f ∗ = f
f∞
, κ∗ = κR, ε∗ = ε

ε2
, (25)

σ ∗ = σ

σ2
γ ∗ = γ

γe
, E∗ = E

E∞
. (26)

Here, the time scale is based on the frequency of a freely oscil-
lating drop of radius R, and the pressure scale is based on the
capillary pressure. Subscript 2 denotes the continuous phase.
The electric field scale, E∞, is found by dividing the poten-
tial difference by the domain height. The interfacial tension is
scaled by the equilibrium interfacial tension, denoted by sub-
script e. This means that only the effect of a non-uniform in-
terfacial tension is highlighted, and not the effect of a uniform
lowering of the interfacial tension.

The above scalings yield the Navier–Stokes equations as

ρ∗
(
∂u∗

∂t∗
+ (u∗ · ∇)u∗

)
=−∇p∗

+ Oh∇ · [µ∗(∇u∗ +∇u∗T )]
+ f ∗c + CaE f ∗e

∇ · u∗ = 0,
(27)

where f ∗c and f ∗e are equivalent to fc and fe, only with di-
mensionless quantities. Two dimensionless quantities appear,
the Ohnesorge number, Oh = µ2/

√
ρ2γe R, which indicates

the ratio of viscous force to interfacial-tension force, and the
electric capillary number, CaE = ε2 R(E · E)∞/γe, which is
the dimensionless strength of the external electric field.

The equation for the electric potential becomes

∇ · (σ ∗∇9∗) = 0, (28)

and the surfactant equation becomes

∂ f ∗

∂t
+ u∗ ·∇ f ∗ − n ·∇u∗ · n f ∗

= 1
Pe

(
∇2 f ∗ − n ·∇∇ · n f ∗ + κ∗(n ·∇ f ∗)

)
,

(29)

where Pe = RU/D f is the surface Peclet number.
Henceforth we will omit the superscript ∗ for the non-

dimensional quantities.

D. Numerical method

The equations are spatially discretized on a Cartesian stag-
gered grid, with scalar values stored in cell centers and vec-
tor values stored at cell boundaries. The convective terms are
discretized using the fifth order Weighted Essentially Non-
Oscillatory (WENO) scheme24, and viscous terms are dis-
cretized using standard second-order central differences.



4

A second-order projection scheme is used to solve the
Navier–Stokes equations. First, a temporary vector field, a,
is calculated:

a =− (u · ∇)u + Oh∇ · [µ(∇u +∇uT )]
+ fc + CaE fe.

(30)

Then the pressure is found by solving

∇ ·
(∇p
ρ

)
= ∇ · a. (31)

Finally, the velocity field is calculated with

∂u
∂t
= a − ∇p

ρ
. (32)

The evolution in time is calculated using a four-step third-
order, strong stability-preserving (SSP) Runge-Kutta (RK)
method25,26. This method is also used for the level-set equa-
tion and the surfactant equation, while a four-step second-
order SSP-RK method is employed for the reinitialization of
the level-set equation and extrapolation of surfactant.

One substep in the main RK solver can be summarized as
follows:

1. Solve Eq. (17) for the electric potential and find the
electric field.

2. Calculate electric forces using Eq. (18).

3. Find the interfacial tension using Eq. (20) and calculate
interfacial-tension forces with Eq. (13).

4. Calculate a using Eq. (30) and solve Eq. (31) for pres-
sure.

5. Calculate the rate of change of the level-set function
using Eq. (2).

6. Extrapolate the surfactant concentration by solving
Eq (21).

7. Calculate the rate of change of the surfactant concentra-
tion using Eq. (19).

III. RESULTS AND DISCUSSION

We first present a comparison with theoretical results for the
steady-state deformation of a clean drop to validate our imple-
mentation and establish a frame of reference for the simulation
with surfactants. Then, we present results for the steady-state
deformation of a surfactant-covered drop for various electri-
cal properties. Finally, we discuss the influence of surfactants
on the transient deformation of a conductive drop when the
electric field is so high that no steady-state solution exists.

The computational domain is illustrated in Fig. 1. The sim-
ulations are performed in an axisymmetric, cylindrical coor-
dinate system, where the axis of symmetry is aligned with
the electric field. Additionally, it is assumed that the fluid

ǫ1,σ1

ρ1,µ1

ρ2,µ2

ǫ2,σ2

E∞

z

Symmetry plane

r
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m

m
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FIG. 1. Illustration of the computational domain.

mechanics are symmetric about the r -axis, while the electric
problem is anti-symmetric. This means that the simulations
are only performed in one quadrant of the drop, which reduces
the computational complexity. The domain size was 4R×4R,
and the grid spacing was h = R/20. Since we use a transient
numerical method, we stop the simulation when the relative
change in deformation from one time step to the next is less
than 1× 10−4.

An issue with level-set simulations is mass conservation.
Since the simulation times in this work are short and a rela-
tively fine grid is used, the mass loss is kept low. We also use
a more consistent formulation of the capillary surface force27,

fcapillary = γ κ∇H0, (33)

instead of the often cited

fcapillary = γ κδ0n. (34)

This significantly improves mass conservation. We ensured
that for all the simulations presented here, the change in mass
for both fluid and surfactant was less than 1 %.

A. Code validation

In this section, the code is validated by comparison to
small-deformation theory and other numerical results from the
literature.

1. Validation of electric force

In the limit of small perturbations, an expression for the
deformation of a leaky-dielectric drop in a leaky-dielectric
medium was derived by Taylor 14 to the first order, and later
extended to second order by Ajayi 28 . This can be written as

D = b − a
b + a

= k1CaE + k2Ca2
E, (35)
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FIG. 2. A map of the different induced flow patterns and deforma-
tions for µr = 1.

where a and b are the drop extensions along the r -axis and
z-axis, respectively. The coefficients k1 and k2 are given by

k1 = 9
16

σ 2
r

(2+ σr )2
fd ,

k2 = (139σr − 154)σ 2
r fd + (σ 2

r + 2σr − σrεr − 2εr )80β
80(2+ σr )3

k1,

fd =
σ 2

r − 2σr + 1+ (σr − εr )
[
2+ 3

5
2+3µr
1+µr

]
σ 2

r
,

β = 23
20
− 139

210
1− µr

1+ µr
− 27

700

(
1− µr

1+ µr

)
.

(36)
Here, subscript r denotes the ratio between phase 1 and phase
2. The form of deformation is given by fd . If fd > 0, the drop
will have a prolate shape. If fd < 0, the shape will be oblate.
If εr < σr , then fd > 0 and the deformation will always be
prolate. For εr > σr , however, both kinds of deformation
may occur. Additionally, when the deformation is oblate, the
induced flow pattern is always clockwise in the first quadrant
of the drop. For the prolate shape, the flow can be both clock-
wise and counterclockwise. A map of these situations is given
in Fig. 2.

Simulations of four different configurations were per-
formed at various electric capillary numbers and compared
to Eq. (35). The different configurations were chosen to cor-
respond to the different deformation types and flow patterns
given in Fig. 2, and are summarized in Table I. The viscosity
ratio is set to unity.

The results are shown in Fig. 3. For small CaE, the nu-
merical simulations are in good agreement with the first-order
theory, while for higher numbers, they start to deviate. This
behavior is expected since the theory is only valid for small
deformations, and our results are in line with other numeri-
cal investigations19,29,30. The second-order theory is a better
match to the simulations, which was also observed by Lac and
Homsy 31 .

The drop morphology along with induced flow patterns for
CaE = 0.4 are shown in Fig. 4. We see that for case A, the

TABLE I. The parameters used for validation of the electric forces,
together with the predicted deformation types and flow patterns.
C=Clockwise, CC=Counterclockwise.

Case σr εr fd Deformation Flow pattern

A 3 1 1.22 Prolate CC
B 3 3.5 0.25 Prolate C
C 1 2 -3.50 Oblate C
D 2 2.2857 0.00 None C

D
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Ajayi (1978)
Taylor (1966)
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ε
r
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r
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=2.2857
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=1,

ε
r
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CaE

FIG. 3. Comparison of numerical results (circles) and the small
deformation theory of Taylor 14 (dashed lines) and Ajayi 28 (solid
lines) for the parameters given in Table I.

flow is from equator to pole, while for cases B and C, the flow
is from pole to equator. These patterns match those predicted
from the theory.

2. Validation of Marangoni force

Here we consider a surfactant-covered drop in a velocity
field given by u = G(−r/2, z), and no electric field. An
expression for the resulting deformation was derived by Stone
and Leal 32 under the assumptions Ca = µ2G R/γ0 � 1,
Pe� 1 and µr = O(1). This can be written as

D ≈ 3Cabr

4+ Cabr
, (37)

br =
(80+ 95µr )+ 4βPe

Ca(1−β)
40(1+ µr )+ 2βPe

Ca(1−β)
. (38)

Here, we set the viscosity ratio to µr = 1 and the surfactant
parameters are Pe = 0.1 and β = 0.5.

Fig. 5 shows the simulated results together with Eq. (37)
and results from Stone and Leal 32 where they used the
boundary-integral method to simulate the drop deformation.
We observe good agreement with the theory at low Ca and
then the discrepancies get larger at higher Ca as expected. Our
results are also in good agreement with the boundary-integral
simulations of Stone and Leal 32 .
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FIG. 4. Drop deformation and induced flow pattern for CaE = 0.4 for the three typical cases given in Tab. I. Note that the velocity scale is
different in the three figures.
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FIG. 5. Comparison of small deformation theory and numerical sim-
ulations for a drop stretching in linear flow.

3. Grid refinement study

Table II shows the results of a grid refinement study. Case
C was computed with CaE = 0.2 and surfactant parameters
00 = 0.1 and β = 0.1. The error in deformation is measured
on three different grids, R/h = 20, 40, 80, and compared to
a reference solution taken at a grid size of R/h = 160. We
see that the ratio in errors is around 3. In Leveque and Li 33 ,
it was argued that a qth order method should produce a ratio
(4q−1)/(2q−1)when the solution on a grid not much finer is
used as the reference solution. A ratio of 3 indicates first-order
convergence.

B. Influence of surfactants on steady-state deformation

We now turn our attention to the steady-state deformation
of a drop with a surfactant present on the interface.

To limit the parameter space, we will consider the above
cases A, B and C, and vary the electric capillary number and

TABLE II. The errors in the computed deformation compared to the
solution for a grid size of R/h = 160.

R/h Dn − D160 Ratio

20 2.94× 10−1 -
40 9.21× 10−2 3.19
80 2.87× 10−2 3.21

D

0 0.3 0.6 0.9 1.2
0

0.2

0.4

0.6
Clean

f
0
=0.1

f
0
=0.3

f
0
=0.5

f
0
=0.7

CaE

FIG. 6. (Color online) Case A. Deformation as a function of electric
capillary number for various surfactant coverages.

surfactant coverage. For the surfactant, we choose an elastic-
ity of β = 0.2 and a surfactant Peclet number of Pe = 10.
The Ohnesorge number is set to Oh = 0.1 and the viscosity
ratio is set to unity unless otherwise noted.

1. Case A

We first study the effect of surfactants on the system with
prolate deformation and counter-clockwise flow. The defor-
mation as a function of electric capillary number for different
surfactant coverages is shown in Fig. 6. For low CaE, higher
surfactant concentrations lead to higher deformation. This is
due to the induced flow which for this case is from the equa-
tor to the poles (see Fig. 4(a)). This will transport surfac-
tant to the tip of the drop, which reduces interfacial tension
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at the poles. Since there must be a balance between the nor-
mal interfacial-tension forces, the hydrodynamic pressure and
the electric pressure, the drop extends more to yield a higher
mean curvature. However, as the drop is stretched further, the
average interfacial tension increases due to dilution of the sur-
factant. This will act to reduce deformation, and eventually
this effect becomes stronger than the effect of reduced inter-
facial tension at the tips, leading to less deformation. This is
clearly seen for f0 = 0.7 in the figure. At low CaE, the de-
formation is higher than for the lower f0 numbers, but at high
CaE, it becomes lower.

In Figure 7 we illustrate the drop shapes and velocity pat-
terns for electric capillary numbers 0.2, 0.8 and 1.2, and for
a clean and surfactant-covered drop. We immediately see the
reduced velocities for the surfactant-covered drop, which is
due to the Marangoni stresses acting in the opposite direc-
tion to the electrically induced shear stresses. An important
application area of electrically induced flow is enhanced mix-
ing, for instance in heat exchangers. Here, we see that the
presence of surfactants may significantly inhibit the internal
circulation, and this may be important for industrial applica-
tions. Additionally, we observe that for the higher CaE, the
velocities are larger near the tip of the drop. This leads to
an increase in surfactant convection here. This is further il-
lustrated in Figure 8, which shows the interfacial tension as a
function of arc length, s, starting from the tip of the drop and
moving in the clockwise direction. For low CaE, the inter-
facial tension follows a smooth S-curve, but for higher CaE,
there is a sharper gradient near the drop pole and very little
change near the equator.

In Figure 9, we plot the actual surfactant concentration for
CaE = 1.2. At low concentrations, the area around the equa-
tor is nearly depleted, and then there is a sharp gradient to-
wards the tip. However, since the concentration is low, this
only leads to modest gradients in the interfacial tension as
shown in Figure 8(c). At higher concentrations, the concen-
tration at the tips approaches the maximum surfactant pack-
ing. This leads to larger gradients in the interfacial tension
than for the low concentrations, and correspondingly higher
Marangoni stresses which lead to more uniform surfactant
profiles. The gradient of the interfacial tension, which is the
main component of the Marangoni stresses, is shown in Fig-
ure 10 for CaE = 1.2. From this we see that the Marangoni
stresses are largest in the area near the tip, where the convec-
tion is strongest, and that higher surfactant concentrations lead
to higher Marangoni stresses.

2. Case B

Here, we consider the case where the drop deforms in a
prolate fashion, but the induced flow is from the poles to the
equator. The deformation as a function of electric capillary
number for different surfactant coverages is shown in Fig. 11.
We see that a higher concentration of surfactant consistently
gives a lower degree of deformation. The reason for this is
that now surfactant is swept towards the equator instead of the
poles. The interfacial tension will therefore become higher at

the tips, and give a larger resistance against deformation than
for a clean drop.

Note that the deformation is relatively low for the CaE con-
sidered here. We would expect that dilatational effects would
occur here as well for higher deformations. However, for this
case these effects would only give an even lower deforma-
tion, further increasing the difference between the clean and
surfactant-covered drops. We would also expect, as we will
see in the next section, that the dilatational effects would oc-
cur sooner than for case A. This is because when surfactant is
swept towards the equator instead of towards the poles, it will
be spread over a larger surface area and thereby contribute less
towards a change in the balance between capillary forces and
electrical forces.

3. Case C

Next, we consider the case of oblate deformation, with in-
duced flow from the poles to the equator. The deformation
as a function of electric capillary number for different surfac-
tant coverages is shown in Fig. 12. For the chosen parameter
set, we see that the effect of surfactant is very small at low
CaE. As shown in the closeup in Fig. 12(b), the deformation
is slightly larger for increasing surfactant concentrations. This
is again because surfactant is swept towards the drop equator
by the induced flow, and the resulting low interfacial tension
here gives a corresponding lower resistance towards deforma-
tion. The change in deformation is lower than in Case A be-
cause the surfactant now is spread across the equator instead
of concentrated at the tips.

This also means that the relative effect of dilatation will oc-
cur earlier than for case A. This can be seen at higher CaE
from Fig. 12. For higher CaE (but still low D compared to
case A), the difference in deformation is completely reversed
such that the clean drop has the highest deformation and the
surfactant-covered drop with f0 = 0.7 has the lowest defor-
mation.

4. Influence of viscosity ratio

We end by presenting results on the influence of viscosity
ratio. This parameter has proved to be an important parameter
for the deformation of a drop in extensional flow. In Milliken
and Leal 34 it was shown that smaller viscosity ratios gave a
larger sensitivity to surfactant. We therefore rerun our pre-
vious simulations with a viscosity ratio of µr = 0.1. The
results for all three cases are presented in Figure 13. It is
evident that the difference in deformation due to surfactants
here is higher. The reason for this is that for higher viscos-
ity ratios, the internal circulation is already retarded due to
viscosity, and the contribution from the additional Marangoni
stresses will become relatively smaller than for lower viscos-
ity ratios. Since the circulation is higher here, more surfactant
will be swept towards the tips and the change in deformation
will be higher. The stronger Marangoni stresses at lower vis-
cosity ratios also make the dilatational effects less prominent.
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FIG. 7. Case A. Drop deformation and induced flow pattern. The right quadrant shows the clean drop and the left quadrant shows the
surfactant-covered drop with f0 = 0.7. The velocity scale is different in the three figures.
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FIG. 8. (Color online) Case A. Interfacial tension along the interface for various surfactant coverages.
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FIG. 9. (Color online) Case A. Surfactant concentration as a function
of arc length for various surfactant coverages.

For instance, we see that for the oblately deformed drop, in
Fig 13(c), that the deformation is now higher for higher sur-

factant coverages, even at high CaE.

IV. CONCLUSIONS

A level-set model for two-phase flows, coupled with mod-
els for electrohydrodynamic forces and surface-active agents
was developed to investigate the influence of surfactants on
the steady-state deformation of a drop in an electric field.

Leaky-dielectric fluids can deform into both prolate and
oblate shapes, depending on the ratio of conductivities and
permittivities. Additionally, the direction of the induced cir-
culation can be both clockwise and counter-clockwise for the
prolate shapes. It was found that for prolate deformation
and counter-clockwise circulation, the presence of surfactant
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ages.
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FIG. 11. (Color online) Case B. Deformation as a function of electric
capillary number for various surfactant coverages.

leads to greater deformation at low surfactant concentrations.
At high surfactant concentrations and high electric capillary
numbers, however, the effect of surfactant dilution becomes
stronger than the effect of reduced interfacial tension at the
tips, and the deformation decreases. This behavior is similar
to that of a drop in extensional flow.

For prolate deformation and clockwise flow, the surfactants
are swept in the opposite direction, and cause a reduction in
deformation. Although not shown here, it seems clear that di-
latational effects will lead to an additional reduction in defor-
mation for the surfactant-covered drop, and thereby increase
the differences between the clean and surfactant-covered case
further.

For oblate deformation, which always gives clockwise flow,
the results are similar to that of prolate deformation and
counter-clockwise flow, deformation is increased until dilata-
tional effects start to dominate. However, this occurs earlier
here, since the surfactant is not concentrated at the tips, but
instead spread out over the equator of the drop. Finally, it was
shown that for smaller viscosity ratios, the influence of surfac-
tant is stronger, since the relative importance of the Marangoni
stresses becomes higher.

In this work, only steady-state deformation was considered.
At high electric capillary numbers, no steady state exists and
the drop will stretch further and will eventually break up. It
would be of interest to investigate the influence of surfactants
on this breakup behavior. In particular, for a conductive drop
in an otherwise dielectric medium, the influence of surfac-
tant may be important even though it has no influence on the
steady-state deformation. The presented numerical method is
applicable to such a study as well.
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