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ABSTRACT 

 
This paper describes numerical simulations of two-phase electrohydrodynamics using a 
sharp-interface method. Simulations are performed on typical test cases from the 
literature, and the results are compared to methods that use a smeared interface. The 
results show that the sharp-interface method gives significant improvements in 
accuracy . 

   Index Terms  —  Numerical analysis, electrohydraulics, dielectric materials, finite 
difference methods, hydrodynamics, interface phenomena. 

 
1   INTRODUCTION 

ELECTROHYDRODYNAMIC flows are in general very 
complex due to the interactions between electric forces and 
flow dynamics, and analytical results are limited to simplified 
setups. The addition of more than one phase to the system 
further complicates the analysis. This inherent complexity 
encourages the use of numerical methods to gain additional 
insight into the physical phenomena.  

Early numerical simulations of electrohydrodynamics 
typically assume either Stokes flow or inviscid flow, which 
makes it possible to formulate the problem using integral 
equations. These equations can then be efficiently solved 
using the boundary-element method (BEM). In [1], the 
deformation of a drop was studied using this approach, and in 
[2], the interaction between drop pairs was investigated. 

In [3] and [4], a finite-element method which allowed a 
solution at finite Reynolds numbers was employed to study 
drop deformation in electric fields. It concluded that while the 
creeping-flow assumption was valid for low drop 
deformations, it was not able to predict phenomena occurring 
for higher deformations. 
 The methods mentioned so far do not take into account 
topological changes, e.g. the merging and breakup of drops. 
Recently, numerical methods have been developed that allow 

such topological changes. In the seminal paper [5], a front-
tracking method was presented that uses a set of connected 
marker points to represent the interface. The handling of 
topological changes is fairly complex. First, a search has to be 
made among the front elements to identify situations where a 
topology change is needed. Then, the elements have to be 
updated to account for the change. Additionally, when the 
interface is stretched, restructuring of the interface is 
necessary to maintain sufficient accuracy. This is a 
complicated process, especially in three dimensions. The 
jumps in physical properties across the interface is handled 
using smoothing. In [6], the front-tracking method was 
extended to account for electric fields, and the distribution of 
drops in a channel was investigated. This study, however, did 
not take the merging of colliding drops into account. 
 In [7], the Lattice-Boltzmann method (LBM) was used to 
study drop deformation in electric fields. The most attractive 
feature of the LBM for multiphase flow is that no explicit 
treatment of the interface is needed. Briefly, the main idea of 
the LBM is to model the flow on a mesoscopic scale. A 
particle distribution function is introduced whose evolution is 
governed by the collisions and propagation of the particles 
moving on a lattice. In order to simulate multiphase flows, a 
particle interaction force is introduced between the two 
components, which mimics the effect of a repulsive force. 

However, the resulting interface is diffusive, i.e. it is a 
transitional region where the jumps in physical properties 
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across the interface are smeared out. Unfortunately, in [7], the 
accuracy of this approach was not evaluated directly, but some 
discrepancies in the induced flow field compared to theory for 
a drop in an electric field were found, and these were 
attributed to the use of a diffuse interface.  
 A third method that has recently been used for simulating 
electrohydrodynamic flows is the coupled level-set and 
volume-of-fluid (CLSVOF) method [8]. In the level-set 
method [9, 10], the surface is described via an implicit 
function defined as the signed distance to the interface. This 
allows automatic handling of topological changes, along with 
simple calculation of normal vectors and curvature. A 
disadvantage with the method is that it does not inherently 
conserve mass. The VOF method uses a volume-fraction 
function to describe the interface. This approach ensures good 
mass conservation, but it is complicated to calculate the 
curvature accurately. In addition, the position of the interface 
is not known exactly, but is constructed using splines. The 
CLSVOF method combines the advantages of the two 
methods, and eliminates some of the disadvantages. The 
method was used in [11] to investigate electrohydrodynamic 
effects on film boiling in perfect dielectrics and in [12], the 
method was used on the leaky dielectric model and some 
accuracy tests were performed. In both papers, the continuous-
surface-force (CSF) approach was used to handle surface-
tension forces and electric forces. In this approach, a 
Heaviside function is used to smear the properties in a region 
around the interface. In [12], it was shown that by using a 
modified approach to the smearing of electrical properties, the 
accuracy was improved considerably. 
 The method used in the present work was proposed in [13, 
14]. It also uses the level-set method to capture the interface, 
but instead of using a Heaviside function to treat the 
discontinuities, the ghost-fluid method (GFM) [15,16] is used. 
The ghost-fluid method modifies the numerical stencils near 
the interface to directly take the discontinuities into account. 
This gives improved accuracy in the computation of surface 
forces. The high accuracy also significantly reduces the errors 
in mass conservation.  

In [14], the ability of the method to simulate drop 
oscillations, drop breakup, and drop-drop coalescence due to 
electric fields were presented. However, no test cases were 
performed that quantitatively measured the accuracy of the 
method. This work attempts to give a thorough evaluation of 
the method, comparing it to the test cases used in [12] and also 
to theoretical results for drop deformation. The discussion is 
limited to perfect dielectric fluids. It is possible to employ the 
method on the leaky-dielectric model as well, but that is more 
complex due to jumps in tangential stresses across the 
interface, and hence beyond the scope of this work. 

 
2  GOVERNING EQUATIONS AND 

NUMERICAL METHODS 
The numerical method used for the calculations is described 

in detail in [13, 14], and will only be briefly reviewed here.  
The full Navier-Stokes equations are solved in each phase, 
and the interface between the two phases is captured using the 
level-set method. The ghost-fluid method is used to treat 
discontinuities across the interface in a sharp manner. To 
account for electric forces, a Poisson equation is solved for the 
electric potential, which is then used to calculate the jump in 
the Maxwell stress tensor across the interface. 

2.1 FLOW EQUATIONS 
The flow is governed by the incompressible Navier-Stokes 

equations, with additional terms accounting for surface-
tension forces and electric forces: 
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Here, ρ is the density,  is the velocity vector, is the 
pressure, 

u p
μ  is the viscosity, is the surface-tension force and 

is the Maxwell stress tensor. 
F

M
The surface tension force, due to the presence of an 

interface, Γ , can be expressed by 
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where s is the arc-length, ( , )s tX  is the parameterization of 
the interface, x  is the spatial position and δ  is the Dirac delta 
function.  is given by f

 .σκ=f n  (2.3) 
Here, σ  denotes the surface-tension coefficient, κ  is the 
curvature of the interface, and  is the unit normal vector.  n

In this work, all equations are solved in an axisymmetric 
geometry, so that the divergence operator and Laplacian 
operator become 
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respectively. Note that the subscripts indicate the vector 
component, and not the partial derivative of the vector. In 
addition to the above Laplace operator, one has to add 

2/xf x−  to the viscous term in the x -momentum equation. 

2.2 ELECTRIC FORCES 
We assume perfect dielectric materials with no free charges. 

With these assumptions, the electric potential, Ψ , can be 
calculated from the following Laplace equation: 

 0·( ) 0,εε∇ ∇Ψ =  (2.6) 

where 0 8.8542 pF / mε = is the vacuum permittivity and ε is 



 

the relative permittivity of the fluid. The electric field can then 
be calculated as 

  (2.7) ,= −∇ΨE

and the Maxwell stress tensor as 
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Here,  is the identity tensor. With the above assumptions, I
M = 0  everywhere except at the interface. 

2.3 INTERFACE CAPTURING 
The interface is captured using the level-set method [9,10]. 

This method allows accurate computation of the evolution of 
an interface, along with automatic handling of topological 
changes. The ghost-fluid method [15, 16] is used to take 
discontinuities across the interface into account. This method 
handles the jumps in physical properties directly in the 
numerical stencils, without the need for any smearing of 
properties.  

The interface is defined by the zero level set 
 { | ( , ) 0},tφΓ = =x x  (2.9) 

and is evolved by 
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Here, φ  denotes the signed distance to the interface. Γu is 
the velocity on the interface. This velocity is not readily 
available, but in [17] it was shown that this velocity could be 
obtained by extrapolating the velocity orthogonally from the 
interface. This is achieved by solving  
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where τ is a pseudo-time and is a sign function. Here, S
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is used. Note that equation (2.11) is hyperbolic, so it is not 
necessary to solve it to steady state, since only the information 
a few grid points away from the interface is relevant to the 
evolution of the interface. 

The standard level-set reinitialization procedure presented 
in [9] is used to keep the level-set function as a signed 
distance function throughout the computation. This is 
accomplished by solving

 0
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Reinitialization is performed every second time step. 
One of the advantages with the level-set method is the easy 

calculation of normal vectors and curvatures. The unit normal 
vector can be found as 
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and the curvature as 
  (2.15) · .κ = −∇ n
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Figure 1.  Illustration of the discretization of a discontinuous variable across 
an interface. 
 

The ghost-fluid method will be illustrated here by 
considering the discretization of the following 1D Poisson 
equation: 

 .du du f
dx dx
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The ghost-fluid method requires jump conditions, which are 
relations between the physical quantities on each side of the 
interface. In the following, the interfacial jump is denoted by  
[ ]x x x+ −= − , where x+  is the interfacial value on the side of 
the interface where φ is positive, and x− is on the other side. 
For the purpose of this section, we assume that the interface 
conditions are given by 
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and 
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Suppose that we have the condition given in Figure 1, where 
an interface is located between k and . Instead of using 
the standard, second-order discretization 
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we would like to use the value at the interface, 
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where θ is the normalized distance to the interface, 
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An approximation of the interfacial value can be found by 
using the jump conditions. Discretizing equation (2.18) gives 
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We can now find the approximated value at the interface by 
using equation (2.17): 
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Finally, this can be inserted into (2.20) to give the following 
symmetric discretization: 
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where β̂ denotes the extrapolated value of the coefficient, 
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This method can be applied in a dimension-by-dimension 
fashion, so an extension to two and three dimensions is trivial. 
 The jump conditions for viscous, incompressible flow is 
given in [16] and for dielectric fluids in [13]. The jump in 
pressure is 
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The jumps in velocities are 
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For the electric potential, the jump conditions for perfect 
dielectrics are 
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2.4  NUMERICS 
A second-order projection scheme is used to solve the 

Navier-Stokes equations. First, a temporary vector field, , is 
calculated: 

a

  (2.29) ( · ) ·[ ( )].Tμ= − ∇ +∇ ∇ +∇a u u u u

Then the pressure is found by solving 
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Finally, the velocity field is calculated with 

 .p
t ρ

∂ ∇
= −

∂
u a  (2.31) 

The evolution in time for the Navier-Stokes equations, the 
level-set equation and the velocity extrapolation is performed 
using a four-step, third-order, strong stability preserving (SSP) 
Runge-Kutta (RK) method (see e.g. [18]), while a four-step, 
second order SSP RK method is employed for the 
reinitialization of the level-set equation. The equations are 
spatially discretized on a staggered grid, with scalar values 
stored in cell centers and vector values stored at cell 
boundaries. The convective terms are discretized using the 
fifth order Weighted Essentially Non-Oscillatory (WENO)  
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Figure 2.  Configuration of the horizontal-interface test case. 
 
scheme [19], and viscous terms are discretized using standard 
second-order central differences. 
 

3 METHOD EVALUATION 
This section compares results from the CSF approach used 

in [12] and [11] with results from the sharp-interface method 
used here. The first test case is a horizontal interface in an 
electric field. This test case tests the ability of the numerical 
method to accurately predict the jumps across an interface. 
Then, results for the deformation of a dielectric drop subject 
to an electric field are presented. 
 

3.1 A HORIZONTAL INTERFACE IN AN ELECTRIC 
FIELD 

An interface is placed between two parallel plates, the 
upper medium has permittivity ε1 and the lower medium has 
permittivity ε . The upper parallel plate is given a potential Ψ  
while the lower plate is grounded. This configuration is 
illustrated in Figure 2. This test case is excellent for evaluating 
the handling of the discontinuity in electrical properties, and 
was considered in both [12] and [11]. In [11], an arithmetic 
mean is used to find the smoothed

2 0

 electric permittivities, while 
in [12], it was shown that using a harmonic mean gives 
significantly better results. In this section, these results are 
compared to the results obtained with the ghost-fluid method.  

The equation for the electric potential is a Laplace equation 
with constant coefficients in each phase. This equation can be 
solved by noting that the potential is continuous across the 
interface (equation (2.28)). The solution is 
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The electric field in each phase can then be found by using 
equation (2.7): 

 

0
1

1 2

0
2

2 1

2 1
/ 1

2 1 .
1 /

E
L

E
L

ε ε

ε ε

Ψ
= −

+
Ψ

= −
+

 (3.2) 

The pressure jump is given by equation (2.26), which for this 
case is 



 
Table 1. Physical properties and analytical values for the horizontal-interface 
test case. 
 
Quantity 
 

 
Value 

 
Plate distance, L  0.01 
Permittivity 1, 1ε  70  
Permittivity 2, 2ε  1 
Potential difference,  0Ψ 100  
Electric field 1,  1E 22.8169 10×−  
Electric field 2,  2E 41.9718 10×−  
Pressure jump,  [ ]p 31.6959 10−×−  
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Figure 3.  The horizontal-interface test case. The electric potential in the y-
direction, scaled by the potential difference, for a calculation with 10 grid 
points. 
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We now analyze the accuracy of the ghost-fluid method for 
this test case. The chosen physical parameters along with the 
computed analytical solutions are given in Table 1, and are 
equivalent to those used in [12]. 

The ghost-fluid method uses an extrapolated value for the 
value at the interface in the discretization. Because the 
solution is linear in this particular case, this should give an 
exact solution for all grid sizes. Figure 3 shows the solution 
for the potential for a grid with 10 grid points, compared with 
the analytical solution. The 2-norm of the relative error is 

, which means that the electric potential is 
accurately solved to machine precision, as expected. In [11] 
and [12], data is not provided for the accuracy of the CSF 
method when applied to the horizontal-interface test case. We 
found that for 10 grid points, the 2-norm of the relative error 
was 0.85% when using a harmonic mean to smear the 
permittivities, and 65.9% when using an arithmetic mean.  

1615. 9 02 −×

For the error of the electric field of phase 1, together with 
the error in the pressure jump, [12] report  and 
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Figure 4.   The horizontal-interface test case. The electric field in the y-
direction, scaled by the exact solution for phase 1, for a calculation with 10 
grid points. 
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Figure 5.  The horizontal-interface test case. The pressure in the y-direction, 
scaled by the exact solution for phase 1, for a calculation with 10 grid points. 

 
ghost-fluid method for calculating the gradient of the potential 
and for the discretization of the pressure equation, so again we 
expect an exact solution for all grid sizes for this particular 
test case. Figure 4 and Figure 5 show the computed solutions 
of the electric field and the pressure, respectively, together 
with the analytical solutions, for a grid with 10 points. The 
relative error for the value of the electric field was 1512. 1 02 −×  
and the error for the pressure jump was 1517. 4 06 −× . Clearly, 
the ghost-fluid method is significantly better than the CSF 
method for this test case. 

3.2  A SPHERICAL DROP SUBJECT TO AN 
ELECTRIC FIELD 

This test case serves to assess the accuracy of the ghost-
fluid method for an axisymmetric problem. Finding the 
potential around a dielectric sphere in an electric field is a 
classical problem in electrodynamics (see e.g. [20]), with the 
following solution in spherical coordinates: 
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Here, ε  is the permittivity ratio between the drop and the 
surrounding medium. The electric field is then  
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Note that this is the electric field in the x-direction and y-
direction, but defined using r and θ for the purpose of a more 
compact presentation. These values can be compared to those 
found by the present algorithm by taking only one time step, 
so that there is no deformation of the sphere. The physical 
properties used for the test case is given in Table 2. A domain 
size of  was used. The error in the potential, together 
with the convergence behavior, is given in Table 3. The order 
of convergence is defined as 
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Where  is the error on a grid with  grid points. The error 
is low even for small grid sizes, and the convergence is that 
expected of the ghost-fluid method. 

iE iN

Figure 6 shows a comparison of the potential contour lines 
for the analytical and numerical result. Figure 7, which shows 
stream-traces of the electric field, further demonstrates the 
accuracy of the ghost-fluid method. 

 
Table 2. Physical properties and analytical values for the spherical-drop test 
case. 
 
Quantity 
 

 
Value 

 
Drop radius,  R 31 10−×  
Surface tension, σ  432 10−×  
Permittivity 1, 1ε  10  
Permittivity 2, 2ε  1 
Initial electric field,  0E 53.4543 10×  
 
Table 3.  The 2-norm of the error in the potential for the spherical-drop test 
case, along with the order of convergence. 
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Figure 6.  The spherical-drop test case. Comparison of analytical (solid) and 
numerical (dashed) potential around a dielectric drop for / 40R h = . 

 

0 0.5 1 1.5 2
0

0.5

1

1.5

2

x / R

y
/R

0 0.5 1 1.5 2
0

0.5

1

1.5

2

 
Figure 7.  The spherical-drop test case. Comparison of analytical (solid) and 
numerical (dashed) electric field around a dielectric drop for / 4R h 0= . 
 

In [12], they compared the pressure jump across the 
interface along the x-axis, where the jump in pressure is the 
highest, to the theoretical result. The pressure jump is given 
by equation (2.26), which for this particular problem becomes 
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The error for the maximum pressure jump when using the 
ghost-fluid method is given in Table 4. For / 1R h 0= , the 
 
Table 4.  The relative error for the maximum pressure jump across the 
interface of a spherical drop. 
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5 8.74 - 
10 3.38 1.37 
20 1.63 1.05 
40 0.482 1.76 
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Order 

5 23.1 - 
10 12.3 0.91 
20 7.59 0.70 
40 3.69 1.04  



 

error is nearly equal to that reported in [12] for / 160R h = . 
This shows the superiority of the sharp-interface approach 
compared to the smeared-interface approach. The 
convergence behavior is similar for the two methods. 

3.3 DEFORMATION OF A SPHERICAL DROP 
SUBJECT TO AN ELECTRIC FIELD 

If an electric field is applied to an initially spherical drop in 
a matrix fluid of different permittivity, the drop will deform. 
As explained in [2], a perfect dielectric drop will always 
stretch in the direction of the electric field. The amount of 
stretching depends on the permittivity ratio, ε , and the ratio 
between electric forces and capillary forces, expressed by the 
dielectric Bond number, 
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An expression for the steady-state deformation was found in 
[21], by an energetic approach. Good agreement with finite-
element computations was reported. The expression can be 
written as 
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   For permittivity ratios above approximately 20, the 
elongation is no longer single-valued, and hysteresis may 
occur. The parameter range that allows hysteresis is very 
narrow, 20 25ε≤ ≤ . For other values, the drop shape is 
unstable, and the drop will begin to emit small drops from its 
tips to lower its radius and thereby reattain a stable value. A 
series of numerical calculations were performed to compare 
the numerical method to the above theoretical result.  To avoid 
having to run the simulations to steady state, the simulations 
were run for one oscillation period with viscosities equal to 
zero, and the average between the maximum and the minimum 
value was used as the steady state value. This will not be 
entirely correct due to numerical diffusion, but is considered 
sufficient for the present purpose. The computational domain 
was , and a grid size of 1  was used. For this 
grid size, the relative error in using the values for an inviscid 
computation compared to running to steady state was found to 
be for  when using the ghost-fluid 
method. 

03 9R R× 0 60 481×

31.3 10−× eBo 0.05=

A comparison between the theoretical values and the 
computational values for the ratio of the semi-major and the 
semi-minor axes are given in Figure 8. The CSF results are 
computed using the approach from [11], with permittivities 
approximated using harmonic mean. The results for the ghost-
fluid method are significantly closer to the theoretical 
predictions than the results for the CSF approach.  
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Figure 8.  Deformation of spherical-drop test case. Comparison of the 
deformation between the theoretical values given by equation (3.9) and the 
numerical results for varying dielectric Bond number and permittivity ratios. 
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Figure 9. The prolate shape and induced flow field for  and Boe 0.05=

10ε =  when velocities are at a maximum. The contours show velocity 
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An example of the induced flow field is given in Figure 9. 

This is when the flow field reaches a maximum, just before 
the surface-tension forces begin reversing the flow. Note that 
the velocity is highest towards the pole of the drop. For high 
field strengths, this can lead to conical ends, as shown in [22].  
The flow tends to zero as the droplet reaches its equilibrium 
shape. 

Since the electric field is abruptly applied at 0t = , inertia 
will cause the drop to overshoot the asymptotic value for the 
deformation, and then oscillate about this value until the 
viscous effects have damped out the motion. This overshoot 
may cause the drop to become unstable at values lower than 
those predicted by equation (3.9). For the values used here, 
the theoretical expression predicts breakup at eBo 0.522≈ . 
However, at eBo 0.5≈ , the numerical calculations no longer 
reach a steady-state value. Predicting when breakup occurs 



 

will then no longer be a function of just  and eBo ε , but will 
also depend on the viscosities and densities of the two media. 
Investigating such a criterion is beyond the scope of this work. 

4 CONCLUSION 
This work presented an evaluation of a sharp-interface 

approach to simulating two-phase, electrohydrodynamic 
flows. The sharp-interface method was shown to give 
significant improvements in accuracy compared to smeared-
interface approaches.  

The generality of the method allows it to be used in a wide 
range of problems involving two-phase flows and electric 
fields. The inherent handling of topological changes makes 
the method attractive for studying problems involving breakup 
or coalescence, for instance film boiling and emulsion 
stability.   

Only perfect dielectric fluids were considered in this work. 
A natural extension is to apply the method to the leaky 
dielectric model. This will be presented in a future work.  
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