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Abstract

This paper presents a study of pressure and velocity relaxation in two-phase flow
calculations. Several of the present observations have been made elsewhere, and the
purpose of the paper is to strengthen these observations and draw some conclusions.
It is numerically demonstrated how a single-pressure two-fluid model is recovered
when applying instantaneous pressure relaxation to a two-pressure two-fluid model.
Further, instantaneous velocity relaxation yields a drift-flux model. It is also shown that
the pressure relaxation has the disadvantage of inducing a large amount of numerical
smearing.

The comparisons have been conducted by using analogous numerical schemes, and a
multi-stage centred (MUSTA) scheme for non-conservative two-fluid models has been
applied to and tested on the two-pressure two-fluid model. As for other, previously
tested two-phase flow models, the MUSTA schemes have been found to be robust,
accurate and non-oscillatory. However, compared to their Roe reference schemes,
they consistently have a lower computational efficiency for problems involving mass
transport.

Subject classification: 76T10, 76M12, 65M12, 35L65

Keywords: Two-phase flow, two-fluid model, MUSTA scheme, pressure relax-
ation, velocity relaxation

1 Introduction

The modelling of dynamic two-phase flows has a large range of industrial ap-
plications, including the transport of oil and gas, energy processes, and safety
analyses of nuclear power plants. This kind of modelling is challenging in several
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ways. First, the Navier–Stokes equations are averaged (see Drew and Passman,
1999). This brings forward unknown terms for which it is necessary to find mod-
els. Unfortunately, the ‘basic’ two-fluid model, in which as many closure terms
as possible have been set to equal to zero, has complex eigenvalues (Ramshaw
and Trapp, 1978). Further, in its hyperbolic region, the two-fluid model has
several waves whose velocity may vary greatly. This, as well as the appearance of
non-conservative terms, makes it challenging to construct robust and accurate
numerical methods (Toumi, 1996; Castro and Toro, 2006; Parés, 2006).

The two-pressure two-fluid model has an eigenstructure which lends itself
much more easily to analysis than that of the ‘basic’ single-pressure two-fluid
model. Furthermore, the two-pressure two-fluid model is hyperbolic everywhere,
except at the sonic points (Ransom and Hicks, 1984). However, for a large class
of two-phase flow problems of interest, the phasic pressures are so strongly
coupled that a pressure-relaxation procedure is required.

Saurel and Abgrall (1999) discussed a two-fluid model augmented by a volume-
fraction advection equation and so yielding a two-pressure model. It can be
thought of as an extension of the Baer and Nunziato (1986) model. The two-
pressures-with-instantaneous-pressure-relaxation method has been investigated
by several researchers (Abgrall and Saurel, 2003; Karni et al., 2004; Lallemand
et al., 2005; Loilier et al., 2005). Still, however, there is a need to clarify the
potential advantages of this approach, as opposed to using a more ‘direct’ flow
model and then solving it using a suitable numerical method for non-conservative
balance laws.

The multi-stage centred (MUSTA) scheme (Toro, 2003; Titarev and Toro, 2005;
Toro, 2006) is aimed at coming close to the accuracy of upwind schemes while
retaining the simplicity of centred schemes. It does not require any information
of the eigenstructure of the model, except for an estimate of the maximum
eigenvalue for the Courant-Friedrichs-Lewy (CFL) criterion. Instead, the Riemann
problem at the cell interface is approximated numerically by employing a first-
order centred scheme on a local grid. The MUSTA scheme has been tested on the
Euler equations (Titarev and Toro, 2005; Toro and Titarev, 2006), as well as on a
drift-flux two-phase flow model (Munkejord et al., 2006) and on the shallow-water
equations (Guo et al., 2008). Munkejord et al. (2009) derived a MUSTA scheme for
the two-fluid model with or without an energy equation by using the framework
of formally path-consistent schemes of Parés (2006); Castro et al. (2008).

The contribution of this paper is to clarify and strengthen previous obser-
vations by several authors, that in some cases have not been explicitly stated.
First, the MUSTA scheme is applied to and tested on another equation system – a
two-pressure two-fluid model. The scheme is found to be robust and accurate,
but not efficient. The efficiency penalty is contrary to the hope of Toro (2003) of
presenting a non-costly scheme.

Next, a direct comparison between computations using a single-pressure and
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those using a two-pressure two-fluid model can be performed due to the use of
the MUSTA scheme in each case. Different propositions have been set forth in
the literature regarding the practical value of the pressure-relaxation approach,
and the present direct comparison is thought to contribute to more certain
conclusions. Here it is clearly seen that the two-pressure two-fluid model with
instantaneous pressure relaxation converges to the single-pressure two-fluid
model, and it should be noted that this includes any instabilities due to complex
eigenvalues in the single-pressure two-fluid model. This observation is in agree-
ment with the remarks of Karni et al. (2004) and Hérard and Hurisse (2005). A
further point to note is that the pressure relaxation is prone to cause significant
numerical smearing. The present study therefore confirms the findings of Munke-
jord (2007) for the Roe scheme. Roe methods for two-phase flow models have
been studied e.g. by Toumi (1996); Toumi and Kumbaro (1996); Evje and Flåtten
(2003); Karni et al. (2004); Ndjinga et al. (2008).

Velocity relaxation will also be addressed. Instantaneous velocity relaxation in
the two-fluid model produces results equal to those of the drift-flux model. Here
no slip (equal gas and liquid velocity) is considered for simplicity, and it is seen
that the velocity relaxation introduces much less numerical smearing than the
pressure relaxation.

Section 2 briefly describes the two two-fluid models under consideration, and
shows how to put them in a canonical form which makes them suitable for
applying the MUSTA scheme of Section 3. Numerical simulations comparing the
approaches to relaxation and testing the numerical schemes are performed in
Section 4, and Section 5 concludes the paper.

2 Model formulation

This paper studies the one-dimensional two-phase flow, focusing on some mathe-
matical key parts of the models. Such a practise is common (Cortes et al., 1998;
Evje and Flåtten, 2003; Paillère et al., 2003; Abgrall and Saurel, 2003). An attempt
to include all possible two-phase flow phenomena would unnecessarily clutter
the discussion. The models under study are presented in the following.
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2.1 Four-equation system

Consider a model consisting of a mass-conservation equation and a momentum-
balance equation for the gas (g) and liquid (`) phase:

∂
∂t
(αgρg)+ ∂

∂x
(αgρgvg) = 0, (1)

∂
∂t
(α`ρ`)+

∂
∂x
(α`ρ`v`) = 0, (2)

∂
∂t
(αgρgvg)+ ∂

∂x
(
αgρgv2

g
)+αg

∂p
∂x
+∆pi

∂αg

∂x
= αgρggx − τi, (3)

∂
∂t
(α`ρ`v`)+

∂
∂x

(
α`ρ`v2

`
)+α` ∂p∂x +∆pi

∂α`
∂x

= α`ρ`gx + τi. (4)

For k ∈ {g, `}, ρk denotes the density, vk the velocity, αk the volume fraction, gx
the gravitational acceleration in x direction, and p the common pressure. ∆pi =
p − pi is the interfacial pressure difference and τi is an interfacial momentum-
exchange term to be defined in the following. By default, we will use τi = 0.

The volume fractions satisfy

αg +α` = 1. (5)

The equation of state
p = pk(ρk) = c2

k(ρk − ρ◦k) (6)

is employed, where the speed of sound, ck, and the ‘reference density’, ρ◦k are
constants for each phase, constituting an assumption of constant entropy or
temperature.

In the following, the equations (1)–(4) with (5) and (6) will be referred to as the
four-equation system.

2.2 Five-equation system

In Saurel and Abgrall (1999), the two-fluid model was augmented with an ad-
vection equation for the volume fraction – with an added pressure-relaxation
term. Here we do likewise, except that in the present case, the energy equation is
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disregarded for simplicity. The model then reads:

∂αg

∂t
+ vi

∂αg

∂x
= rp(pg − p`), (7)

∂
∂t
(αgρg)+ ∂

∂x
(αgρgvg) = 0, (8)

∂
∂t
(α`ρ`)+

∂
∂x
(α`ρ`v`) = 0, (9)

∂
∂t
(αgρgvg)+ ∂

∂x
(
αgρgv2

g
)+αg

∂pg

∂x
+∆pig

∂αg

∂x
= αgρggx − τi, (10)

∂
∂t
(α`ρ`v`)+

∂
∂x

(
α`ρ`v2

`
)+α` ∂p`∂x +∆pi`

∂α`
∂x

= α`ρ`gx + τi. (11)

Herein, rp is a pressure-relaxation parameter, and vi is the average interfacial
velocity, to be defined in the following. We employ the same equation of state
as for the four-equation system, but here, the pressures in each phase are
independent:

pk = pk(ρk) = c2
k(ρk − ρ◦k). (12)

The equations (7)–(11) with (12) and (5) will in the following be referred to as
the five-equation system. There are two main differences compared to the four-
equation system, namely the presence of a volume-fraction advection equation (7),
and independent pressures in each phase.

The coefficient matrix of the five-equation system is diagonalizable with real
eigenvalues almost everywhere, except at the sonic points (see e.g. Ransom
and Hicks, 1984). Further, simple, analytical expressions are available for the
eigenvalues and eigenvectors. More details are also given in Munkejord (2007) for
the current context. These are advantages for the five-equation system compared
to the four-equation system, where analytical expressions for the eigenstructure
are only available for particular choices for the constitutive relations, and for
which there are regions where the hyperbolicity is lost.

2.2.1 Overview of the solution procedure

In this paper, the momentum-source term τi is included to act as an interfacial
drag term, or velocity-relaxation term in the current jargon:

τi = rv(vg − v`), (13)

where rv is a velocity-relaxation parameter.
The relaxation terms may become large. Therefore, the equation system (7)–

(11) is split in two, and solved using a fractional-step technique. The hyperbolic
part of the system is (7)–(11) with rp ≡ 0 and rv ≡ 0. The remainder is the
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relaxation part:

∂αg

∂t
= rp(pg − p`), (14)

∂
∂t
(αgρg) = 0, (15)

∂
∂t
(α`ρ`) = 0, (16)

∂
∂t
(αgρgvg) = rv(v` − vg), (17)

∂
∂t
(α`ρ`v`) = −rv(v` − vg). (18)

Let qnj denote the numerical approximation to the cell average of the vector

of unknowns q(x, tn) in control volume j at time step n. With qnj as an initial

value, the solution at the next time step, qn+1
j , can be found as follows:

1. Find q∗j as the solution of the hyperbolic part of (7)–(11) at tn+1.

2. Find qnj as the solution of the relaxation system (14)–(18) at tn+1 with q∗j
as initial value.

For step 1, the MUSTA scheme will be employed, and it will be detailed in Section 3.
For step 2, a numerical solver for ordinary differential equations will be used for
finite-rate relaxation. For infinite/instantaneous relaxation, it is more efficient to
employ the procedure detailed in the next two subsections.

2.2.2 Infinite pressure relaxation

Specific values for the pressure-relaxation parameter, rp, are most often unknown.
However, the assumption of equal phasic pressures is widespread, and can be
accounted for by setting rp to a large value. It is then more efficient to solve
the problem directly than solving the system (14)–(18) of differential equations:
After the hyperbolic step, the volume fraction is modified so as to render the two
phasic pressures equal, keeping αkρk and αkρkvk constant.

Munkejord (2007) solved a second-degree equation for the volume fraction.
In this study, however, it was found to be a more robust approach to solve a
second-degree equation for the pressure instead. Such an equation is commonly
solved in single-pressure two-fluid calculations, (see e.g. Paillère et al., 2003). The
equation is derived by adding (6) multiplied by αg, to (6) multiplied by α`, and
using (5), and its positive solution is

p = −ψ2 +
√
ψ2

2 − 4ψ1ψ3

2ψ1
, (19)
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where

ψ1 = 1, (20)

ψ2 = c2
g
(
ρ◦g −αgρg

)+ c2
`
(
ρ◦` −α`ρ`

)
, (21)

and

ψ3 = c2
gc

2
`
(
ρ◦gρ◦` −αgρgρ◦` −α`ρ`ρ◦g

)
. (22)

The remaining variables are then found in a straightforward manner, using the
equation of state.

Note that the present procedure is somewhat simpler than the one discussed
by Saurel and Abgrall (1999), since in the present case, the energy equation is
not considered.

It should be emphasized that for instantaneous pressure relaxation, the volume-
fraction advection equation (7) becomes singular, and the two phasic pressures
become equal. Hence it is expected that the equation system reduces to the
four-equation system.

2.2.3 Velocity relaxation

The instantaneous velocity-relaxation procedure can be applied after the hyper-
bolic step, or after the instantaneous pressure-relaxation step, if applicable. Here
we only consider no slip (vg = v`), and we employ the procedure derived by
Saurel and Abgrall (1999), simplified to the case of no energy equation. The
procedure simply consists of changing αgρgvg and α`ρ`v` so that vg = v`, while
keeping

∑
k(αkρkvk), αgρg, α`ρ` and αg constant. The relaxed (mixture) velocity

is

v = vg = v` =
αgρgvg,0 +α`ρ`v`,0

αgρg +α`ρ`
, (23)

where the subscript 0 denotes the initial value supplied to the velocity-relaxation
procedure. This is the mass-weighted velocity.

For computations with the five-equation system presented in this article, in-
stantaneous pressure relaxation and no velocity relaxation will be employed,
unless otherwise stated.

If instantaneous velocity relaxation is employed in the four-equation system, or
in the five-equation system with instantaneous pressure relaxation, it is expected
that a drift-flux model is recovered (Guillard and Duval, 2007). The drift-flux
model considered here consists of a continuity equation for each phase, and a
momentum-balance equation for the mixture momentum, that is, the sum of
(3) and (4). In addition, a constitutive relation for the relative velocity between
the phases (the slip) is needed. A MUSTA scheme for the drift-flux model was
discussed by Munkejord et al. (2006).
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2.2.4 Interface velocity

Following Saurel and Abgrall (1999), we will also use the mass-weighted velocity
as a model for the average interfacial velocity in (7):

vi =
αgρgvg +α`ρ`v`
αgρg +α`ρ`

. (24)

2.3 Interfacial-pressure model

Both in the four-equation and the five-equation system, a model is needed for
the interfacial pressure difference. In this work, the model of Bestion (1990) is
employed:

pk − pik = ∆pik = δ
αgα`ρgρ`
αgρ` +α`ρg

(vg − v`)2. (25)

The main justification of the expression is to render the four-equation system
hyperbolic for a reasonable range of parameters (Bestion, 1990; Stuhmiller, 1977).
Following Evje and Flåtten (2003), we take δ = 1.2, unless otherwise stated.

2.4 Canonical form of the equation systems

Both two-fluid models of the preceding subsections can be written in the following
form:

∂q
∂t
+ ∂f (q)

∂x
+ B(q)

∂w(q)
∂x

= s(q). (26)

2.4.1 Four-equation system

For the model of Section 2.1, we obtain

q =


αgρg

α`ρ`
αgρgvg

α`ρ`v`

 , f (q) =


αgρgvg

α`ρ`v`
αgρgv2

g +αg∆pi

α`ρ`v2
` +α`∆pi

 , s(q) =


0
0

αgρggx − τi

α`ρ`gx + τi

 , (27)

and

B(q) =


0
0
αg

α`

 , w(q) = p −∆pi. (28)
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2.4.2 Five-equation system

The model of Section 2.2 can be expressed with

q =


αg

αgρg

α`ρ`
αgρgvg

α`ρ`v`

 , f (q) =


0

αgρgvg

α`ρ`v`
αgρgv2

g +αg∆pi

α`ρ`v2
` +α`∆pi

 , s(q) =


rp(pg − p`)

0
0

αgρggx − τi

α`ρ`gx + τi

 , (29)

and

B(q) =


vi 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 αg 0
0 0 0 0 α`

 , w(q) =


αg

0
0

pg −∆pig

p` −∆pi`

 . (30)

3 The MUSTA scheme

A MUSTA scheme was derived for the four-equation system in Munkejord et al.
(2009) by using the framework of formally path-consistent schemes of Parés
(2006). In this work, that scheme is applied to the five-equation system. With the
canonical form of the equation system given in Section 2.4.2, the scheme can be
applied rather directly.

The derivations in Munkejord et al. (2009) will not be repeated here, but the
MUSTA building blocks and algorithm will be recalled for convenience.

3.1 Building blocks

Consider the equation system

∂q
∂t
+ ∂f (q)

∂x
+ B(q)

∂w(q)
∂x

= 0. (31)

It can be discretized as

qn+1
j − qnj
∆t

+ fj+1/2 − fj−1/2

∆x
+
d+j−1/2 + d−j+1/2

∆x
= 0, (32)

with

d+j+1/2 = Bj+1/2
(
wj+1 −wj+1/2

)
(33)

d−j+1/2 = Bj+1/2
(
wj+1/2 −wj

)
. (34)

Herein, expressions are needed for fj+1/2, wj+1/2 and Bj+1/2, as will be detailed
in the following.
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3.1.1 The FORCE scheme

The basic building block of MUSTA is the first-order centred (FORCE) scheme of
Toro (1999) (see also Toro and Billett, 2000; Chen and Toro, 2004). It has the
least numerical dissipation of the first-order central schemes that are stable for
all CFL numbers less than unity (Chen and Toro, 2004).

The FORCE numerical flux is defined as the arithmetic mean of the Lax–
Friedrichs flux and the Richtmyer Lax–Wendroff flux:

f FORCE
j+1/2 =

1
2

(
f LF
j+1/2 + f LW

j+1/2

)
. (35)

It is then natural to assume the same averaging for the cell-interface value of the
non-conservative variables vector, wj+1/2:

wFORCE
j+1/2 =

1
2

(
wLF
j+1/2 +wLW

j+1/2

)
. (36)

3.1.2 The Lax–Friedrichs scheme

For the non-conservative system (31), De Vuyst (2004) proposed the Lax–Friedrichs
discretization

f LF
j+1/2 =

1
2

(
f (qj)+ f (qj+1)

)+ 1
2
∆x
∆t
(qj − qj+1), (37)

with

d±j+1/2 =
1
2

Bj+1/2(wj+1 −wj), (38)

that is,

wLF
j+1/2 =

1
2
(wj +wj+1). (39)

3.1.3 The Richtmyer scheme

It is the two-step Richtmyer version of the Lax–Wendroff scheme that is employed
in the FORCE scheme. First, the cell-interface solution is evolved one half time
step using a simple Lax–Friedrichs scheme:

qn+1/2
j+1/2 =

1
2

(
qnj + qn+1/2

j+1

)
− 1

2
∆t
∆x

(
f
(
qnj+1

)− f(qnj ))
− 1

2
∆t
∆x

Bnj+1/2

(
wnj+1 −wnj

)
. (40)

Then the numerical cell-interface values to be plugged into (35) and (36) are given
as:

f LW
j+1/2 = f

(
qn+1/2
j+1/2

)
(41)

wLW
j+1/2 = w

(
qn+1/2
j+1/2

)
. (42)
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3.1.4 The cell-interface matrix

As shown in Munkejord et al. (2009), a formally path-consistent scheme can be
achieved by calculating the cell-interface matrix, Bj+1/2, from an appropriate
average state between the cells j and j + 1. Here, that can be done by simply
choosing

Bj+1/2 =


0
0

αg,j+1/2
α`,j+1/2

 (43)

for the four-equation system, and

B(q) =


vi,j+1/2 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 αg,j+1/2 0
0 0 0 0 α`,j+1/2

 (44)

for the five-equation system. Herein, αg,j+1/2 and vi,j+1/2 are calculated by
arithmetic averaging, and α`,j+1/2 = 1−αg,j+1/2, as always.

We are now equipped to delve into the MUSTA algorithm.

3.2 Algorithm

In the multi-stage (MUSTA) approach (Titarev and Toro, 2005; Toro and Titarev,
2006), the numerical flux, fj+1/2, at the cell interface is found by employing
a two-step procedure: First, a numerical approximation to the solution of the
cell-interface Riemann problem produces two modified states at either side of
the interface. These states are then fed into a numerical flux function to obtain
the sought flux, fj+1/2. There are several conceivable choices for the numerical
flux function. Titarev and Toro (2005) employed the FORCE flux, whereas Toro
and Titarev (2006) promoted a development termed the GFORCE flux. We prefer
the ‘classical’ FORCE flux, which is slightly simpler and seems to be more robust.

The MUSTA procedure employed here is similar to the previous ones for the
Euler equations (Titarev and Toro, 2005; Toro and Titarev, 2006) and for the
drift-flux model (Munkejord et al., 2006), but it is extended to account for the
non-conservative terms in the governing equations. The present exposition is
from Munkejord et al. (2009).

For calculating the numerical flux, fj+1/2, and the non-conservative variables
vector, wj+1/2, the Riemann problem at the cell interface, xj+1/2, is transformed
to a local grid:

∂q
∂t
+ ∂f (q)

∂ξ
+ B(q)

∂w(q)
∂ξ

= 0, q(ξ,0) =
qj = qL if ξ < 0,
qj+1 = qR if ξ ≥ 0,

(45)
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. . .. . .

xj+1/2qj qj+1

0 1 N N + 1 2N 2N + 1

Figure 1: Initial values and cell numbering for the local MUSTA grid.

where the position ξ = 0 corresponds to xj+1/2. This local Riemann problem is
then solved approximately by employing the FORCE scheme, where the local grid
is indexed by n, and, following Titarev and Toro (2005), we set ∆ξ ≡ ∆x:

qm+1
n − qmn
∆tloc

+ f
FORCE
n+1/2 − f FORCE

n−1/2

∆x

+ Bn−1/2(wn −wFORCE
n−1/2)+ Bn+1/2(wFORCE

n+1/2 −wn)
∆x

= 0. (46)

Herein, f FORCE
n+1/2 , wFORCE

n+1/2 and Bn+1/2 = Bn+1/2(qn,qn+1) are calculated as de-
scribed in the preceding subsections, while wn = w(qn). Terms without a time
index are evaluated at stage m. The local pseudo-time step, ∆tloc, is calculated
using the Courant–Friedrichs–Lewy (CFL) criterion on the local grid:

∆tloc = Cloc∆x

max
1≤n≤2N

(
max

1≤p≤d
|λpn|

) , (47)

where d is the dimension of the system (26), and the local CFL number, Cloc, is a
parameter in the method. In this work we follow Titarev and Toro (2005) and set
Cloc = 0.9 for all the computations. For the four-equation system, the maximum
eigenvalues, λ, are approximated using the estimates of Evje and Flåtten (2003).

The initial conditions and the numbering of the local grid are illustrated in
Figure 1. The M-stage MUSTA algorithm for the flux f and the vector w can be
summarized as follows:

1. For each local cell n = 1, . . . ,2N, compute the flux f FORCE,m
n+1/2 from

(35), the vector wFORCE,m
n+1/2 from (36) and the coefficient matrix Bmn+1/2

from (43) or (44) using data from stage m.

2. If m = M , then return f FORCE,M
N+1/2 and wFORCE,M

N+1/2, else continue.

3. Update the local solution using (46) for n = 1, . . . ,2N.
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4. Apply extrapolation boundary conditions; qm0 = qm1 and qm2N+1 = qm2N .
Augment m and repeat from 1.

Thus, when the MUSTA scheme is used to solve (32)–(34), fj+1/2 and wj+1/2 are
found using the above algorithm, whereas Bj+1/2 and the other quantities are
calculated using data from the global grid, as usual. As shown in Munkejord
et al. (2009), the above procedure reduces to the standard conservative MUSTA
algorithm (Titarev and Toro, 2005; Toro and Titarev, 2006) when B is constant in
time and space.

It should be noted that to avoid spurious oscillations, it is necessary to choose
M ≤ 2N in the MUSTA algorithm (Munkejord et al., 2006). In the following,
we will denote the M-stage MUSTA scheme with 2N local cells by MUSTAM−2N .
Further, we refer to the MUSTA scheme for the four-equation system as MUSTA4
(see Section 2.4.1), and to that of the five-equation system as MUSTA5 (see
Section 2.4.2).

It is possible to save some computational time by refining the above MUSTA
algorithm. In fact, since we are solving a Riemann problem, and since we are only
interested in the solution at the mid cell interface, it is not necessary to include
all the local cells n = 1, . . . ,2N in all the local time steps, as noted by Titarev and
Toro (2005); Toro and Titarev (2006). For instance, in the first local time step,
only the two mid cells enter into the calculation. In the next step, one cell has
to be added at each side, as the waves propagate at most one cell per time step.
When the waves have reached the boundary of the local grid, one cell can be
excluded at each side, etc. This ‘diamond optimization’ was suggested by Toro
and Titarev (2006) and has been used for all the computations presented here.

3.3 Second-order extension

To obtain second-order spatial accuracy for smooth solutions, a semi-discrete
version of the monotone upwind-centred scheme for conservation laws (MUSCL)
(van Leer, 1979; Osher, 1985) has been employed. Herein, a piecewise linear
function is constructed by using the data {qj(t)}. At each side of the interface,
xj+1/2, we have values from the linear approximations in the neighbouring cells.
These are denoted by

qR
j = qj +

∆x
2
σj and qL

j+1 = qj+1 − ∆x2 σj+1, (48)

where σj are the slopes calculated using a suitable slope-limiter function. Some
are listed by LeVeque (2002, Section 9.2). The minmod slope is

σj =minmod

(
qj − qj−1

∆x
,
qj+1 − qj
∆x

)
, (49)
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where the minmod function is defined by

minmod(a, b) =


0 if ab ≤ 0,
a if |a| < |b| and ab > 0,
b if |a| ≥ |b| and ab > 0.

(50)

The monotonized central-difference (MC) slope (van Leer, 1977) is

σj =minmod

((
qj+1 − qj−1

2∆x

)
,2
(
qj − qj−1

∆x

)
,2
(
qj+1 − qj
∆x

))
. (51)

We also have the van Leer (1974) (see van Leer, 1977) limiter

σj =


2
(
qj − qj−1

)(
qj+1 − qj

)(
qj − qj−1

)+ (qj+1 − qj
) if sgn

(
qj − qj−1

) = sgn
(
qj+1 − qj

)
,

0 otherwise.
(52)

The slope limiting is applied component-wise to the variable-vector. There
are several possible choices of variables to use. Here, the choice has been made
to employ [αg, p, vg, v`] for the four-equation system and [αg, ρg, vg, ρ`, v`] for
the five-equation system. After this procedure, the flux fj+1/2 and the vector
wj+1/2 can be computed from (qR

j ,q
L
j+1), precisely as described in the preceding

subsections. That is, it is only the Riemann problem (45) to be solved on the local
grid that is modified according to (48). It should be noted that the cell-interface
matrix is still a function of the non-reconstructed variables. That is, (qR

j ,q
L
j+1)

are not involved in the evaluation of Bj+1/2.
For use with the MUSCL scheme, the system of balance equations (26) is semi-

discretized:
dqj
dt
+ fj+1/2 − fj−1/2

∆x
+
d+j−1/2 + d−j+1/2

∆x
= sj . (53)

To obtain a second-order solution in time, the two-stage second-order strong-
stability-preserving (SSP) Runge–Kutta (RK) method is employed (see for instance
Ketcheson and Robinson (2005)). With (53) of the form

dqj
dt

= L(qj), (54)

the two-stage second-order SSP-RK scheme can be written as

q(1)j = qn +∆tL(qn)

qn+1 = 1
2
qn + 1

2
q(1) + 1

2
∆tL(q(1)).

(55)

Herein, qnj is the vector of unknowns from time step n, qn+1
j is the sought values

at the next time step, while q(1)j represents intermediate values.
In conjunction with the first-order MUSTA scheme, the time stepping is per-

formed using the Forward Euler method.
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Table 1: Parameters employed in the equation of state.

ck (m/s) ρ◦k (kg/m3)

gas (g)
√

103 0
liquid (`) 1000 999.9

4 Numerical simulations

In this section, the MUSTA4 and MUSTA5 schemes will be analysed by performing
numerical benchmark tests from the literature. In particular, effects of pressure
and velocity relaxation will be discussed.

Independent numerical schemes will be employed for reference. For the four-
equation system, the Roe4 scheme presented by Evje and Flåtten (2003) and
further discussed by Munkejord (2007) will be used. The reference for the five-
equation system is the Roe5 scheme by Munkejord (2007). The Roe scheme for
the drift-flux model, Roe3, of Flåtten and Munkejord (2006) will also be used for
benchmarking.

All the presented calculations have been performed employing the equation-of-
state parameters given in Table 1.

4.1 Moving discontinuity

It is essential that numerical schemes ‘disturb’ the flow as little as possible. In
particular, for a uniform pressure and velocity flow, the pressure and velocities
should remain uniform, even if there is a jump in the volume fraction (Abgrall,
1996).

This basic test was done by performing a calculation in a 12 m long horizontal
tube, where the initial state consists of uniform velocities and pressures, see
Table 2. A similar case was considered in Chang and Liou (2007). At the middle
of the tube, the gas volume fraction jumps from 1− ε to ε, where ε = 1× 10−6.
This gives practically single-phase flow on each side of the discontinuity, even
though pure phases are not explicitly accounted for in the present framework.
Due to the numerical calculations for the equation of state, ε cannot go too close
to zero. A similar limitation was also reported by Saurel and Abgrall (1999).

Calculations were performed for both the four-equation and the five-equation
system. For the former, the MUSCL-MUSTA44−4 scheme (four local steps and
four local cells) was employed with the van Leer slope (52). For the latter, the
MUSCL-MUSTA54−4 scheme is somewhat less robust, and was employed with the
minmod slope (49). All the calculations were run using a CFL number of C = 0.5
on a 200-cell grid. The gas volume fraction at time t = 0.03 s is displayed in
Figure 2. Ideally, the volume fraction should be advected, but not smeared. As
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Table 2: Initial state for the moving-discontinuity problem.

Quantity Symbol (unit) Left Right

Gas volume fraction αg (–) 1− ε ε
Pressure p (MPa) 0.1 0.1
Gas velocity vg (m/s) 100 100
Liquid velocity v` (m/s) 100 100

αg (–)

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

M-Musta4
M-Musta5
Analytical

x (m)

Figure 2: Gas volume fraction for the moving discontinuity. MUSCL-MUSTA4−4,
200 cells, C = 0.5.

shown in the figure, some smearing takes place, and more so for MUSTA5 than
for MUSTA4. In both cases, the results are oscillation-free.

No disturbances are introduced in the other variables to plotting accuracy.
However, it is interesting to evaluate the disturbances quantitatively. Let us
define the maximum relative pressure disturbance for the calculation as

Ep = 1
p0

max
∀n

{|max
∀j
pnj −min

∀j
pnj |

}
, (56)

where p0 is the initial pressure, j is the spatial index and superscript n denotes
the time step. In this case Ep ≈ 7× 10−9 for MUSTA4, while Ep ≈ 1× 10−8 for
MUSTA5. These are thought to be satisfactory values.
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Table 3: Initial state in the water-faucet test problem.

Quantity Symbol (unit) Value

Gas vol. frac. αg (–) 0.2
Pressure p (MPa) 0.1
Gas velocity vg (m/s) 0.0
Liquid velocity v` (m/s) 10.0

4.2 Water faucet

The water-faucet test case is one of the most common benchmark cases for
numerical methods for one-dimensional two-fluid models. It was introduced by
Ransom (1987) and has been studied for instance by Coquel et al. (1997); Trapp
and Riemke (1986); Evje and Flåtten (2003); Paillère et al. (2003); Munkejord
(2007); Guillard and Duval (2007). In particular, this test reveals the ability of the
method to capture mass transport. The calculated pressure profiles are sensitive
to the boundary conditions, but the velocities and the volume fraction are not
(Munkejord, 2006).

The initial flow field is uniform, and the values are given in Table 3. The inlet
boundary conditions are equal to the initial values for the gas volume fraction
and for the gas and liquid velocities. A pressure equal to the initial pressure
is specified at the outlet. At time t = 0, gravity (g = 9.81 m/s2) is turned on,
and the liquid column starts thinning as a discontinuity moves towards the exit.
In the following, the results are given at t = 0.6 s. An approximate analytical
solution can be found for instance in Evje and Flåtten (2003). Even though there
is a difference between the solution of the two-fluid model obtained on very fine
grids and this approximate solution, it is customarily used as a reference in the
volume-fraction plots.

Let us first consider the effect of the number of local time steps (M) and local
cells (2N) in the MUSTA solver. As noted by Munkejord et al. (2006), M and 2N
cannot be varied independently. We need to take M ≤ 2N to avoid oscillations
due to boundary effects in the MUSTA procedure. Figure 3 shows volume-fraction
profiles obtained on a 100-cell grid for a CFL number of C = 0.9 without using
MUSCL reconstruction, that is, for the first-order schemes. In Figure 3(a), the
results for the MUSTA4 scheme for the four-equation system are shown. The
volume-fraction profile calculated using the first-order Roe4 scheme for the same
conditions has been plotted for reference. As can be seen, for an increasing
number of local cells and time steps, the volume-fraction profiles of the MUSTA4
scheme become sharper. However, as many as 200 local steps are needed for the
MUSTA4 scheme to produce a volume-fraction profile comparable to that of the
Roe4 scheme. The many local steps lead to a substantial CPU-time consumption.
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Figure 3: Gas volume fraction for the water faucet. Effect of increasing number of
stages and local cells in the MUSTA4 and MUSTA5 schemes. 100 cells,
C = 0.9.

An analogous comparison for the MUSTA5 scheme for the five-equation system
is given in Figure 3(b). Two main differences with respect to the MUSTA4 scheme
can be observed. First, the MUSTA5 scheme is significantly more diffusive than
the MUSTA4 scheme. This is due to the pressure relaxation, as will be further
illustrated in the following. Second, even with 200 local steps, the MUSTA5
procedure is more diffusive than the corresponding Roe5 procedure.

The faucet case has also been calculated with the more accurate MUSCL
schemes. Herein, various slope-limiter functions have been tested, namely the
superbee (see LeVeque (2002), Section 9.2) and the minmod slope (49), the van
Leer slope (52) and the monotonized central-difference (MC) slope (51). The latter
three slopes gave acceptable results, whereas the superbee slope gave oscillations.
The MC slope gave the best results in this case.

Volume-fraction profiles for MUSCL-MUSTA4−4 (M = 4 local time steps and
2N = 4 local cells in the MUSTA procedure) are given in Figure 4. The profiles
in Figure 4(a) obtained using the MUSCL-MUSTA4 scheme are sharp and non-
oscillatory, albeit not quite as good as the results presented in Munkejord (2007)
for the Roe4 scheme with characteristic flux limiting.

Figure 4(b) shows volume-fraction profiles calculated using the MUSCL-MUSTA5
scheme. They are also non-oscillatory, but they are much more smeared than the
ones of MUSCL-MUSTA4. Indeed, by comparing for instance the 100-cell solution
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(a) MUSCL-MUSTA4
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Figure 4: Gas volume fraction for the water faucet. Convergence of the MUSCL-
MUSTA44−4 and -MUSTA54−4 schemes using the MC slope. C = 0.5.

in Figure 4(b) with the one for MUSTA44−4 in Figure 3(a), one can see that the
MUSCL version of the MUSTA5 method gives less resolution than the first-order
MUSTA4 scheme.

Pressure profiles for the faucet case are given in Figure 5. Here, no analytical
solution is available, so a calculation with the MC-limited Roe4 scheme on a fine
grid (10 000 cells) has been plotted as reference. In Figure 5(a), the solution of
MUSCL-MUSTA4 on a 3200-cell grid is quite close to the reference solution. In
Figure 5(b), the MUSCL-MUSTA5 solution still is a bit off, even for 10 000 cells. In
general, MUSTA5 needs a much finer grid than MUSTA4 to capture the pressure
profile inherent in the solution of the faucet problem.

The effect of reducing the time-step length on a fixed grid of 200 cells is
studied in Figures 6–7. Herein, M = 2 and N = 8 has been used in the MUSTA
procedure to obtain a somewhat higher resolution. For the MUSTA4 and the
MUSCL-MUSTA4 schemes, time-step refinement gives only a miniscule effect. The
solutions for C = 0.9 and for C = 0.001 are the same to plotting accuracy. This
is shown in Figure 6 for the MUSCL-MUSTA4 scheme.

The MUSTA5 method is a bit peculiar. For the first-order MUSTA5 scheme, the
results shown in Figure 7(a) are smeared, but non-varying as the CFL number is
reduced. For the MUSCL-MUSTA5 scheme, on the other hand, a large improvement
in the resolution is achieved for small CFL numbers, see Figure 7(b). A similar
effect was observed by Munkejord (2007) for the Roe5 scheme. It goes without
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Figure 5: Pressure for the water faucet. Convergence of the MUSCL-MUSTA44−4

and -MUSTA54−4 schemes using the MC slope. C = 0.5.
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Figure 6: Gas volume fraction for the water faucet. Effect of time-step length on
the MUSCL-MUSTA48−8 scheme using the MC slope. 200 cells.

20



αg (–)

0 2 4 6 8 10 12
0.2

0.25

0.3

0.35

0.4

0.45

0.5 cfl=0.9
cfl=0.001
analytical

x (m)

(a) No limiter (first order)
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Figure 7: Gas volume fraction for the water faucet. Effect of time-step length on
the (MUSCL-) MUSTA58−8 scheme with and without using the MC slope.
200 cells.

saying, however, that keeping the CFL number in the order of 1 × 10−4 is not
particularly efficient. Further, as Figure 7(b) shows, MUSCL-MUSTA5 never quite
attains the reference profile calculated using the MUSCL-MUSTA4 scheme using a
CFL number of C = 0.5.

One of the perceived advantages of performing calculations using the five-
equation system with instantaneous pressure relaxation instead of keeping the
four-equation system, is that the former equation system is hyperbolic every-
where, except at the sonic points. The justification of the equation (25) for
the interfacial pressure difference is to render the four-equation system hyper-
bolic in a reasonable range, rather than physical considerations. Figure 8 shows
the volume-fraction profiles from calculations having been performed with the
MUSCL-MUSTA54−4 method on various grids and with a constant CFL number of
C = 0.5. In these calculations, the parameter δ was set equal to zero in (25). In
this case, the four-equation system is non-hyperbolic with complex eigenvalues,
while the five-equation system is not. Even so, the figure clearly shows that at
fine grids, an instability develops. This kind of instability is normally associated
with a non-hyperbolic model (Stuhmiller, 1977). Further grid refinements leads
to a breakdown of the simulation.

A similar observation was made by Karni et al. (2004) employing a Roe-type
method with pressure relaxation for a two-fluid model including an energy
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Figure 8: Gas volume fraction for the water faucet. Grid refinement for the
MUSCL-MUSTA54−4, method employing δ = 0 in (25), the MC slope and
C = 0.5.

Table 4: Initial state in Toumi’s shock tube.

Quantity Symbol (unit) Left Right

Gas vol. frac. αg (–) 0.25 0.10
Pressure p (MPa) 20 10
Gas velocity vg (m/s) 0 0
Liquid velocity v` (m/s) 0 0

equation.

4.3 Toumi’s shock tube

This shock-tube problem was introduced by Toumi (1996) and it has been studied
e.g. by Tiselj and Petelin (1997); Paillère et al. (2003); Evje and Flåtten (2005);
Munkejord (2007). A tube of length 100 m is divided by a membrane in the
middle. At t = 0, the membrane ruptures, and the flow starts evolving. The initial
conditions are displayed in Table 4. For this problem, δ = 2 has been employed
in the equation (25), as was also done by Paillère et al. (2003); Evje and Flåtten
(2005). No source terms were considered, except for relaxation terms, where
noted.
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4.3.1 Instantaneous pressure relaxation

Figure 9 shows the physical variables calculated at t = 0.08 s. The MUSCL-
MUSTA5 method with the van Leer slope has been employed, using a CFL number
of C = 0.5. A reference solution has been calculated using the Roe4 scheme on
a fine grid of 10 000 cells. For Toumi’s shock tube, the Roe scheme needs an
entropy fix to converge to a physically plausible solution. Here, the fix of Harten
(1983) (see also e.g. LeVeque, 2002, Section 15.3.5) was employed.

As can be seen from the plots, the results of the MUSCL-MUSTA5 method
converge towards those of the Roe4 scheme. This also indicates that the five-
equation system with instantaneous pressure relaxation converges to the four-
equation system. The figures further show that the MUSCL-MUSTA5 method
converges quite slowly in the middle of the tube, where volume-fraction waves
are present.

4.3.2 Finite pressure relaxation

In the computations presented so far, instantaneous pressure relaxation was
always used in the MUSTA5 method. We will now study the effect of finite
pressure relaxation in the five-equation system. That is, the pressure-relaxation
parameter, rp, will attain finite values, while the velocity-relaxation parameter
still is rv = 0.

Toumi’s shock tube has been calculated with varying values of the pressure-
relaxation parameter, rp. The results are displayed in Figure 10. Here, the
first-order MUSTA5 method has been used with a 2000-cell grid and a CFL
number of C = 0.9. The calculations have been stopped at t = 0.045 s to avoid
interaction between the waves and the domain boundaries. Data obtained with
the MUSTA4 scheme are plotted for reference.

Figure 10(b) shows a plot of the liquid velocity. For a low value of the pressure-
relaxation parameter, rp, the two sonic waves have reached about x = 5 m and
x = 95 m. As rp is increased, those two fast sonic waves are gradually suppressed,
and the effect of the gas phase becomes more and more apparent.

The approximate speed of the sonic waves can be read from the figure. For a
low rp, the average speed of the right-going wave is 45 m/0.045 s = 1000 m/s,
which closely corresponds to the liquid speed of sound. When the pressure-
relaxation parameter is increased, the ‘resultant’ sonic speed is reduced to that
of the four-equation model, as is evident from the fact that the profiles approach
those calculated with the MUSTA4 scheme.

For the gas velocity shown in Figure 10(c), it can be seen that the sonic speed
approaches that of the four-equation system from below. The sonic waves travel
with the gas speed of sound for low values of rp, increasing to the sonic speed of
the two-fluid model for instantaneous pressure relaxation.
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Figure 9: Toumi’s shock tube at t = 0.08 s. Convergence of the MUSCL-MUSTA5
method using the van Leer slope. C = 0.5.
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Figure 10: Toumi’s shock tube at t = 0.045 s. Effect of the pressure-relaxation
parameter rp in the MUSTA5 (first-order) method on a 2000-cell grid.
C = 0.9.
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Figure 10: (Continued) Toumi’s shock tube at t = 0.045 s. Effect of the pressure-
relaxation parameter rp in the MUSTA5 (first-order) method on a
2000-cell grid. C = 0.9.

The liquid and gas pressures are displayed in Figures 10(d) and 10(e), and
it can be observed how the two independent pressures converge to one as the
relaxation parameter rp is increased.

Figures 10(b) and 10(c) (or 10(d) and 10(e)) reveal that the five-equation system
without pressure relaxation has five waves; two sonic waves for the liquid,
two sonic waves for the gas, and one mass wave (volume-fraction wave). For
instantaneous pressure relaxation, we observe two sonic waves and two mass
waves, as for the four-equation system.

The performance of the MUSTA4 scheme and the MUSTA5 method with instan-
taneous pressure relaxation can be compared by studying the long-dashed and
the dotted line for instance in Figure 10(b). It can be seen that MUSTA5 generally
smeares the solution more than MUSTA4, and that the difference is largest at the
middle of the tube, that is, for the volume-fraction waves. It is hypothesized that
the reason for the increased smearing of the volume-fraction waves lies in the
coupling between the pressure and the volume fraction in the volume-fraction
advection equation (7); the pressure being associated with fast-travelling waves.
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4.3.3 Finite velocity relaxation

We now turn to the effect of finite velocity relaxation. It will be studied by
adding velocity-relaxation terms to the momentum equations of the four-equation
system, but it could equally well have been done by considering the five-equation
system with infinite pressure relaxation.

The four-equation system with infinite velocity relaxation corresponds to the
drift-flux model. Therefore, the MUSTA scheme for the drift-flux model studied
by Munkejord et al. (2006) will be used as a reference scheme. It will be referred
to as MUSTA3. Here, we only consider no slip, that is, vg = v`.

The effect of increasing the velocity-relaxation parameter, rv , in the MUSTA4
scheme, can be studied in Figure 11. As for the case of finite pressure relaxation,
the first-order version of the scheme has been employed on a 2000-cell grid with
a CFL number of C = 0.9. The results are plotted at t = 0.08 s, like in Figure 9.

Consider Figure 11(a) for the gas volume fraction. The curve for no velocity
relaxation, rv = 0, is similar to the ones in Figure 9(a). As the velocity-relaxation
parameter is increased, the two volume-fraction waves at the middle of the
tube are gradually merged into one. At the same time, the two sonic waves are
modified, so that the resultant waves for the instant-relaxation case are slower. It
is well known that the drift-flux model has a lower sonic speed than the two-fluid
model for a wide range of parameters.

Further, as shown in Figures 11(c) and 11(d), the liquid and gas velocities
gradually approach each other as the velocity-relaxation parameter is increased.

It is interesting to note that in Figure 11, the curve for MUSTA4 with instan-
taneous velocity relaxation (dotted line) practically lies on top of the one for
MUSTA3 (dashed line). See for instance Figure 11(a). This is in contrast to the case
for pressure relaxation, where the relaxation procedure introduces a considerable
amount of smearing.

The plots in Figure 11 show that the transistion between no velocity relax-
ation and instant velocity relaxation is smooth, as was also the case for the
pressure relaxation in Figure 10. However, an attempt to physically interpret the
intermediate plots will not be made here.

4.3.4 Computational cost

A comparison of the CPU-time consumption of various MUSTAM−2N schemes and
their corresponding Roe reference schemes is given in Table 5. The calculations
were run using a CFL number of C = 0.5. The data are calculated on a 1600-cell
grid. Other grids were also tried, but no grid dependency was detected. The
columns labelled ‘1. order’ show the CPU time of the first-order MUSTAM−2N
scheme divided by that of the first-order Roe scheme. The columns marked
‘limited’ show the same relation for the MUSCL-MUSTAM−2N scheme using the
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Figure 11: Toumi’s shock tube at t = 0.08 s. Effect of the velocity-relaxation
parameter rv in the MUSTA4 (first-order) method on a 2000-cell grid.
C = 0.9.
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Table 5: Toumi’s shock tube. Comparison of CPU-time consumption between
MUSTAM−2N and Roe schemes.

Drift-flux 4-eq. syst. 5-eq. syst.
M − 2N 1. order limited 1. order limited 1. order limited

2− 2 0.26 0.58 0.25 0.62 2.62 6.38
4− 4 0.58 1.23 0.54 1.19 5.28 11.4
6− 6 0.99 2.04 0.93 1.94 8.99 18.3
8− 8 1.49 3.03 1.42 2.93 13.6 27.2

van Leer slope limiter and the Roe scheme using the van Leer flux limiter.
As the number of local time steps, M , and local cells, 2N, are increased in the

MUSTA schemes, their computational cost strongly grows. The number of local
time steps and cells needed to roughly match the Roe scheme in accuracy is case
dependent. For the shock-tube case considered by Munkejord et al. (2006) for the
drift-flux model, four local steps and cells was considered acceptable. As noted
in Section 4.2, about 100 local steps and cells are needed for the water-faucet
case for the two-fluid model. It can be observed that the CPU-time relation is
roughly equal for MUSTA3/Roe3 and MUSTA4/Roe4, while that of MUSTA5/Roe5
is much higher. This is because the Roe3 scheme for the drift-flux model and the
Roe4 scheme for the two-fluid model need a numerical diagonalization of the
coefficient matrix. Roe5, on the other hand, has analytical expressions for the
eigenvalues and eigenvector matrix.

The table shows that the second-order Roe schemes are relatively cheaper
than the MUSCL-MUSTA schemes. The reason for this is that in the Roe scheme,
most of the work required to assemble the high-resolution terms has already
been performed during the diagonalization of the coefficient matrix. In MUSCL-
MUSTA, on the other hand, the piecewise reconstruction of the data comes fully
in addition to the calculations done in the basic scheme.

The above results show that the MUSTA schemes do not in general fulfill the
intention of Toro (2003) of being non-CPU-costly. Since the MUSTA schemes are
relatively CPU-intensive when a high degree of accuracy is desired, they will be
advantageous mainly for equation systems where a Roe matrix is not available,
or where the Roe scheme is not robust enough. One example of the latter case is
the water-air separation case discussed by Munkejord et al. (2009).

5 Conclusions

The multi-stage centred (MUSTA) scheme of Munkejord et al. (2009) for non-
conservative two-fluid models has been applied to the two-fluid model augmented
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with a volume-fraction advection equation (five-equation system). It has been
analysed numerically and compared to the MUSTA scheme for the ‘isentropic’
two-fluid model (four-equation system). The use of analogous numerical schemes
allowed for an evaluation of the approach of augmenting the two-fluid model
with a volume-fraction advection equation and employing instantaneous pressure
relaxation.

A main motivation for employing the augmented two-fluid model is its ana-
lytical eigenstructure, easing the construction of approximate Riemann solvers.
However, the most common application of this approach is to use it for the
simulation of two-phase flow problems where the pressures of the phases are so
strongly coupled that instantaneous pressure relaxation is required.

The numerical simulations presented here demonstrate that the five-equation
system converges to the four-equation system when the pressure relaxation ap-
proaches infinity. Indeed, in cases such as for zero interfacial pressure difference,
the relaxation terms in the five-equation system induce the kind of instabilities
which are associated with complex eigenvalues in the four-equation system, even
if the five-equation system has real eigenvalues.

Therefore, the approach of employing an augmented two-fluid model with
instantaneous pressure relaxation should be regarded as a numerical method to
solve the single-pressure two-fluid model. Moreover, calculations have shown
that this approach introduces a large amount of numerical smearing, particularly
for the slow-moving volume-fraction (mass-transport) waves. The reason for
this is probably the extra coupling between the fast-moving sonic waves and the
volume-fraction waves introduced by the volume-fraction advection equation
with its relaxation term.

Velocity relaxation in the four-equation system has also been tested. As ex-
pected, the four-equation system with instantaneous velocity relaxation produces
identical results to those of the drift-flux model. The velocity relaxation did not
introduce any noticeable numerical smearing.

The MUSTA schemes produced accurate and non-oscillatory results both for
the four-equation and the five-equation system. However, in cases where volume-
fraction waves are important, it may be necessary to take many local steps in
the MUSTA procedure to reduce the smearing of these waves. This limits the
computational efficiency.
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