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ABSTRACT

The coalescence process between a drop and an interface
may not be instantaneous, but result in the creation of a
smaller secondary drop. This process may be repeated
several times before the coalescence is complete. Exper-
iments have shown that an electric field can suppress this
phenomenon and give coalescence in a single stage. In
this paper, the influence of an electric field on the partial
coalescence process is studied using numerical simula-
tions. The results show that higher electric Bond num-
bers reduce the time from pinch-off of a secondary drop
to recoalescence, and eventually give single-staged coa-
lescence. A single-stage coalescence event is presented
in detail, and the mechanism producing it discussed. The
results support arguments from the literature that single-
staged coalescence is caused by an increased downward
momentum due to electrostatic attraction.

Keywords: Coalescence, electrocoalescence, electrohy-
drodynamics, level-set method, ghost-fluid method

NOMENCLATURE

δ Dirac delta function

9 Electric potential [V]

0 Interface

κ Curvature [m−1]

φ Level-set function

µ Dynamic viscosity [Pa · s]

µ? Viscosity ratio

ε Relative permittivity

ε0 Vacuum permittivity (= 8.85×10−12 F/m)

ε? Permittivity ratio

ρ Density [kg/m3]

ρ? Density ratio

σ Interfacial tension [N/m2]

τ Pseudo-time

τ2 Time from pinch-off to recoalescence

M Maxwell stress tensor [N/m2]

a Temporary vector field [m/s2]

e Electric field [V/m]

F Strength of surface force [N/m2]

f Arbitrary vector field

g Gravitational acceleration [m/s2]

n Unit normal vector

t Unit tangential vector

u Velocity [m/s]

X Interface parametrization [m]

x Spatial position [m]

F̂ Surface force [N/m3]

a x-aligned semi-axis of ellipse [m]

b y-aligned semi-axis of ellipse [m]

D Diameter [m]

e Ellipse eccentricity

p Pressure [Pa]

S Sign function

t Time [s]

tic Inertio-capillary time

Be Electric Bond number (= ε1ε0 DE2
0/σ )

Bo Bond number (= |ρ1−ρ2|gD2/σ )

Oh Ohnesorge number (= µ1/
√
ρ1σD)
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INTRODUCTION

Electric fields are currently being employed to speed up
the separation of water from oil during oil production
from offshore wells. An electric field increases the coa-
lescence rate between water drops which again enhances
the settling process. Numerical calculations may give ad-
ditional insight into the fundamental processes occurring
in an electrocoalescer, and thereby help to optimize the
separation process.

The partial coalescence phenomenon was made widely
known by Charles and Mason (1960a) and Charles and
Mason (1960b). They attributed the phenomenon to a
static Rayleigh-Plateau instability, and gave a criterion
for partial coalescence based on the viscosity ratio. How-
ever, in Blanchette and Bigioni (2006), it was demon-
strated that the Rayleigh-Plateau instability could not be
the cause of the instability, and instead proposed the con-
vergence of capillary waves on the tip of the droplet as
the dominating mechanism. A detailed study of the prop-
agation of these capillary waves was made in Gilet et al.
(2007), and it was concluded that other viscous mecha-
nisms also play an important role in the process.

In Thoroddsen and Takehara (2000), partial coalescence
was observed in a system with a viscosity ratio much
higher than the criterion stated in Charles and Mason
(1960b). Blanchette and Bigioni tried to give a crite-
rion based on the Ohnesorge number and the Bond num-
ber, and found that for low Bond numbers, i.e. for drops
with negligible gravitational effects, the critical Ohne-
sorge number was approximately 0.026. Yue et al. (2006)
made an extensive parameter study using numerical sim-
ulations, and found an expression for the critical Ohne-
sorge number based on the viscosity ratio. However, they
did not consider larger Bond numbers, so a universal cri-
terion for the occurrence of partial coalescence remains
elusive.

The influence of electric fields on the partial coalescence
phenomenon was discussed briefly in Charles and Mason
(1960b). It was observed that the rest time of the drop
decreased when an electric field was applied. Also, above
a critical field strength, the drop was found to coalesce
with the interface in a single stage. In Allan and Mason
(1961), the influence of electric fields was studied in more
detail. They proposed that single-stage coalescence was a
result of an additional downward momentum of the water
column due to electrostatic attraction, leading to a faster
emptying of the drop.

The present work investigates the influence of an electric
field on the partial coalescence process using numerical
simulations. First, the governing equations and numeri-
cal methods are presented. These are then validated by
comparison with experimental and theoretical results. Fi-
nally, calculations of the partial coalescence process with
applied electric fields are presented and discussed.

GOVERNING EQUATIONS AND NUMERICAL
METHODS

The numerical method used for the calculations is de-
scribed in detail in Bjørklund (2008) and Hansen (2005),
and will only be briefly reviewed here. The full Navier–
Stokes equations are solved in each phase, and the inter-
face between the two phases is captured using the level-
set method. The ghost-fluid method is used to treat dis-
continuities across the interface in a sharp manner. To
account for electric forces, a Poisson equation is solved
for the electric potential, which is then used to calculate
the Maxwell stress tensor.

Flow equations

The flow is governed by the incompressible Navier–
Stokes equations, with added terms for surface tension
forces and electric forces:

ρ

(
∂u
∂t
+ (u·∇)u

)
=−∇p+∇·[µ(∇u+∇uT )]+ρg

+ F̂+∇·M,

∇·u = 0.
(1)

The effect of an interface, 0, in the domain results in a
singular surface force which can be expressed by

F̂(x, t)=
∫
0(t)

F(s, t)δ(x− X(s, t))ds, (2)

where s is the arc-length, X(s, t) is the parametrization of
the interface, x is the spatial position and δ is the Dirac
delta function. F is given by

F = σκn. (3)

Here, σ is the interfacial tension, κ the curvature and n is
the outward pointing unit normal vector.

In this work, all equations are solved in an axisymmetric
geometry, so that the divergence operator and Laplacian
operator become

∇· f =
1
x
∂

∂x
(x fx )+

∂ fy

∂x
=
∂ fx

∂x
+
∂ fy

∂y
+

fx

x
, (4)

∇·(∇ f )=
1
x
∂

∂x

(
x
∂ f
∂x

)
+
∂2 f
∂y2 =

∂2 f
∂x2 +

∂2 f
∂y2 +

1
x
∂ f
∂x

(5)

where the subscripts indicate the component, and not the
partial derivative of the vector f . In addition to the above
Laplace operator, one has to add − fx/x2 to the viscous
term in the x–momentum equation.

Electric forces

We assume perfect dielectric materials with no free
charges. In Allan and Mason (1961), it was concluded
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that the ionic strength of the aqueous solution had lit-
tle influence on the coalescence process. Furthermore,
Brown and Hanson (1965) found that it is the electric
field at the interface, rather than the charge it carries, that
is dominating the process.

With these assumptions, the electric potential, 9, can be
calculated from the following Laplace equation:

∇·(εε0∇9)= 0, (6)

The electric field can then be calculated as

e=−∇9, (7)

and the Maxwell stress tensor as

M = εε0

[
ee−

1
2
(e · e)I

]
, (8)

where I is the identity tensor. With the above assump-
tions, ∇·M = 0 everywhere except at the interface.

Interface capturing

The interface is captured using the level-set method
(Sussman et al. (1994); Osher and Fedkiw (2003)). This
method allows accurate computation of the evolution of
an interface, along with automatic handling of topolog-
ical changes. The ghost-fluid method (Fedkiw (1999);
Kang et al. (2000)) is used to take discontinuities across
the interface into account. This method handles the jumps
in physical properties directly in the numerical stencils,
without the need for any smearing of properties.

The interface is defined by the zero level set

0 = {x|φ(x, t)= 0}, (9)

and is evolved by

∂φ

∂t
+uint ·∇φ = 0. (10)

Here, uint is the velocity on the interface. To be able to
solve this equation numerically, the interface velocity is
extended off the interface. In Adalsteinsson and Sethian
(1999), it was shown that the velocity could be extrapo-
lated orthogonally from the interface by solving

∂u
∂τ
+ S(φ0)n ·∇u = 0, (11)

where S is a sign function given by

S(φ)=
φ√

φ2+21x2
. (12)

Note that this equation is hyperbolic, so it is not necessary
to solve it to steady state, since only the information a few
grid points away from the interface is relevant.

The standard level-set reinitialization procedure is used
to keep the level-set function as a signed distance func-
tion throughout the computation. This is accomplished
by solving

∂φ

∂τ
+ S(φ0)(|∇φ|−1)= 0,

φ(x,0)= φ0(x).
(13)

Reinitialization is performed every second time step.

The ghost-fluid method is used to handle the discon-
tinuities across the interface in a sharp manner. This
method requires jump conditions, which are relations be-
tween the physical quantities on each side of the inter-
face. In the following, the interfacial jump is denoted by
[x] = x+− x−, where x+ is the interfacial value on the
side of the interface where φ is positive, and x− is on the
other side.

The jump in the velocity gradient is

[µ∇u] = [µ]n ·∇(u ·n)nn+[µ]t ·∇(u ·n)nt (14)
−[µ]t ·∇(u ·n)tn (15)
+[µ]t ·∇(u · t)t t, (16)

where t the tangential vector. The jump in the pressure is

[p] = 2[µ]n ·∇u ·n+n · [M] ·n+σκn ·n, (17)

The jump conditions for the electric potential and its gra-
dient are

[9] = 0, (18)
[εε0∇9 ·n] = 0. (19)

The latter is zero since we assume no free charges.

Numerics

A second-order projection scheme is used to solve the
Navier–Stokes equations. First, a temporary vector field,
a, is calculated:

a =−(u·∇)u+∇·[µ(∇u+∇uT )]. (20)

Then the pressure is found by solving

∇·

(
∇p
ρ

)
=∇·a. (21)

Finally, the velocity field is calculated with

∂u
∂t
= a−

∇p
ρ

(22)

The evolution in time is performed using a third or-
der, strong stability preserving (SSP) Runge-Kutta (RK)
method (Gottlieb et al. (2001)), while a second order SSP
RK method is employed for the evolution of the level-set
equation, the reinitialization of the level-set equation and
extrapolation of the velocity field.

The equations are spatially discretized on a staggered
grid, with scalar values stored in cell centers and vector
values stored at cell boundaries. The convective terms
are discretized using the fifth order Weighted Essen-
tially Non-Oscillatory (WENO) scheme (Jiang and Peng
(2000)), and viscous terms are discretized using standard
second order central differences.

One substep in the RK solver can be summarized as fol-
lows:
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1. Solve Equation (6) for the electric potential

2. Calculate electric field and electric forces using
Equations (7)-(8)

3. Calculate a temporary vector field with Equa-
tion (20)

4. Solve Equation (21) to find the pressure

5. Calculate the final velocity field using Equation (22)

6. Extrapolate the velocity from the previous time step
by solving Equation (11)

7. Update the level-set function with Equation (10), us-
ing the extrapolated velocities

8. Reinitialize the level-set function by solving Equa-
tion (13)

Dimensionless groups

In Yue et al. (2006) the following four dimensionless
groups were used to describe the partial coalescence phe-
nomena:
The Ohnesorge number, relating viscous forces to inter-
facial tension forces

Oh=
µ1

√
ρ1σD

, (23)

the Bond number, relating gravitational forces to interfa-
cial tension forces

Bo=
|ρ1−ρ2|gD2

σ
, (24)

the density ratio
ρ? =

ρ1

ρ2
(25)

and the viscosity ratio

µ? =
µ1

µ2
. (26)

Here, the subscripts 1 and 2 denote the drop and the ma-
trix phase, respectively. D is the diameter of the drop and
σ is the interfacial tension between the two phases. The
addition of an electric field gives three new variables in
the system; the initial electric field, E0, and the permittiv-
ities of the two phases, ε1 and ε2. This calls for two new
dimensionless variables to properly describe the system.
Here, we choose the electric Bond number, relating elec-
tric forces to interfacial-tension forces

Be=
ε1ε0 D
σ

E2
0 , (27)

and the permittivity ratio

ε? =
ε1

ε2
. (28)

Any other dimensionless quantity can now ideally be rep-
resented as a function of these dimensionless parameters.

We use the same time scale as Yue et al. (2006),

tic =

√
ρ1 D3

σ
. (29)

Quantity Value

Initial drop diameter, D0 1/3
Drop density, ρ1 1.0
Drop viscosity, µ1 1.0×10−2

Drop permittivity, ε1 180
Matrix density, ρ2 1.0
Matrix viscosity, µ2 1.0×10−2

Matrix permittivity, ε2 3
Interfacial tension, σ 1.0
Electric field, E0 6.42×104

Table 1: Numerical parameters for the oscillating drop
calculation.

CODE VALIDATION

Oscillating drop driven by an electric field

This test case aims at demonstrating the validity of the
model for the electric forces. An initially spherical drop
is exposed to an electric field. This will induce surface
forces on the interface between the two fluids, set up by
the permittivity difference, and result in a stretching of
the drop in the direction of the electric field. This process
is illustrated in Figure 1.

An expression for the steady-state elongation of the
droplet can be found by balancing the hydrodynamic
pressure with the electrostatic pressure (Garton and Kra-
sucki (1964); Taylor (1964)). For drops with finite per-
mittivities, this expression can be written as

E0

√
D0ε0ε2

σ
=2

(a
b

)2/3
√

2−
b
a
−

(
b
a

)3

(30)

·

∣∣∣∣ 1
1− ε1/ε2

−
b2

a2 I2

∣∣∣∣ (31)

I2 =
1
2

e−3 ln
(

1+ e
1− e

)
− e−2 (32)

e2
=1−

b2

a2 (33)

(34)

A series of calculations on varying grid sizes was per-
formed and compared with the analytic expression above.
The numerical parameters for the numerical calculations
are given in Table 1. For these values, the asymptotic
expression gives a = 0.3290 and b = 0.3422.

Figure 2 compares calculations with the axisymmetric
code to the asymptotic value. As expected, the calcula-
tions converge toward oscillating around the asymptotic
value.

Partial coalescence without electric field:
Comparison with experiment

In Chen et al. (2006), an experiment was performed of
a water droplet merging with an interface between 20%
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E0

a

b

ǫ2

ǫ1

Figure 1: Illustration of the stretching of an initially
spherical drop when an electric field is applied.
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Figure 2: The evolution of the x-aligned semi-axis of an
initially spherical drop subjected to an electric field. The
dashed line indicates the theoretical steady state.

polybutene in decane and water, with no electric field
applied. They presented a particularly clear image se-
quence of a partial coalescence event, which is used here
for comparison with the numerical results. The physical
properties of the system used are given in Table 2. Note
that Chen et al. (2006) use a different definition of the
Ohnesorge number than this work.

A numerical calculation with the same properties was
performed to verify that the numerical method was ca-
pable of calculating the partial coalescence process. The
numerical setup is illustrated in Figure 3. The compu-
tational domain is given by R = 3D and H = 6D, the
height of the water interface is H1 = 2D and the initial
distance from the interface to the drop is H2 = 0.02D.
The grid size used was 100×200.

Figure 4 shows snapshots from the experiment performed
in Chen et al. (2006), and Figure 5 shows the comparable
snapshots from the numerical calculation. The simula-
tion is capable of reproducing the partial coalescence of
the experiment, and also captures the evolution of the in-
terface with quantitative precision. In particular, the nu-
merical method is capable of predicting the evolution of
the capillary wave, indicated by arrows in Figure 4.

Quantity Value

Drop diameter, D 1.1×10−3

Drop density, ρ1 1000
Drop viscosity, µ1 1.0×10−3

Matrix density, ρ2 760
Matrix viscosity, µ2 2.0×10−3

Interfacial tension, σ 2.97×10−2

Ohnesorge number, Oh 5.53×10−3

Bond number, Bo 9.59×10−2

Table 2: Physical properties of the partial coalescence
experiment performed by Chen et al. (2006).

HD

H2

H1

L

Figure 3: A schematic of the geometry for the numerical
simulation. Axisymmetry is imposed across the center-
line, so only the right half is actually part of the compu-
tational domain.

RESULTS AND DISCUSSIONS

In this section, the effect of an electric field on the par-
tial coalescence process is discussed. Calculations are
performed using the same numerical setup and physical
properties as in the previous section, but now a potential
difference is applied between the upper and lower bound-
ary. Additionally, the height of the numerical domain is
increased to H = 7.5D, to ensure that the drop is not af-
fected by the upper boundary. The grid size used for these
simulations was 90×225.

It should be noted that the initial conditions used here
does not take into account the approach of the drop and
the resting of the drop on the interface. Several authors
(Charles and Mason (1960b); Allan and Mason (1961);
Brown and Hanson (1965); Eow and Ghadiri (2003))
have found that an important effect of adding an electric
field is a reduction in rest time due to additional attrac-
tive forces during the approach of the drop. However, the
purpose of this study is to examine the actual coalescence
process, and not the reduction in rest time.
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Figure 4: Snapshots of a water droplet merging with an interface between 20% polybutene in decane and water. The
initial drop diameter D = 1.1mm,Bo = 0.0959,Oh = 0.00417, and the pictures are 542µs apart in time. The location
of the capillary wave is shown by the arrows. The horizontal lines, which are at the same height in all three rows, help
in tracking the motion of the top of the drop. Reprinted with permission from X. Chen, S. Mandre and J. J. Feng, Partial
coalescence between a drop and a liquid-liquid interface. Phys. Fluids, volume 18, 2006. Article 051705. Copyright
2006, American Institute of Physics.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5: Snapshots from numerical simulation corresponding to the above figure. The numerical simulation is in good
agreement with the experiment. In particular, the evolution of the capillary wave, indicated with arrows in the above
figure, is accurately predicted.
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Effect of the electric Bond number

Figure 6 shows the time interval from pinch-off to coa-
lescence of the secondary drop, denoted τ2, for different
electric Bond numbers. The interval decreases until sin-
gle stage coalescence is obtained at Be = 0.075. This
trend is equivalent to that observed in Allan and Mason
(1961). Single-staged coalescence is then observed at a
range of electric Bond numbers, until pinch-off occurs
again at Be= 0.15. The reappearance of multi-staged co-
alescence at higher field strengths was not observed by
Allan and Mason (1961) and Eow and Ghadiri (2003).
However, recent experiments (Hellesø (2008)) confirm
that this behaviour may occur.

Snapshots from the entire calculation for Be = 0.1 are
given in Figure 7. The potential drop across the drop
and the aqueous phase is nearly zero, which was also ob-
served in Allan and Mason (1961) and Brown and Han-
son (1965). In Figure 4 it is clearly shown that without
an electric field, the height of the liquid column increases
during the emptying. With an electric field applied, the
height decreases steadily throughout the entire event. The
actual pinch-off in Figure 5, (k), corresponds to (h) in
Figure 7. The liquid bridge for the simulation with an ap-
plied electric field is thicker, and the capillary forces are
not large enough for pinch-off to occur.

Allan and Mason attributed single-stage coalescence to
enhanced drainage of the drop due to electrostatic at-
traction. Figure 8 shows a comparison of the relative
pressure distribution with and without an applied electric
field at t = 4.0× 10−4 s. The electric forces at the inter-
face gives a higher pressure inside the drop, and hence a
higher downward momentum. This is further illustrated
in Figure 9, which shows the magnitude of the velocity
in the y-direction. Without an electric field, the upper
part of the liquid column has a positive velocity. Only the
lower part of the column is emptied, which produces a
thin filament which eventually pinches off. With an elec-
tric field, the entire column has a negative velocity, which
additionally is everywhere larger than without an electric
field. This increased emptying rate prevents the liquid
bridge from pinching off. This also explains why the liq-
uid bridge gets thinner from (b) to (h) in Figure 7, while
it thickens thereafter. Initially, the capillary forces dom-
inate, which causes a thinning of the liquid bridge. The
capillary forces depend on the curvature, so they will get
lower as the drop turns into a liquid column. Meanwhile,
the pressure due to electric forces builds up inside the
drop and accelerates the fluid inside. This is what causes
the thickening and prevents pinch-off.

Effect of the permittivity ratio

Three simulations were performed at different permittiv-
ity ratios. The time from pinch-off to recoalescence is
plotted in Figure 10. It is evident that for values much
lower or higher than that used in the previous section, the
coalescence becomes multi-staged again.

τ2

0 0.05 0.1 0.15

0

0.1

0.2

0.3

0.4

Be

Figure 6: Time from pinch-off to recoalescence of sec-
ondary drop for varying electric Bond number. For an
intermediate range of electric Bond numbers, the coales-
cence is single-staged.

For a low permittivity ratio, this is because the electric
forces are too small to give the necessary downward mo-
mentum to prevent pinch-off.

For a high permittivity ratio, the increased stretching of
the drop outweighs the effect of the downward momen-
tum, which causes pinch-off to occur.

CONCLUSIONS

This article presented a computational investigation of
the partial coalescence phenomenon, with and without
electric fields applied.

It was shown that the numerical model is capable of re-
producing a partial coalescence event with near quantita-
tive precision in the absence of electric fields.

For the calculations with an applied electric field, the nu-
merical model was able to reproduce trends reported in
the literature. In particular, suppression of the partial co-
alescence process for higher electric fields observed in
experiments was reproduced.

Detailed information from a single-staged coalescence
event was presented that provides insight that is not
immediately available from experiments. These results
showed that the pressure inside the drop is higher when
an electric field is applied. This increases the emptying
rate of the drop, and thereby supports the argument that
single-stage coalescence is caused by an increased down-
ward momentum caused by the electric forces at the in-
terface.

The present results do, however, not give a complete pic-
ture of partial coalescence under the influence of elec-
tric fields. More simulations should be performed using
a wider range of the dimensionless parameters. In par-
ticular, only one Ohnesorge number and Bond number
was investigated here. An investigation of higher Bond
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Figure 7: Snapshots from numerical simulation with D = 1.1mm,Bo = 0.0959,Oh = 0.00417, and Be = 0.1, demon-
strating single stage coalescence. The time interval is1t = 7.75×10−4 s, and the contour lines show the electric potential
with a 10V interval. The potential in the aqueous phase is close to uniform, due to the high relative permittivity.
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(b) Applied electric field, Be= 0.1

Figure 8: Contour plot of relative pressure at t = 4.0×10−4 s, with and without an electric field. The electric field gives
a higher pressure inside the drop, due to the additional electric forces at the interface.
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Figure 9: Contour plot of vertical velocity at t = 4.0×10−4 s, with and without an electric field. The electric field gives
an increased emptying rate of the drop.
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Figure 10: Time from pinch-off to recoalescence of sec-
ondary drop for varying permittivity ratio.

numbers, electric Bond numbers and permittivity ratios
requires a full simulation of the approach of the drop.

Finally, the influence of impurities on the interface has
not been taken into account in the numerical model-
ing. Such impurities may cause surface tension gradi-
ents which give rise to additional forces that may mod-
ify the coalescence behaviour. However, recent exper-
iments (Hellesø (2008)) performed with water drops in
real crude oils show the same qualitative behaviour as the
results presented here.
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