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Abstract

This review considers data and models for CO2 transport. The thermophysical properties of CO2 and CO2-rich mixtures are needed
as a basis for various models within CO2 capture and storage (CCS). In particular, this is true for transient models of pipes and
vessels. Here, the data situation for phase equilibria, density, speed of sound, viscosity and thermal conductivity is reviewed, and
property models are considered. Further, transient flow data and models for pipes are reviewed, including considerations regarding
running-ductile fractures, which are essential to understand for safety. A depressurization case study based on recently published
expansion-tube data is included as well. Non-equilibrium modelling of flow and phase equilibria are reviewed. Further, aspects
related to the transport of CO2 by ship are considered. Many things are known about CO2 transport, e.g., that it is feasible and safe.
However, if full-scale CCS were to be deployed today, conservative design and operational decisions would have to be made due to
the lack of quantitative validated models.

Keywords: CO2 transport, fluid dynamics, thermodynamics, thermophysical properties, depressurization, decompression,

1. Introduction

In the two-degree scenario (2DS) of the International En-
ergy Agency [1], which is one possible way of reaching the
two-degree goal, CO2 capture and storage (CCS) contributes to
reducing the global CO2 emissions by about six billion tonnes
per year in 2050. To achieve this scenario, CO2 must be transpor-
ted from the points of capture to the storage sites. A large frac-
tion of the captured CO2 is likely to be transported in pipeline
networks. Pipeline transport of CO2 is different from that of
natural gas in a number of ways. First, the CO2 will normally
be in a liquid or dense liquid state [2, 3], whereas the natural
gas most often is in a dense gaseous state, see e.g. Aursand
et al. [4]. Second, depending on the capture technology, the
CO2 will contain various impurities [5–7], which may, even in
small quantities, significantly affect the thermophysical proper-
ties [8, 9]. The thermophysical properties, in their turn, influence
the depressurization and flow behaviour [10]. Transport of CO2
by pipeline is in operation for the purpose of enhanced oil recov-
ery (EOR), mainly in the USA [11, 12]. The CCS case is likely
to be different, due to different impurities, and the proximity
to densely populated areas. Thus, there is a need to develop
modelling tools which can aid in the safe and economical design
and operation of CO2-transport pipelines.

Flow models for CO2 transport should be able to take a num-
ber of phenomena into account. As already alluded to, multiple
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chemical components need to be catered for. Already in a single-
phase case, CO2 mixtures from different capture technologies
will give different dynamic behaviour in pipeline transport [13].
Depending on the conditions, hydrates [14], or other solids, may
form. Two-phase liquid-vapour flow may also occur, even if
the pipeline is designed to be operated in the single-phase re-
gion. This may be due to varying CO2 supply [15], or during
transient events, such as start-up, shut-in or depressurization [16–
18]. During these events, among other things, it is important
to be able to estimate the temperatures, since the construction
materials may have a minimum temperature below which they
begin to lose their toughness, e.g. the ductile-brittle transition
temperature of steel. Furthermore, it is of great importance to
be able to calculate the single-phase and two-phase (mixture)
speed of sound. This is because a given pipeline filled with CO2
is more susceptible to running-ductile fracture than if filled with
natural gas [2, 19, 20], and the running fracture is governed by a
‘race’ between the fracture velocity and the speed of sound.

The dispersion of CO2 resulting from a leakage [21–24] is
an input to risk assessments. To obtain realistic input boundary
conditions to dispersion models, it is necessary to have good
depressurization models for pipes and vessels.

Koornneef et al. [25] pointed out various knowledge gaps
which affect the uncertainties of quantitative risk assessments
for CO2 pipelines. However, the fact that CO2 pipelines have
different challenges when compared to natural gas pipelines does
not mean that CO2-pipeline networks will be associated with
high risks. The study by Duncan and Wang [26] suggested a
very small likelihood of having potentially lethal releases for
CO2 from pipelines, assuming, among other things, that fracture
propensity can be successfully mitigated.

Due to the large investments associated with offshore pipelines,

Preprint submitted to Elsevier 16th February 2016



transportation by ship may be a viable alternative due to its flex-
ibility, especially in a start-up phase with relatively low CO2
volumes. Among the issues needing further attention, is the
design of the offloading system, which also has to be compat-
ible with the restrictions imposed by the storage site. Such
considerations require modelling tools accurately representing
the thermophysical properties of CO2 and CO2-rich mixtures,
including the vapour-liquid phase boundary and the precipitation
of solids. Further, the emptying or depressurization of vessels
have similarities with the depressurization of pipelines.

Regarding the content of other substances (‘impurities’) in
the CO2 to be transported, there appears to be at least two views.
The first is that one should arrive at a ‘transport specification’ list-
ing the maximum allowable content of impurities. The second
is to perform knowledge-based optimization for each case. We
believe that the latter approach may lead to a more efficient
CCS system, preventing e.g. the oversizing of capture and con-
ditioning plants. In the case of ship transport in particular, the
liquefaction process should be optimized together with the cap-
ture process.

In view of the above, we want to review the state of the art
with respect to data and models for transient two- and multiphase
flow of CO2 and CO2-rich mixtures in CO2-transport systems.
Emphasis is put on developments having taken place after the
reviews by Aursand et al. [4], Li et al. [8, 9], Gernert and Span
[27], or on relevant subjects not covered therein. We put our
boundary conditions around the transport system itself, focusing
on thermo- and fluid dynamics in, and out of, pipes and vessels.

Although it would lead too far to enter into details in this
paper, it should not be forgotten that the accuracy of a simulation
not only depends on the accuracy of the physical model, but
also on the employed numerical method. Numerical methods
for multiphase flow models is a subject where there are still
challenges with respect to robustness, accuracy and efficiency.
For instance, numerical diffusion can smear out the resolution
of a depressurization wave in a pipeline [28, 29]. The numerical
methods employed to solve for the thermophysical properties
also need to be highly consistent, robust and efficient. This is
particularly true in conjunction with CFD methods, where the
thermophysical properties are needed in each computational cell
at each time step.

The remainder of this article is organized as follows. In
Section 2 we review the data situation for phase equilibria,
density, speed of sound, viscosity and thermal conductivity of
CCS-relevant CO2-rich mixtures. Section 3 deals with property
models and briefly discusses implementation in fluid-dynamic
models and flow through restrictions, which is relevant for de-
compression calculations. In Section 4, we review published
data and models for transient multiphase flow of CO2-rich mix-
tures in pipes. In particular, we include pipe-depressurization
case study. Section 5 considers ship transport of CO2. The study
is concluded in Section 6.

2. Thermophysical property data

Knowledge of the relevant thermophysical properties of the
relevant fluids is needed to optimize CO2 transport with respect

to economy, operability and safety. A few examples will be
provided in the following. We will then review the situation re-
garding thermophysical property data for CO2-rich CCS-relevant
mixtures.

In pipeline transport it is usually desirable to have the fluids
in dense phase, and hence knowledge of the vapour-liquid phase
behaviour is essential [30, 31]. Accurate knowledge of vapour-
liquid phase behaviour is particularly important when water
is present in the CO2-rich fluid to be transported, since even
small amounts of water may lead to accelerated corrosion, in
particular when in combination with other impurities [32–36].
At even lower water concentrations, CO2 may form hydrates
[37], in particular in combination with methane [38]. Phase
behaviour will also be an important factor to determine the
temperature and pressure characteristics of the CO2-rich liquid
in ship transport, and is particularly important in the design of
the liquefaction process, for instance in order to avoid solid-state
formation. Finally, phase behaviour models are very important to
predict transient phenomena such as sudden (de-)pressurization
of pipelines [39] and liquid loading and unloading of vessels.

For dimensioning of both pipelines and vessel size in ship
transport, knowledge of the density as a function of pressure,
temperature and composition is required. Density is also im-
portant for the design of important processing equipment such
as compressors and pumps. In future large-scale CCS, accurate
flow metering will be needed, both for government control and
to facilitate a working CCS market and in order to optimize the
processes involved. Many of the most relevant methods used
today for fiscal natural gas metering are volumetric and hence
need accurate density information for the transported mixtures.

Speed of sound has readily apparent importance in determ-
ining the flow rate in choked flow or in order to model any
transient phenomena involving pressure waves. However, in
addition, speed of sound often has an important role in the de-
velopment and verification of equations of state (EOSs). The
thermodynamic speed of sound is defined from the isentropic
pressure variation with density, and for single-phase flow it is
a purely thermodynamic function. In multiphase flow this is
complicated by the interaction of the phases.

Among transport properties, viscosity is needed to estimate
the pressure drop in pipes, reservoir modelling, as well as for
the design of processing equipment. Thermal conductivity and
heat capacity are needed for heat-transfer calculations, heat-
exchanger design and a range of transient phenomena. Likewise,
diffusion coefficients are needed to properly model e.g. reservoir
behaviour and tank unloading.

Although the focus of this work is on CO2 transport, thermo-
physical properties are also of high relevance in other sections
of the CCS chain, both during capture, processing, injection and
storage.

2.1. CCS capture product and transport fluid specifications

In real-life applications, the CO2 to be transported will not
be pure, but will be mixed with a certain amount of different
impurities. As indicated in Table 1, the concentration range
of different impurities in the CO2 product from CCS capture
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processes can be quite large, depending on the capture techno-
logy and e.g. the purity of the fuel. It should be clear that the
high level of impurities from some of the capture processes will
lead to thermophysical properties that are drastically different
from that of pure CO2. For instance, the presence of only small
amounts of dry air gases will increase the power consumption of
transport chains [40], high levels of oxygen may be undesirable
for instance in EOR and storage in depleted oil reservoirs, and
toxic components may be unacceptable from regulator’s point
of view. The effects of water have already been discussed above.
Hence, conditioning of the captured CO2 product may be needed
in many cases to enable efficient transport and storage. How-
ever, conditioning comes at a cost depending on the specified
purity level, and hence, the levels of impurities allowed should
be determined based on accurate models for the behaviour of
the CO2-rich mixtures.

For the different CO2 pipelines in operation today, there is
no consensus with regard to the specifications of CO2 product
composition and operational pressure. For instance, the max-
imum water content specifications vary between 50 ppm and
630 ppm [41]. In the Sleipner project, Hansen et al. [42] even
indicate that the water content is more than 1000 ppm, which
could lead to hydrate formation or even water-rich liquid phase
at prolonged shut-ins. From a corrosion perspective, this ex-
ample has less general relevance due to the use of stainless steel,
which will be too expensive in projects of larger scale. It should
be noted that most of the US EOR pipelines are transporting gas
from geological CO2 sources, which, depending on the capture
and conditioning process, have different compositions than what
is expected in CCS systems. During the last decade, various
CO2 quality recommendations for CCS pipeline transport have
been proposed [2, 5, 43–46]. They vary a lot, for instance when
it comes to water content (50 to 500 ppm), other impurities and
overall CO2 purity (95 to 99.5 %).

2.2. Data situation for equilibrium properties
Relatively recently, a review by Gernert and Span [27] has

mapped the availability of experimental data on various ther-
modynamic properties of mixtures containing CO2, H2O, N2,
O2, Ar, and CO. The last experimental data points considered
were from 2012. Li et al. [8] published a review on density and
phase equilibria data on CO2-rich mixtures, with the last data
considered being from 2002. Further, Li et al. [9] published a
review on the data situation with regard to viscosity, thermal
conductivity and diffusivity, with the last data points considered
being from 2004. For fluid-phase equilibria, there is a series of
articles covering high-pressure vapour-liquid equilibrium (VLE)
measurements of many systems [47–53]. In order to get an
up-to-date overview of data availability, free databases such as
NIST’s ThermoLit [54, 55] could be a useful source.

In the current work, a rather up-to-date overview of the data
situation for phase behaviour, density, speed of sound, viscosity
and thermal conductivity relevant for CCS will be provided. A
warning is however warranted: Often data reviews are given in
terms of parameters such as number of data points, pressure,
temperature, and composition range. This information can in
some cases be quite misleading. Firstly, there will often be large

regions without data between the bounds of the pressure, tem-
perature and composition range. Secondly, the usefulness of the
data will depend on their real accuracy. In practice, accuracy is
often not indicated in the data source. If it is indicated, there
could be large discrepancies between what is claimed and the
reality. Hence, for modelling purposes, careful study and con-
sistency checks of the actual data should be performed, where
the data often are categorized as either primary data used for
modelling or secondary data. In EOS-CG [27], the new mixing
rules were based only on 14 % of the data points available for
the respective binary systems. It is beyond the scope of this work
to perform such a critical review, and hence even for the systems
and properties with the most measurements, a satisfactory data
situation cannot be claimed. However, the overview provided
indicates the strong need for more measurement data for certain
properties, conditions, and mixtures, and should provide a useful
starting point for further data mining and analysis.

The results of the data survey are shown in Tables 2–8. The
information provided for the systems covered includes the num-
ber of sources, the number of sources during the last 40 years,
the location of references, the number of data points, and ranges
in temperature, pressure, and composition. New data do not
at all have to be better than historic data, but generally, both
the measurement techniques and physical understanding of the
different measurement principles have improved during the last
decades. Secondary referencing using some existing reviews
[8, 9, 27, 56–63] are used for some of the sources, both because
some of these references go deeper into the data, and to limit
the number of references in the current work somewhat. In the
tables, the number of references provided by each secondary
source is given in an exclusive manner, such that primary sources
are only counted once.

For all properties, data have been surveyed for binary mix-
tures between CO2 and the other components listed in Table 1,
which we will call primary mixtures in the following. If no data
are found for such a binary system for a given property, no entry
is provided in the relevant table. For phase equilibrium, also data
from binary mixtures with water as well as ternary mixtures are
provided. The reason is that even a small presence of a second
phase in CCS transport could have a large impact. For some of
the properties, also pure CO2 is considered because of the rather
small number of experimental papers found.

2.2.1. Vapour-liquid-liquid equilibrium (VLE)
An overview of VLE data relevant for CCS is provided in

Table 2. Regarding some important binary systems for CCS, like
CO2-N2, CO2-CH4, and CO2-H2O, the reports of a number of
recent experimental studies seem to indicate a satisfactory data
situation. Nevertheless, gaps and inconsistencies have recently
been pointed out. For instance, with regard to CO2-N2, it was
argued in [65] that prior to recent measurements [65, 79], the
data situation was not very satisfactory at high temperatures and
around the critical pressure. This is illustrated around 298.15 K
in Figure 1, where the presence of data is not equivalent to
a satisfactory data situation. Recently, the data situation for
CO2-O2 has drastically been improved [82], and also the data
situation for CO2-H2 is now better than it used to be thanks to
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Table 1: Lower (xi,min) and upper (xi,max) range of typical impurity mole fractions from different capture processes. From [9] based on data from [2].

CO2 N2 O2 Ar SO2 H2S/ NOx CO H2 CH4 H2O Amines NH3
COS

xi,min (%) 75 0.02 0.04 0.005 <10−3 0.01 <0.002 <10−3 0.06 0.7 0.005 <10−3 <10−3

xi,max (%) 99 10 5 3.5 1.5 1.5 0.3 0.2 4 4 6.5 0.01 3

Table 2: VLE data for CCS-relevant systems.

System # Sources Location of References # Points Data ranges
(1)-(2)-(3)-(4) Total 1975→ T (K) p (MPa) xCO2

CO2-N2 34 26 12 in [8] + 12 in [27] +[65, 72–80] > 700 208–303 0.6–21.4 0.15–0.999
CO2-O2 8 2 5 in [8] + 1 in [27] + [81, 82] > 292 218–298 0.9–14.7 0.15–0.99
CO2-Ar 4 2 2 in [8] + 1 in [27] +[83] ∼ 200 233–299 1.5–14.0 0.25–0.99
CO2-SO2 3 0 1 in [8]+[84, 85] ∼ 425 293–418 2.1–9.5 0.09–0.93
CO2-H2S 8 3 2 in [8] + [86–91] > 270 248–365 1.0–8.9 0.01–0.97
CO2-N2O 1 0 1 in [8] > 100 293–307 5.3–7.2 0.26–0.88
CO2-NO2/

CO2-N2O4
2 1 1 in [8] + [92] 26 262–328 0.17–9.0 0.005–0.88

CO2-CO 3 1 1 in [8] + 1 in [27] + [93] 106 223–293 0.8–14.2 0.20–0.996
CO2-H2 8 4 2 in [8] + [64, 71, 79, 80, 94, 95] > 400 218–303 0.9–172 0.07–0.999
CO2-CH4 19 15 9 in [8]+ [74, 75, 96–103] >180 153–320 0.68–48 0.026–0.99
CO2-H2O >50 Eg. 41 refs. in [27] >1500 251–623 0.1–350 0.08–1.00
CO2-NH3 2 0 2 in [8] 62 413–531 4.3–81.7 0.023–0.33

H2O-N2 29 15 26 in [27] + [104–106] > 876 233–657 0.045–270 0.01–1.00
H2O-O2 9 5 5 in [27] + [107–110] 246 273–711 0.1–280 0.00–0.99
H2O-Ar 12 10 9 in [27] + [111–113] > 460 258–663 0.1–340 0.00–0.95
H2O-SO2 30 8 23 in [56] + [114–120] > 756 273–423 2·10−4–345 0.86–0.999
H2O-H2S 17 6 13 in [58] + [121–124] > 700 273–589 0.01–20.7 5·10−4–0.9997
H2O-N2O 3 2 [125–127] > 52 286–303 0.1–7.3 0.95–0.9996
H2O-CO 2 2 [122, 128] 41 304–589 1.1–13.8 0.001–0.99995
H2O-H2 6 5 [122, 129–133] > 25 310–713 0.34–250 6·10−4–0.99996
H2O-CH4 This system is nominally well covered, for instance with more than 30 sources found in [54]

H2O-MEA
H2O-DEA
H2O-MDEA
H2O-NH3

These systems are nominally relatively well covered, see [54, 134]

CO2-N2-O2 3 0 2 in [8] + 1 in [27] 80 218–273 5.1–13 –0.925
CO2-N2-H2 1 1 [80] 36 253–302 2.1–8.7 0.95–0.93
CO2-CO-H2 1 1 1 in [8] 36 233–283 2–20 0.17–0.98
CO2-CH4-N2 2 2 2 in [8] > 100 220–293 6–10 0.27–0.99
CO2-CH4-H2S 1 0 1 in [8] 16 222–239 2.1–4.8 0.024–0.78
CO2-H2O-CH4 5 5 [38, 135–138] > 132 243–423 0.1–100 0.001–0.83
CO2-H2O-NaCl
CO2-brines 16 15 10 in [62]+[62, 139–143] > 1150 278–673 0.0–40 10−4–0.998

CO2-O2-Ar-N2 1 1 [144] 5 252–293 7.1–9.0 0.892
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Figure 1: Data situation for CO2-N2 VLE around 298.15 K. Experimental
data from [64–67] are plotted with the GERG-2008 [68] and EOS-CG [27]
models. Bubble points are shown in red, dew points in blue, and a supercritical
measurement from the measurement campaign reported in [65] is shown in
green.
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Figure 2: Available data for CO2-H2 VLE. All data at (290.00 ± 0.15) K. Data
from [69–71]. Bubble points are shown in red and dew points in blue.

recent measurements [79, 80]. That an improvement was much
needed despite the presence of literature data is illustrated in
Figure 2. For CO2-Ar there is one recent data set which seems
to be of high quality [145], but the region around the critical
locus is not well covered. For the other primary mixtures listed,
the data situation is generally poor. For CO2-SO2 for instance,
there are many data points, but most of the data are from a single
author around the year 1902, and the latest data are from 1931.
For CO2-NOx and CO2-CO there are big gaps in the data. No
VLE data have been found for the binary systems CO2-COS,
CO2-NO, or CO2-amines / CO2-NH3.

In order to avoid corrosion, it is of high importance to accur-
ately determine the threshold for the formation of a water-rich
liquid phase, and hence also VLE measurements on binary mix-
tures between water and the other impurities have been included
in Table 2. Also here the amount of data varies significantly. It
should be noted that a large part of the data are on gas solubility
in water. For H2O-SO2 and H2O-H2S, a large fraction of the
data is very old, in the case of H2O-SO2, 16 of the sources were
published before 1940, the first one in 1855. Again the coverage

of e.g. CO and NOx seems poor, and no data have been found
for binary mixtures between H2O and COS, NO and NO2/N2O4.

For completeness, also multicomponent CO2 mixtures have
been included in Table 2. Perhaps the most interesting systems
here are CO2-H2O-NaCl and CO2-brines, for which there are
some data to be studied, and which are relevant for injection
and storage. Ternary mixtures between CO2, H2O, and amines
or NH3, which are seen as more important for some capture
processes than for transport and injection, have not been included
in Table 2, but some data have been identified.

2.2.2. Vapour-liquid-liquid equilibrium (VLLE)
Some of the primary mixtures, like methane and CO2 and

water and CO2, are known to form immiscible liquids at certain
conditions, i.e., vapour-liquid-liquid equilibrium (VLLE). Again,
it is of considerable practical interest to accurately characterize
when a water-rich liquid phase forms. As seen in Table 3, the
experimental data found for this kind of systems are scarce.

2.2.3. Equilibria involving solids and hydrates
In Table 4, the relevant phase equilibrium measurements

found for systems involving solids are listed. During depres-
surization, the temperature of dry CO2 mixtures could drop
significantly, facilitating the formation of solid CO2 (dry ice).
New equilibria models for pure CO2 with solids have recently
been developed [169, 170], although, as stated in [170], the
amount of thermodynamic data on solid CO2 is very limited.
For CCS, it is of interest to quantify also the change in freezing
point due to impurities. For most impurity components, we
would expect a freezing point depression. As seen in Table 4,
very few measurements have been performed with such systems,
except for CO2 mixed with CH4 or N2. For these mixtures, the
main focus has, however, been on low temperatures and hence
relatively low CO2 concentrations in the fluid phase(s), and the
measurements on CO2-N2 are mostly quite old and incomplete.

With water involved, solid or hydrate phases can be intro-
duced at much higher temperatures. Quite a bit of data have
been found for the binary CO2-H2O system. With additional
components present, far less data are available, and for the sys-
tems that are covered, a significant part of the data comes from
a single source [63].

2.2.4. Density and related properties
Available data found for density and the related properties

virial coefficients and compressibility are shown in Table 5. At
first glance, density seems to be relatively well covered for a
number of the primary binary mixtures, such as CO2-N2, CO2-
Ar, CO2-CH4, and CO2-H2O, but approximately 99 % of the
data points for CO2-CO and 80 % of the data points on CO2-
CH4 come from the same experimental setup, all with a mole
fraction of 0.97 CO2 or more [93, 189]. It should also be noted
that density measurements have an added degree of freedom
as the composition of the fluids can be varied, in contrast to
phase equilibria measurements of binary mixtures where the
composition of each phase at a given temperature and pressure is
fixed. Furthermore, it should be noted that for CO2-H2O, most
data are for low CO2 content, and no data have been found below
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Table 3: VLLE equilibrium data for CCS-relevant systems.

System # Sources Location of References # Points Data ranges
(1)-(2) Total 1975→ T (K) p (MPa) xCO2

CO2-H2O 3 3 2 in [27] + [146] 278–313 6.4–29.5
H2O-H2S 2 1 [121, 124] > 15 311–373 4–20.7 0.018–0.95
H2O-N2O 2 1 [121, 146]
CO2-H2O-CH4 1 1 [138] 37 293–301 6.5–7.7 4·10−5–0.22

Table 4: Phase equilibrium data involving solids and hydrates for CCS-relevant systems.

System # Sources Location of References # Points Data ranges
Total 1975→ T (K) p (MPa) xCO2

CO2-N2 6 2 [79, 94, 147–150] > 16 140–190 4.8–200
CO2-O2 1 1 [151] 12 91–119 0.4–0.4 4·10−6–10−5

CO2-SO2 1 0 [152] 0.1
CO2-H2S 1 0 [152] 0.1
CO2-H2 1 1 [79] 3 217–218 4.3–13.7
CO2-CH4 7 2 [153–159] 98–217 0.1–10 0.01–0.58

CO2-H2O >50 E.g. 44 in [160]+3 in [63]+[63, 161, 162]
CO2-H2O-N2 4 4 3 in [63]+[63] 273–289 2.1–55.1 0–1
CO2-H2O-CO 2 2 1 in [63]+[63] 273–286 1.4–21.3 0.1–0.97
CO2-H2O-H2 4 3 3 in [63]+[63] 274–287 1.6–16.5 0.19–0.97
CO2-H2O-CH4 2 10 9 in [63]+[63] 264–288 1.8–20.0 0–1
CO2-brines 4 4 [163–166] 199 259–281 0.9–28
CO2-H2O-SO2 1 1 [167] 3 277–280 1.8–2.7
CO2-H2O-N2-SO2 1 1 [168] 3 273–276 7.2–8.7
CO2-H2O-NO2-O2 1 1 [167] 3 277 1.9

Table 5: Data for density, virial coefficients and compressibility for CCS-relevant systems.

System # Sources Location of References # Points Data ranges
Total 1975→ T (K) p (MPa) xCO2

CO2-N2 37 25 6 in [8] + 24 in [27] + [63, 171–176] >5210 208–673 –273 0.01–0.98
CO2-O2 7 2 5 in [27] + [63, 171] 377 268–423 –47.8 0.49–0.95
CO2-Ar 19 11 3 in [8] + 8 in [27] + [63, 174, 176–181] >1480 213–573 0.1–101 0.01–0.96
CO2-SO2 3 2 1 in [8] + [84, 181] 168 287–347 0.1–20 0.13–0-97
CO2-H2S 6 4 1 in [8] + [182–186] >900 220–501 0.1–60.5 0.5–0.94
CO2-N2O 1 1 [187] 42 238–358 1–5.9 0.09–0.91
CO2-CO 9 7 1 in [8] + 3 in [27] + [63, 93, 174, 188, 189] > 50000 223–423 0.1–48.6 0.29–0.996
CO2-H2 11 7 [63, 71, 171, 174, 190–196] >632 223–473 0.05–50.7 0.22–0.98
CO2-CH4 22 19 5 in [8]+[63, 75, 100, 174, 189, 191, 194, 197–206] >6250 206–573 0.08–100 0.01–0.996
CO2-H2O 35 29 21 in [27] + 10 in [61] + [207–210] >3619 273–1023 –600 0.001–0.997
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273.25 K, although data for low H2O concentrations and below
273.25 K would be highly relevant for CCS. Most of the data
for CO2-O2 are old, and have a limited concentration range. For
CO2-SO2 most of the data are from 1901 [84], and about 94 %
of the data points for CO2-H2S are from a single source [186].
No data have been found for CO2-COS, CO2-NO, CO2-NO2 or
CO2- N2O4, or CO2-amines or CO2-NH3 for these important
properties.

2.2.5. Speed of sound
Perhaps due to the high attenuation of acoustic waves in

CO2, there is not a lot of speed-of-sound data available. Hence
also pure CO2 is included in the speed-of-sound data overview
of Table 6. For mixtures, there is only limited-range data avail-
able for CO2-N2, CO2-Ar, and CO2-H2O. Except for CO2-N2
and CO2-H2O, all the liquid mixture speed-of-sound data come
from a single source [63]. The claimed uncertainty of Al-Siyabi
[63] is 1 m s−1, but no uncertainty analysis is provided, and data
is only provided for a single composition per binary system. For
a number of the primary mixtures, no liquid and / or vapour
speed-of-sound measurements have been found. The few meas-
urements found for CO2-H2O are not in a relevant range for CO2
transport and storage.

2.2.6. Viscosity
The identified viscosity data for pure CO2 and primary bin-

ary mixtures relevant for CCS are summarized in Table 7. The
available data in the 80s and 90s for pure CO2 were reviewed in
[57, 59, 60]. In the modelling work of Vesovic et al. [59], the
liquid data had all to be abandoned because of their inconsisten-
cies, and a data-based reference model for the liquid phase could
only be made once new measurements were available eight years
later [60]. Works prior to 1957 were discarded due to inaccurate
working equations. It should be noted that since the work of
Fenghour and Wakeman [60], Vogel reportedly [230, 235] has
reevaluated measurements from the 80s and 90s [236, 237] using
accurate ab-initio correlations for helium. The data situation
for viscosity is relatively thin for pure CO2 but much worse
for mixtures. For five binary systems, CO2-O2, CO2-Ar, CO2-
CO, CO2-H2, and CO2-CH4, all liquid data are again provided
by Al-Siyabi [63] for a single composition per system, using a
single capillary viscometer. The uncertainty is claimed to be 1 %,
with only uncertainty contributions from pressure measurements
considered. No liquid viscosity data have been found for an
important binary system such as CO2-N2. For CO2-H2O, only
liquid-phase measurements on water-rich mixtures are available.
For gas phase, there are a few more sources, but many of the
measurements are quite old. No data have been found for either
liquid or vapour/supercritical phase for CO2-H2S, CO2-COS,
CO2-NO, CO2-NO2, CO2-N2O4, CO2-amines, or CO2-NH3.

2.2.7. Thermal conductivity
Like for viscosity, the data situation for thermal conductivity

for CCS mixtures is highly unsatisfactory. The data available for
pure CO2 and binary mixtures between CO2 and impurities of
CCS are shown in Table 8. A relatively high number of sources
are found for pure CO2. However, when analysing the data in

order to set up a model for thermal conductivity of pure CO2,
Vesovic et al. [59] discarded most of the data sources and had to
use theoretical predictions in the liquid-phase and high temper-
ature zero-density regions. Only a limited number of data sets
have been published since, but a new set of measurements from
[235] appears to be fairly complete. Except for CO2-H2O, no
liquid-phase mixture data have been found, and only a handful
of modern measurements for the vapour or supercritical phase
are available for mixtures.

3. Thermophysical property models

In this section, we briefly review models and methods for
calculating the thermophysical properties of CO2 and CO2-rich
mixtures. Highly relevant topics, such as implementation in
fluid-dynamic models, and methods for calculating flow through
restrictions, are also covered.

3.1. Property models for pure CO2 and CO2-rich mixtures

During transport by pipeline or ship, the CO2-rich fluid is
normally in equilibrium. However, equilibrium properties are
also needed as a useful starting point for non-equilibrium models.
The thermodynamic properties of pure CO2 are well described
by the Span-Wagner EOS [243]. The Span-Wagner EOS is very
accurate when it comes to prediction of density and saturation
line. The estimated uncertainty for density predictions in the
pressure and temperature domain relevant for transport of CO2
is 0.05 %. The uncertainty in vapour pressure predictions is
0.006 %. Speed of sound and isobaric heat capacity are reported
to be within 1.0 % and 1.5 %, respectively. In order to describe
dry-ice in equilibrium with liquid and vapour, an auxiliary model
is required. Trusler [169] developed a Helmholtz free energy
model, and Jäger and Span [170] developed a Gibbs free energy
model, that can be used to describe solid-liquid-vapour equilib-
rium for pure CO2 and mixtures containing CO2 in combination
with a model for the fluid CO2. Considering only pure CO2, the
auxiliary equations for the sublimation line published by Span
and Wagner [243], have been used together with the Clausius-
Clapeyron equation to describe vapour-solid equilibrium [244].
This approach is, however, not as easily extendable to CO2-rich
mixtures.

The Span-Wagner formulation is CPU demanding to solve
compared to simpler models, like the commonly used Peng-
Robinson (PR) EOS [245]. To address this, a new EOS for pure
CO2 has been developed by Demetriades et al. [246]. The EOS
is designed for accuracy between 0 ◦C and the critical temperat-
ure of CO2. The pressure of interest is set to be below 150 bar.
This pressure-explicit EOS is relatively fast to evaluate, and it
gives significant predictive improvements over Peng-Robinson,
and contains much fever parameters than the Span-Wagner EOS.
How the Demetriades et al. [246] EOS performs compared
to other alternatives, e.g. the modified Benedict-Webb-Rubin
(MBWR) EOS [247], is unknown. The accurate technical equa-
tions of state for CO2 used in GERG-2004 [248], also represent
a less CPU-demanding alternative to the Span-Wagner reference
EOS. Demetriades and Graham [249] extended the pure-fluid
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Table 6: Speed-of-sound data for CCS-relevant systems.

System Vap/ # Sources Location of References # Points Data ranges
Liq Total 1975→ T (K) p (MPa) xCO2

CO2
V 6 4 [202, 211–215] > 445 220–450 0.22–14.2 1
L 5 2 [63, 216–219] > 484 248–473 3.6–450 1

CO2-N2
V 1 1 1 in [27] 65 250–350 0.5–10.3 0.5
L 2 2 [63, 220] 79 268–423 9.5–400 0.40–0.96

CO2-O2 L 1 1 [63] 62 268–301 8.9–41 0.94

CO2-Ar V 1 1 [221] 30 275–500 < 8 0.50–0.75
L 1 1 [63] 62 268–301 8.93–41 0.93

CO2-CO L 1 1 [63] 61 268–301 9.71–41.1 0.96
CO2-H2 L 1 1 [63] 57 268–301 9.71–40.8 0.95
CO2-CH4 L 1 1 [63] 61 268–301 8.87–38.2 0.95

CO2-H2O V 1 1 [222] 281–297 0.1
L 1 1 [223] 27 293–575 570–6000 0.05

CO2-Ar-CO L 1 1 [63] 58 268–301 10.3–41.2 0.97
CO2-Ar-CO L 1 1 [63] 58 268–301 10.3–41.2 0.97
CO2-CH4-H2-N2 L 1 1 [63] 60 268–301 7.6–40.6 0.95

Table 7: Viscosity data for CCS-relevant systems.

System Vap/ # Sources Location of References # Points Data ranges
Liq Total 1975→ T (K) p (MPa) xCO2

CO2
V 39 18 26 in [57, 59, 60] + [215, 224–230] > 1150 202–1871 0.02–8000 1
L 34 28 in [59] + 7 in [60] 220–543 0.6–350 1

CO2-N2 V 5 0 5 in [9] 150 289–873 0.1–120 0–1

CO2-O2
V 2 1 2 in [9] 24 297–673 0.1 0–1
L 1 1 [63] 60 280–343 9.1–47.3 0.95

CO2-Ar V 4 2 3 in [9] + [231] 198 213–673 0.02–2.5 0–0.92
L 1 1 [63] 48 280–343 7.8–50.4 0.95

CO2-SO2 V 3 0 3 in [9] 69 238–353 0.1 0–1
CO2-N2O V 3 1 2 in [9]+[232] > 34 298–550 0.1 0–1

CO2-CO V 1 1 1 in [9] 10 298–473 0.1 0.31&0.77
L 1 1 [63] 56 280–343 8.9–49.4 0.95

CO2-H2
V 6 2 6 in [9] 65 291–1100 0.1–0.3 0–1
L 1 1 [63] 51 280–343 8.7–45.4 0.95

CO2-CH4
V 5 1 4 in [9] + [233] 406 293–673 0.1–172 0–1
L 1 1 [63] 52 280–343 6.5–50.1 0.95

CO2-H2O V 1 0 1 in [9] 8 303 0.1 0.96–0.99
L 8 5 5 in [9] + [210, 234] 175 273–449 0.1–100 0.003–0.030

CO2-H2O-NaCl L 2 2 2 in [9] 90 273–278 0.1–30 0–0.016

Table 8: Thermal conductivity data for CCS-relevant systems.

System Vap/ # Sources Location of References # Points Data ranges
Liq Total 1975→ T (K) p (MPa) xCO2

CO2 V/L 65 12 60 in [59] + [235, 238–242] 186–2000 –2000 1
CO2-N2 V 10 1 10 in [9] 257 273–1033 0.1–300 0–1
CO2-O2 V 1 0 1 in [9] 4 369 & 370 0.22–0.73
CO2-Ar V 3 2 3 in [9] 270 273–473 0.1–11.3 0–1
CO2-SO2 V 1 0 1 in [9] 9 323 & 373 0.1–0.90
CO2-N2O V 2 1 2 in [9] 90 300.65–723 0.1–4.25 0–1
CO2-H2 V 7 1 7 in [9] 120 258–893 0.1–7.5 0–1
CO2-CH4 V 4 3 3 in [9] + [240] 390 228–433 0.1–17.7 0.075–0.88
CO2-H2O V/L 4 0 3 in [9] 41 298–603 0.1 0–1
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EOS [246] with mixture rules to describe the binaries CO2-H2,
CO2-O2 and CO2-N2 with good agreement with experimental
data.

Analogous to the GERG equations for description of natural
gas with impurities, EOSs are being developed for combus-
tion gases (CG), where CO2 is the main component. EOS-CG
[27, 250, 251] is based on a single-component reference equation
for Helmholtz free energy in the natural variables temperature
and density/volume. In contrast to GERG-2004/2008, the single-
component reference EOS is used, and not a simplification. I.e.
for pure CO2, EOS-CG becomes the Span-Wagner EOS. If the
binary interaction parameters are correlated to accurate meas-
urements, especially in the critical region, the use of accurate
pure-fluid EOSs will give an improvement over GERG. In order
to describe mixtures, Helmholtz free energy mixing rules are
used [252–255]. Improved binary mixture models and paramet-
ers have been developed so far for the exhaust-gas components
CO2, H2O, N2, O2, Ar and CO. One challenge with mixtures is
the extrapolation of the pure-fluid reference equations. A species
may exist in a mixture phase where the pure fluid is unstable,
and therefore not tuned to experimental data. Despite some
difficulties, good results have been published, and significant
improvement over GERG-2008 is seen for mixtures containing
CO2 and H2O [27].

Wilhelmsen et al. [256] compared density predictions for
pure CO2 and CO2 mixtures, using five EOSs. Soave-Redlich-
Kwong (SRK) [257] (with and without Péneloux shift [258]),
Lee-Kesler [259], Peng-Robinson [245], GERG-2004, and
SPUNG [260] were evaluated against the Span-Wagner EOS and
experimental data. Wilhelmsen et al. focused on an extended
corresponding state approach, termed SPUNG. SPUNG uses
SRK and classical van der Waals mixing rules to scale a ref-
erence EOS. Here the MBWR equation [261] for propane was
used. The extended corresponding state approach was found to
be an excellent compromise between computational speed and
accuracy.

Statistical Associating Fluid Theory (SAFT) [262, 263] mod-
els are popular for many application, and are also of interest
for CCS fluid mixtures. Diamantonis et al. [264] compared
SAFT and Perturbed-Chain SAFT (PC-SAFT) [265] with cubic
EOSs, Redlich-Kwong (RK) [266], SRK and PR, and assessed
the vapour-liquid equilibrium modelling capabilities for CO2
binary and ternary mixtures. For the impurities CH4, N2, O2,
SO2, Ar and H2S, it was concluded that the SAFT, PC-SAFT,
RK, SRK and PR are of comparable accuracy when binary in-
teraction parameters are fitted to experimental data. In this case,
there is little benefit of using the more complex and more CPU
demanding SAFT and PC-SAFT models over cubic EOSs. In
Diamantonis et al. [264], H2S was the only component con-
sidered as associating when using SAFT, but no components
were treated as associating with PC-SAFT, as this gave the best
fit to experimental data. SAFT and PC-SAFT are expected to
perform better than cubic EOSs in systems with components
which are more strongly associating than H2S, such as H2O.

There has also been an effort to combine SAFT-based EOSs
with molecular-dynamics simulations [267]. By tuning pure-
fluid saturation data to SAFT-γ, force field parameters can be

established [268]. These parameters are used in coarse-grained
molecular dynamics simulations, allowing for predictions of
other properties, like interfacial tension. The model was exten-
ded to binary and ternary mixtures by Lobanova et al. [269],
and good agreement with experimental data was observed for
low-pressure data. As for many of the SAFT-based models, the
pure-fluid critical points were overestimated, something which
also leads to poor correlation in the critical region for mixtures.
For CO2, the critical point is close to the operational area for
pipeline transport, making good predictions in this region im-
portant. The critical point must therefore be accounted for when
tuning parameters used for pure-fluid description with SAFT.
Herdes et al. [270] have developed a new parameter set for
the SAFT-γ model, for CO2 and other components, using the
pure-fluid critical point explicitly. These parameters potentially
improve the prediction of CO2 and CO2-rich mixtures in the
critical region.

Cubic EOSs can predict VLE quite well, but are known for
poor density predictions in the liquid phase and in the critical
region. Li and Yan [271] also found SRK to predict VLE prop-
erties in CO2 mixtures satisfactorily. In process modelling, the
poor density predictions can to some extent be overcome using
density corrections. Using a three-parameter EOS might also
give improved density predictions [272]. For fast transients in
pipelines, where also the speed of sound comes into play, a dens-
ity correction is not sufficient. In this case, the more detailed
modelling approach of EOS-CG/GERG is far superior [39], as
these systems have been tuned to both density and speed-of-
sound experimental data.

For EOS-CG, the CO2 and H2O system has been extended
to include hydrate formation [160]. Early work was performed
by Chapoy et al. [273] measuring and modelling hydrate temper-
atures in CO2 and CO2-rich mixtures. Later, Chapoy et al. [274]
used the Cubic-Plus-Association [275] method to describe the
fluid chemical potentials and the solid solution theory of van der
Waals and Platteeuw [276] to describe the hydrate phase appear-
ance in CO2-rich mixtures. Very few data sets are identified for
CO2-hydrate formation under saturated conditions. Chapoy et al.
therefore saw a need for more experiments in order to improve
the thermodynamic modelling of CO2-hydrate systems. Duan
and Sun [277] modified a van der Waals and Platteeuw model
for CO2-hydrate prediction, and obtained good agreement with
experimental data. To describe the fluid phases, an ab initio
quantum chemical method was used. The water activity was
corrected using the Pitzer model to account for the presence of
electrolytes.

Viscosity of pure CO2 for conditions relevant for transport
and capture is described using the correlation of Fenghour and
Wakeman [60] to an accuracy below 2 %. In the low-pressure
area, the viscosity predictions are much better. This is also
confirmed by recent experiments, but Schäfer et al. [230] saw
room for improvements in the models. Thermal conductivity of
pure CO2 is correlated to a similar degree of accuracy by Vesovic
et al. [59]. New models which are claimed to better predict e.g.
the critical enhancement, i.e. behaviour around the critical point,
have been announced for both viscosity and thermal conductivity
[235].
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Viscosity of mixtures can be described by the extended
corresponding-principle-state approach. One such model is
TRAPP [278]. TRAPP is also used for thermal conductivity
modelling of mixtures [279]. Friction theory is another interest-
ing approach [280] for viscosity predictions. Those models will
be able to describe the properties of CO2-rich mixtures, but this
is not documented in the public literature.

3.2. Implementation in fluid-dynamic models

In compressible two-phase flow models, integrated us-
ing finite volume methods, the iso-choric-iso-energetic phase-
equilibrium problem must be solved, unless modelling simplific-
ations are made. Giljarhus et al. [281] described a framework for
solving the iso-choric-iso-energetic phase-equilibrium problem
using the Span-Wagner [243] EOS. Later, Hammer et al. [244]
extended the framework by including dry-ice at the sublimation
line, using the Gibbs-Duhem equation together with an auxiliary
model for the the sublimation line. Solving the EOS directly for
single-component CO2 depressurization has been performed by
several authors [20, 244, 281–284].

For multi-component systems, the iso-choric-iso-energetic
phase-equilibrium problem becomes more difficult, and an ap-
proach like the one presented by Michelsen [285] must be taken.
For CO2 systems, this method has successfully been used for
depressurization simulations by Munkejord and Hammer [39].
Due to the time consumption solving the EOS directly during
CFD simulations, the use of pre-calculated interpolation tables
may be preferable. Elshahomi et al. [286] performed simula-
tions of pipeline depressurizations in 2D with Fluent® using
thermodynamic look-up tables.

3.3. Flow through restrictions

Simulation models for depressurization of pipes or valves
normally require the flow through valves or restrictions to be
implemented as a boundary condition. The first stages of the
depressurization often involve choked flow, in which the flow
velocity is restricted by the effective two-phase speed of sound.
The most common way of modelling choked flow is by using a
homogeneous equilibrium model (HEM), and assuming steady-
state flow, thus obtaining a general Bernoulli formulation, i.e.,
energy and mass conservation for an isentropically expanding
flow. The choking condition is found by equating the velocity of
the expanding fluid with the speed of sound. A major problem of
this formulation is the singularity of the triple point. The speed
of sound becomes zero, as the density can change isentropically
without a change in pressure [287, Sec. 2.8.1]. This is illustrated
in Figure 3. Figure 3a shows an isentropic depressurization
path plotted in density-entropy space. The isentrope starts from
a dense liquid state, continues through the liquid-vapour two-
phase area before passing through the triple point, ending at
atmospheric pressure in the two-phase solid-vapour region. In
Figure 3b, the homogeneous mixture speed of sound is plotted
against density for the same isentropic path. It is seen that the
speed of sound is discontinuous at all phase boundaries.

Martynov et al. [288] described a choke model following the
HEM principle, handling the triple point by maximizing mass

flux as a function of dry-ice mass fraction (xs) in the triple point.
This is equivalent to using the mass flux found at the triple point
entry from the liquid-vapour region, (xs = 0). The model was
subsequently applied for simulating experiments of CO2 release
from a pipeline [289].

Martynov et al. [290] modelled the dry ice in equilibrium
with pure CO2 with an extended Peng-Robinson approach. Three
different parameter sets for the cubic EOS were used; one for
liquid and vapour, one for the melting line and the properties of
dry ice in equilibrium with liquid, and one for the sublimation
line and the properties of dry ice in equilibrium with vapour. It
is unclear whether this gave consistent properties of dry ice in
the triple point. Given the development of a Gibbs free energy
function [170], and a Helmholtz free energy function for dry
ice [169, 291], cubic equations of state can be coupled directly
with the dry-ice models. This has found an application in the
modelling of supersonic separation of CO2 from an exhaust gas
[292].

4. Pipeline transport of CO2

Some challenges related to CO2 transport in pipes, such as
enlarged two-phase region, free water, etc., increase with an
increasing amount of impurities in the CO2. On the other hand,
the removal of impurities at the capture plant entails increased
investment and operational costs. This constitutes a techno-
economic optimization problem which has to be considered for
each specific project. Some of the data and models needed to
perform detailed studies are yet lacking.

For CO2-transport pipelines operating in a single-phase state,
several quantities, such as pressure drop and pump or compressor
work, can be estimated if sufficiently accurate thermodynamic
and transport property models are available. It should be noted
that CO2 mixtures from different capture technologies will have
different dynamic behaviour in pipelines [13]. An important
issue is also the effect of impurities on corrosion [293].

Here we will concentrate on transient two-phase flow effects,
which need to be accounted for during design and operation of
CO2-transport pipeline networks.

4.1. Pipe depressurization
The depressurization of a pipe filled with CO2 constitutes

a relatively well defined case, and it is suitable for model val-
idation for several reasons. First, the pressure-wave propaga-
tion during depressurization needs to be understood due to its
application to fracture-propagation control. Second, transient
flow-model formulations have inherent wave-propagation velo-
cities, which ought to agree with the experimental observations,
something which is particularly challenging in the two-phase
region. Third, models predicting CO2 dispersing in the atmo-
sphere due to a leak, are dependent on a realistic specification of
the outflow state of the pipe.

The thermo- and fluid dynamics of pipe depressurizations are
tightly intertwined. As an example, both CO2-mixture composi-
tion and phase slip influence the pressure-propagation velocity
[10]. Based on a homogeneous equilibrium pipeline decompres-
sion model, Brown et al. [294] performed a global sensitivity
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Figure 3: Illustration of the speed of sound along an isentrope (3.3 kJ kg−1 K−1) starting in a dense liquid state at 12.5 MPa, 29 ◦C and passing the triple point. The
plots are made using the Span and Wagner [243] EOS together with the dry-ice model of Jäger and Span [170].

analysis of the impact of impurities on CO2 pipeline failure, and
found that the outflow rate is highly sensitive to the composition
during the early stages of depressurization, where the effect of
the impurities on phase equilibrium has a significant impact on
the outflow.

Experimental facilities where pressure and temperature are
dynamically recorded along a tube or pipe after one end of
the tube is opened to the atmosphere, are commonly referred
to as ‘shock tubes’ or ‘expansion tubes’. We prefer the latter
designation, since, for such an experimental set-up, the shock
will appear outside the tube.

As shown in Table 9, pipe-depressurization data for CO2 and
CO2-rich mixtures are relatively scarce in the literature. Here
we have included studies at least giving pressure as a function of
time. In the table, l and d denote tube length and inner diameter,
respectively.

de Koeijer et al. [37] compared pressure-temperature plots of
measured data of a tube depressurization and model predictions
using OLGA® [302, 303] employing the Span and Wagner [243]
EOS. It was noted that there is room for model improvement.

Clausen et al. [298] measured pressure and temperature at
the outlets during the depressurization of a 50 km long 24” bur-
ied onshore pipeline filled with almost-pure CO2. The case
was also simulated using OLGA®, again employing the Span
and Wagner [243] EOS. Good agreement was obtained for the
pressure, while some discrepancies were observed for the tem-
perature. Since the pipeline was only instrumented at the outlets,
and because of some uncertainty regarding the initial conditions,
clear conclusions regarding the reason for the disagreement
could not be reached. Clausen et al. mentioned several possible
reasons: The effect of impurities not being accounted for, in-
correctly estimated mass-transfer rate during phase transition,
incorrect flow-regime prediction, and uncertainties in the model-
ling of heat transfer to the surroundings.

Huh et al. [304] considered a tube of length 51.96 m and
inner diameter 3.86 mm. See also Cho et al. [305]. Pressure
and temperature were measured during depressurization of pure

CO2 and CO2-N2 mixtures with up to 8 % N2. The experimental
data were compared to simulations performed using OLGA®.
Rather larger discrepancies were seen than what was observed
by Clausen et al. [298]. The experiments of Huh et al., were,
however, carried out in a much smaller tube and lasting 40 s
instead of 10 h.

Tu et al. [306] conducted a somewhat different study, in
which a 23 m long tube loop with an inner diameter of 3 cm filled
with CO2 was depressurized through nozzles of diameter 1 mm
to 5 mm. The main focus was the temperature development in
the leakage jet as a function of initial pressure and nozzle size.

Botros et al. [296] discussed an experiment designed to
measure and study the decompression wave speed, which is
the velocity of the rarefaction wave propagating into a pipeline,
after the bursting of a disc. A specialized expansion tube with a
smooth inner surface was employed, to be more representative
for larger industrial pipes. Further details of the experimental
facility are given in Botros [307]. The CO2-CH4 mixture studied
was chosen to be relevant for EOR. The single-phase speed of
sound predicted by the GERG-2008 EOS was found to agree
very well with the experiment, although the measured plateau
pressure was found to be slightly higher than predicted using
GERG-2008. This is an important aspect when it comes to
designing pipelines to arrest ductile fracture. Based on the
present state of knowledge of pipeline ductile fracture of CO2
mixtures with impurities, Botros et al. recommended at least
one or two full-scale burst tests for each design case.

Mahgerefteh et al. [308] studied measured and predicted
decompression-wave speed for CO2 and CO2 mixtures where
the initial state was gaseous. For the cases tested, it was observed
that impurities in the CO2 stream lowered the phase-transition
pressure plateaux. This is the reverse of what is observed for
depressurizations from a dense phase, see below.

Cosham et al. [299] studied the decompression behaviour of
CO2 and CO2-rich mixtures in the dense phase. An expansion
tube of length 144 m and inner diameter 146 mm was employed.
Decompression curves were shown for several experiments, but
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Table 9: Experimental data of CO2-pipe depressurization.

Author Mixture (mol %) p (bar) T (◦C) l (m) d (mm) Emphasis

Armstrong and Allason [295] CO2 98.4–105.0 6.0–13.7 200 50 p & T , release rate,
dispersion

Botros et al. [296] 72.6 % CO2, 27.4 % CH4 285.7 40.5 42 38.1 Wave prop.
Brown et al. [297] CO2 153.4 5.2 144 150 p only
Brown et al. [297] CO2 70 25.2 37 40 p only
Brown et al. [283] CO2 (99.8 %) 36 1 256 233 p & T
Clausen et al. [298] CO2 (99.14 %) 81 31 50 × 103 587 p & T , full scale
Cosham et al. [299] CO2 153.4 5.0 144 146 Wave prop.
Cosham et al. [299] 91.03 % CO2, 1.15 % H2, 4.00 %

N2, 1.87 % O2, 1.95 % CH4

150.5 10.0 144 146 Wave prop.

Drescher et al. [300] 89.8 % CO2, 10.1 % N2 119.9 19.5 141.9 10 p & T
Drescher et al. [300] 80.0 % CO2, 20.0 % N2 120.8 19.7 141.9 10 p & T
Drescher et al. [300] 70.0 % CO2, 30.0 % N2 120.0 17.3 141.9 10 p & T
Jie et al. [301] CO2 39.1 5.0 144 146 Wave prop., gas

two of them, one with pure CO2 and one with a multicom-
ponent mixture, were discussed in some more detail, including
pressure-time traces. The study was motivated by the fact that
an understanding of the decompression behaviour is required in
order to predict the steel toughness required to arrest a running-
ductile fracture. The authors concluded that dense-phase CO2
has three opposite trends with respect to gas-phase CO2: In-
creasing the initial temperature will increase the required arrest
toughness (although this is not always the case for CO2 mix-
tures, as discussed by Elshahomi et al. [286]); Decreasing the
initial pressure will increase the required arrest toughness; The
addition of components such as hydrogen, oxygen, nitrogen
or methane will increase the required arrest toughness. In the
decompression experiments, the measured pressure plateaux
were consistently lower than predicted using the GERG-2008
EOS. Further, the measured pressure plateaux increased along
the pipe. Cosham et al. hypothesized that this may be due to
‘delayed nucleation’, i.e., thermodynamic non-equilibrium, and
suggested that the subject requires further investigation in order
to understand it in more detail. The effect of impurities (here
N2) on the saturation pressure, and hence the required arrest
toughness, is illustrated in Figure 4a, whereas the influence of
initial temperature is illustrated in Figure 4b.

Data from Cosham et al. [299] were considered by Jie et al.
[301], who employed a semi-implicit numerical method to solve
the HEM (see Xu et al. [309] for more details) with the Peng–
Robinson–Stryjek–Vera EOS [310]. It was found that the plateau
pressures were overpredicted, particularly for depressurizations
starting in the gaseous region. Jie et al. [301] hypothesized that
this may be due to non-equilibrium effects not being captured
by the HEM.

As part of their validation of a homogeneous relaxation
model (HRM), Brown et al. [297] presented pressure-time traces
from two depressurization experiments for pure CO2. In the
HRM, the phase transition is not instantaneous, as in the HEM.
Instead, it is modelled using a ‘relaxation time’. This gave a
slightly lower predicted pressure. The presented pressure plots
indicated, in our interpretation, that the relaxation versus full-
equilibrium modelling was not the main cause of uncertainty
with respect to the experimental data. Since the pressure data

were presented on a longer time scale than what is needed to
capture pressure waves (10 s), effects of friction and heat transfer
to the surroundings could also be relevant.

Brown et al. [283] presented pressure and temperature meas-
ured at different locations during the first part of the depres-
surization of a 233 mm inner-diameter pipe. Calculations were
performed with a HEM and a two-fluid model (TFM) where the
mass-transfer between the phases was modelled based on relaxa-
tion of enthalpy. Overall, the TFM gave slightly better results
than the HEM, but with an increased advantage for the TFM
further away from the outlet. The authors found that during the
first 1 s of the depressurization, a relatively short relaxation time
of 5 × 10−6 s produced good agreement between computation
and experiment. After that, however, a longer relaxation time
of 5 × 10−4 s gave better agreement. The physical reason why
the flow would need shorter time to reach equilibrium during
the first part of the depressurization, seems, however, to remain
elusive. Both studies [283, 297] employed the Peng-Robinson
EOS.

Drescher et al. [300] performed depressurization experi-
ments with three binary CO2-N2 mixtures in a tube of length
141.9 m and diameter 10 mm. Pressure and temperature traces
were plotted at four different positions, at a time scale includ-
ing the dry-out point. The cases were modelled using a HEM
employing the Friedel [311] friction correlation and a radial
heat-transfer model accounting for the heat capacity of the tube.
The predicted pressures matched the measured values well, al-
though with a tendency to underprediction. The temperatures
were underpredicted to a larger degree. Nevertheless, the calcu-
lated dry-out times agreed well with the experiments. In general,
computations and experiments matched best near the middle
of the tube. The calculated single-phase pressure-propagation
velocity was overpredicted when compared to the experiments.
This was mainly attributed to the use of the EOS of Peng and
Robinson [245].

Munkejord and Hammer [39] expanded the modelling work
of Drescher et al. [300], adding a two-fluid model (TFM) in
which the friction was calculated using the model of Spedding
and Hand [312]. Data from Botros et al. [296] and Cosham
et al. [299] were also included in the study. Despite its increased
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Figure 4: CO2 decompression-speed dependency of N2 impurity and initial temperature. The EOS-CG [250, 251] reference EOS is used.

complexity, the TFM could not be said to yield better results
than the HEM in general. The authors hypothesized that TFM
predictions may be improved with more detailed modelling and
experimental studies. The effect of heat-transfer modelling was
also studied. For the experiments of Drescher et al. [300], the
effect of the tube heat capacity was shown to be very large. Not
including it yielded far too low temperatures and pressures. Fur-
ther, for the cases studied, the in-tube heat-transfer correlation
of Gungor and Winterton [313] yielded somewhat better results
than that of Colburn (see e.g. Bejan [314, Chap. 6]).

The data of Botros et al. [296] and Cosham et al. [299] were
also studied by Elshahomi et al. [286], who implemented a 2D
HEM employing the GERG-2008 EOS [68]. It seems that for
these cases, the main cause of differences between the model of
Elshahomi et al. [286] and that of Munkejord and Hammer [39],
is the different EOS, not the effect of 1D versus 2D.

A technical report by Armstrong and Allason [295], and ac-
companying documents and data files, have recently been made
publicly available. A series of pipe-depressurization experiments
with pure CO2 have been conducted, with full-bore opening and
varying restrictions at the outlet. Data were recorded both inside
and outside the pipe. We have made an initial study of one of
the reported cases, see Section 4.2.

4.2. Depressurization case

To illustrate the modelling of CO2-pipeline depressurization,
we consider experimental data of Test 4 recently published in a
technical report by Armstrong and Allason [295] with accompa-
nying data files. See also Table 9. A pipe of length 200 m, inner
diameter 51.92 mm and thickness 4.23 mm is filled with pure
CO2 at a pressure of 101.51 bar and a temperature of 4.9 ◦C. At
time t = 0 s, a rupture disc is cut by an explosive, and the pipe
is opened to the atmosphere, such that a decompression wave
travels into the pipe.

To calculate the radial heat transfer, we assume that the
pipe is made of stainless steel with a density of 8000 kg m−3, a

specific heat capacity of 485 J kg−1 K−1 and a thermal conduct-
ivity of 14 W m−1 K−1. We also assume that the surrounding air
temperature is equal to the initial temperature.

The case has been calculated using the homogeneous equi-
librium model (HEM) described by Munkejord and Hammer
[39] employing the Span-Wagner EOS solved by the method of
Hammer et al. [244]. For the wall-friction, the correlation of
Friedel [311] was employed. A spatial grid of 1200 cells and
a CFL number of 0.85 were used. Temperature and pressure
are plotted as a function of time at position 5 m (close to the
outlet) in Figure 5 and at position 195 m (near the closed end) in
Figure 6. The sensitivity to the choice of model for the in-tube
heat-transfer coefficient is indicated. The legend ‘C’ denotes the
simple correlation of Colburn (see e.g. Bejan [314, Chap. 6]),
while ‘GW’ denotes the correlation of Gungor and Winterton
[313] accounting for saturated flow boiling.

In Figures 5b and 6b, it can be observed that there is good
agreement for the pressure, although with a tendency towards
underprediction, particularly near the outlet in the first part of
the depressurization (Fig. 5b). This is consistent with the results
reported by Munkejord and Hammer [39], but in contrast to
those of Brown et al. [283], where their HEM overpredicted the
measured pressure.

For the temperature near the outlet, plotted in Figure 5a,
there is also good agreement between computation and experi-
ment. The HEM, both when the Colburn and when the Gungor–
Winterton heat-transfer correlation is used, predicts the appear-
ance of solid CO2 at about 28 s. When all the solid is sublimated,
the temperature starts rising. With Gungor–Winterton, this point
is predicted at 29 s, which appears to be in very good agree-
ment with the experiment. With Colburn, on the other hand, the
predicted minimum temperature appears nearly 3 s late.

The temperature near the closed end of the pipe is plotted in
Figure 6a. In the first part of the depressurization, there is good
agreement between computation and experiment. After about
30 s, however, the use of the Gungor–Winterton correlation first
leads to an underpredicted temperature, and then to a significant
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Figure 5: Depressurization case: Comparison of data from experiments (Exp) and homogeneous equilibrium model (HEM) at position 5 m (from the outlet) using
Colburn (C) and Gungor–Winterton (GW) heat-transfer coefficient.

(a) Temperature.

t (s)

P
 (

b
ar

)

0 10 20 30 40 50 60
0

20

40

60

80

100
Exp

HEM, C

HEM, GW

(b) Pressure.

Figure 6: Depressurization case: Comparison of data from experiments (Exp) and homogeneous equilibrium model (HEM) at position 195 m (from the outlet, i.e.,
near the closed end) close using Colburn (C) and Gungor–Winterton (GW) heat-transfer coefficient.
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overprediction. The Colburn correlation gives far better results
here: At about 38 s, there is a kink in the calculated temperature
due to the triple point. It is interesting to note that there is
a corresponding feature in the measured temperature at about
the same time. After this, both the calculated and measured
temperature flatten out, but the calculated temperature is about
5 K lower than measured. The main reason for the difference
between the temperature calculated with Gungor–Winterton and
with Colburn, is that with the former, the heat transfer is higher,
such that the triple point is avoided and no solid is formed.
The measured temperature, on the other hand, gives a clear
indication that there is solid CO2 present in the experiment,
since the presence of solid CO2 keeps the temperature down.
Flow models should, therefore, be able to take solid CO2 into
account.

Although there are no flow-regime observations for this case,
our interpretation of these results is that close to the outlet, there
is a strongly dispersed flow regime, where the no-slip assumption
in the HEM is not too far off. Near the closed end of the pipe,
however, we expect the flow to have a tendency to stratification,
for which the HEM cannot account. In view of this, the results
presented in Figure 6 for the Colburn correlation are rather better
than what we had expected.

Armstrong and Allason [295] presented more data than what
we have analysed here, e.g., depressurizations with orifices and
pressure and temperature data taken at different positions. A
modelling study considering more of the data set would consti-
tute an interesting continuation of this work.

It should also be mentioned that we have accounted for
the heat capacity of the pipe, as described by Munkejord and
Hammer [39]. The assumption of adiabatic flow would lead
to a significant underprediction of temperatures and pressures,
although not as dramatic as for the 10 mm tube considered in
Case 3 of Munkejord and Hammer [39]. This illustrates the
different challenges in pipe-depressurization modelling: The
prediction of quantities both near the outlet and near the closed
end, as well as capturing both the initial waves, and the slower
phenomena involving heat and mass transport.

As alluded to by e.g. Cosham et al. [299], detailed experi-
mental observations of the first instants of pipe depressurizations
often seem not to be compatible with an assumption of full
thermodynamic equilibrium, with measured pressure plateaux
lower than predicted. It appears that flow models accounting for
‘delayed nucleation’ may be needed to describe this behaviour.
This is of importance e.g. for the modelling of running-ductile
fracture in CO2 pipelines, and it constitutes an interesting avenue
for further research.

4.3. Running-ductile fracture in CO2 pipes
For pipelines transporting pressurized fluids, including CO2,

it is important to ensure that a leak do not form a running
ductile fracture, and that any running fracture be quickly arres-
ted [315]. For CO2 pipelines, ensuring running-ductile fracture
arrest will often be a restrictive design criterion. It has been
found that a pipeline carrying CO2 in a dense phase will have
higher propensity to running-ductile fracture than a pipeline
transporting e.g. natural gas [19, 20, 316]. In simple terms, this

is due to the high saturation pressure reached from a ‘typical’
dense-phase state, as well as the very large difference between
the single-phase and two-phase decompression speed illustrated
in Figure 4. The fracture propagation is governed by a ‘race’
between the decompression speed in the fluid and the fracture
velocity in the steel. If the fracture velocity is faster, the pressure
at the crack tip will remain high, and the fracture will propagate.
On the other hand, if the decompression speed is faster, then the
pressure at the crack tip will fall, and the crack will arrest.

The most common engineering design method against running-
ductile fracture, the semi-empirical Battelle two-curve method
[317], cannot be directly applied to dense-phase CO2 pipelines
[318]. CO2 pipelines are commonly equipped with fracture ar-
resters at regular intervals [2, Sec. 4.2.3]. Botros et al. [296]
recommended at least one to two full-scale burst tests for each
design case. Whence there is a need better to understand running-
ductile fracture, which is a coupled fluid-structure problem
[319].

One hypothesis is that additional insight may be gained by
building models representing more of the fluid and structure
physics, see Aursand et al. [4], Nordhagen et al. [320] and the
references therein.

Some work has been undertaken in the development of fluid-
structure interaction models, in which both the fluid and the steel
structure are simulated to predict running-ductile fracture [321–
324]. However, there is a need to develop models accounting
for the behaviour of CO2. Aihara and Misawa [316] presented a
model in which the pipe radial displacement was determined by
a single parameter, and they showed that a fracture in a pipeline
with CO2 and small amounts of impurities will tend to propagate
longer than in natural-gas pipelines. Mahgerefteh et al. [19]
coupled a homogeneous equilibrium model with the fracture-
propagation model of Makino et al. [325]. Validation cases
were presented for natural gas. For a case with CO2, they found
that the fracture-propagating distance increases for increasing
pipeline temperature. Further, they found that larger amounts of
impurities in the CO2 increase the fracture-propagation distance.

A coupled fluid-structure methodology to predict fracture
arrest for natural gas and hydrogen was discussed by Nordhagen
et al. [320], Berstad et al. [326]. The pipe was modelled in a
finite-element framework using shell elements while the fluid
was modelled using a one-dimensional finite-volume method.
Good agreement with the burst tests of Aihara et al. [327] was
obtained. In Aursand et al. [20], the model was extended to
account for CO2 properties, using a homogeneous equilibrium
model. Coupled-model predictions were compared to uncoupled
two-curve models by Aursand et al. [284]. The coupled fluid-
structure model predicted significantly thicker pipe walls to
be necessary for fracture arrest than the uncoupled two-curve
models, indicating that the latter may not be conservative for
CO2. Experimental validation against medium-scale crack-arrest
experiments for CO2 was performed by Aursand et al. [328].
The coupled-model calculations showed that the pressure load on
a bursting pipeline filled with CO2 is significantly more severe
than in the case of natural gas. This may be one reason why
two-curve methods have been found to fail for CO2.

For coupled fluid-structure models, the leakage rate will
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affect the pressure distribution and hence the forces on the
pipe walls. As noted by Aursand et al. [4], different flow-
modelling assumptions will, in turn, affect the leakage rate. The
homogeneous-equilibrium assumption will typically yield the
lowest leakage rate, and will therefore be conservative in this
context. Expressions to be applied at the outflow boundary for a
HEM are given e.g. by Munkejord and Hammer [39], Hammer
et al. [244]. It is foreseeable that similar expressions may be
difficult to derive for more complex flow models. It may then
instead be worthwhile to apply the same CFD method as the one
employed inside the pipe [329].

More work is needed to validate the above-mentioned coupled
models against experiments conducted with CO2. As far as
we know, the only published results from full-scale pipeline
burst tests with CO2-rich mixtures are those of Jones et al.
[318], Cosham et al. [330]. In addition, some medium-scale
(‘West Jefferson’) tests have been performed [318, 331]. The
scale here relates to the pipeline length; over 100 m for full scale,
and around 10 m for medium scale.

Many CO2-storage sites are expected to be located offshore.
It is therefore relevant to consider the integrity of offshore
pipelines. Long running fractures may be a smaller challenge
offshore, due to the high surrounding pressure. However, should
a pipe rupture occur, it is of interest to estimate the leakage rate
and the extent of the plume. Herein, it may be necessary to con-
sider the relatively complex phase behaviour of CO2-water mix-
tures [160]. Some modelling considerations for subsea pipelines
were made by Meleddu et al. [332]. The leakage of air through a
fracture in a pipeline submerged in shallow water was calculated
using a 3D CFD model. Herein, the pipe cross-section was ap-
proximated to be of a square shape, and the fracture development
was prescribed. The modelling results could be compared to
available experimental data, and good agreement was obtained
for the pressure development. Further, the model was employed
to simulate the full-bore rupture of a deep-water CO2-transport
pipeline, assuming CO2 and water to be immiscible. An ex-
perimental validation of these results would be interesting, but
challenging.

4.4. Wave-propagation, equilibrium and flow modelling
Pressure-wave propagation is a determining factor in sev-

eral phenomena of practical interest. During a pipeline depres-
surization, the flow will often be choked at the outlet, which
means that the local flow velocity is equal to the local pressure-
propagation velocity (speed of sound). For typical conditions
for CO2 pipelines, the choking will occur for a two-phase state.
As is well known, the single-phase speed of sound is a ther-
modynamic quantity. For a two-phase state, the case is more
complicated, since the observable pressure-propagation speed
is a function of the flow topology. The simplest model example
is the HEM, where the pressure-propagation speed (or mixture
speed of sound) is a function of the gas volume fraction. The
two-phase mixture speed of sound is typically lower than both
the gas and the liquid speed of sound. The difference between
the single-phase and the two-phase speed of sound is one of the
factors affecting the propagation of running-ductile fracture in
pipelines, see the previous section.
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Figure 7: Speed of sound predicted using the Peng-Robinson (PR), GERG-
2008 (GERG), a corresponding state approach [260] (CSP) and the Lee-Kesler
[259] (LK) equations of state. The CSP method uses Peng-Robinson with van
der Waals mixing rules to scale the propane properties calculated using the
MBWR32 [247, 261] equation. The CO2-H2-N2-O2-CH4 mixture and initial
conditions of Cosham et al. [299] are employed, see Table 9.

Judging from the pipe-depressurization data presented by
Cosham et al. [299], it appears that the flow may be in non-
equilibrium, and more so during the first instants of the depres-
surization and close to the outlet. To our knowledge, it remains
to develop and validate flow models properly accounting for
this effect. This implies that flow models should not only allow
slip between the phases, but that they should also accommodate
non-equilibrium in one or more of the quantities temperature,
chemical potential and pressure. Therefore, despite the good
results in many cases (see Section 4.2), the HEM is not expec-
ted to be the ideal pipe-depressurization flow model. This is
linked to the fact illustrated in Figure 3b, namely, that in the
HEM, the speed of sound is discontinuous at the phase bound-
ary, and moreover, it is zero at the triple point [287, Sec. 2.8.1].
This property is not believed to be physical, and it causes dif-
ficulties when developing numerical methods and performing
simulations.

To illustrate that different models give very different speed-
of-sound predictions, particularly above the saturation pressure,
four common EOSs have been used to plot the equilibrium speed
of sound for the Cosham et al. [299] mixture in Figure 7. Only
the GERG-2008 model has been tuned to experimental speed-
of-sound data, while the other EOSs mostly have been tuned to
equilibrium data.

From a modelling viewpoint, a set of physical assumptions
leads to a mathematical flow-model formulation. This formula-
tion has inherent wave-propagation velocities. These velocities
may be compared to experimental observations and this may
serve as validation tests to be performed for the flow model.

Flow models allowing some degree of non-equilibrium are
often formulated as relaxation models, see Aursand et al. [4].
Munkejord [333, 334] studied pressure relaxation in a two-fluid
model. With instantaneous relaxation, the relaxation model ap-
proached the single-pressure model, but the numerical relaxation
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procedure introduced considerable numerical smearing.
Flåtten et al. [335] derived expressions for the wave velo-

cities a multicomponent flow model with thermal relaxation.
Martínez Ferrer et al. [336] studied temperature and velocity
relaxation for the two-phase case. Flåtten and Lund [337], Lund
[338] developed a relaxation-model hierarchy for no-slip two-
phase flow models. It was shown that that the relaxed model
always has a lower speed of sound than the relaxation model.
In other words, the lowest two-phase mixture speed of sound
is inherent in the HEM. The relaxation-model hierarchy was
expanded by Linga [339], allowing slip between the phases.

Saurel et al. [340] considered a no-slip two-phase flow model
with temperature and chemical-potential relaxation, albeit infin-
itely fast, near the gas-liquid interface. Zein et al. [341] studied
a similar model, but with balance equations for the individual
phasic velocities. A validation test was performed against data
from a dodecane liquid-vapour shock tube. Rodio and Abgrall
[342] presented an approach based on the discrete-equations
method aimed at modelling flexibility and computational effi-
ciency. So far, these models [340–342] employed the stiffened-
gas EOS [343, 344]. We are not aware that these models have
been validated for CO2. A HEM using the stiffened-gas EOS
for each phase was explored by Lund et al. [345], but lacked
experimental data to compare with.

Most relaxation models so far have assumed the phase trans-
fer either to be ‘fast’, or to be governed by a prescribed relaxation
time. Future models should incorporate physical modelling of
the phase transfer accounting for the relevant kinetics. As shown
in the initial study by Lund and Aursand [346], statistical rate
theory may provide a framework to do so.

Benintendi [347] discussed the effect of non-equilibrium
phase transitions for expansions of liquid and supercritical CO2,
focusing on jet-flow characteristics after the stagnation point.
Deficiencies of the HEM were described, and the author hy-
pothesized that using a relaxation model (HRM) may improve
the prediction of observed CO2 expansion properties. One sim-
plified steady-state numerical calculation was made along an
expansion path, but the model is not directly applicable for
handling non-equilibrium phase transitions in a CFD code.

Accounting for delayed homogeneous nucleation appears
to be necessary to obtain a correct prediction of pressure and
temperature for fast depressurizations. Further, the triple-point
singularity resulting from the full equilibrium assumption must
be overcome using non-equilibrium thermodynamics.

Tian et al. [348] performed a theoretical analysis of the
liquid-to-vapour expansion mechanism in CO2. They considered
the critical energy barrier of a bubble nucleus as a function of
saturation temperature. Using non-equilibrium thermodynamics,
they calculated the entropy production during CO2 expansion.
Zero energy penalty was found at the critical point where the
phases are identical. For lower pressures, further down the satur-
ation line, the energy penalty (entropy production) increases.

Heermann et al. [349] performed molecular-dynamics simu-
lations to determine the spinodal for pure CO2. Fast temperature
quenching and droplet nucleation relevant for polymer foams
produced with a CO2 blowing agent were of interest. There-
fore, only the gas spinodal was studied. The same atomistic

approach was used to calculate the saturation properties of CO2.
The results were in qualitatively good agreement with the pre-
dictions of the Span-Wagner EOS. However, the liquid density
predicted by the molecular-dynamics simulations became too
low for increasing temperature. The meta-stable region mapped
from the molecular simulation was much smaller than the meta-
stable region predicted from the van der Waals EOS and a virial
expansion EOS.

4.5. Closure relations for CO2

Existing flow maps and correlations for oil, natural gas and
water in transport pipelines cannot necessarily be expected to be
accurate for CO2-rich mixtures, due to the significantly different
thermodynamic and transport properties. Most of the flow maps
and pressure-drop measurements and correlations for CO2 are
taken for tubes and channels in the millimetre range, often with
heat-exchanger applications in mind, see e.g. [350–353].

Aakenes et al. [354] considered experimental data for fric-
tional pressure drop in a 10 mm inner-diameter tube. See also
de Koeijer et al. [37]. The data were compared to the model
of Friedel [311] and that of Cheng et al. [353]. Although the
latter was developed specifically for CO2, the former fitted the
data better, with a standard deviation of 9.7 %. This is perhaps
because of its larger experimental database.

Cho et al. [305] performed an experimental study of the
two-phase pressure drop for the flow of a CO2-N2 mixture in a
tube of inner diameter 3.86 mm, using the same facility as in the
study of Huh et al. [304]. The results were compared to different
pressure-drop correlations, and rather large mean absolute errors
in excess of 300 % were observed. It remains to provide an
explanation for the deviations.

5. Ship transport of CO2

CO2 transport with ship is interesting in scenarios involving
CO2 sources close to the coast and offshore storage. Since ships
are more flexible than pipelines, ship transport may be preferable
for early CCS deployment, where the CO2 quantities are small.

5.1. Techno-economic considerations

Publicly available work on ship transport of liquid CO2 star-
ted appearing the early 2000s with several patents of Mitsubishi
Heavy Industries [355]. Kaarstad and Hustad [356] conducted
an overall assessment of ship and pipeline transportation of CO2
to an oil field in the North Sea. The first detailed technical and
economic study on CO2 ship transport, by Aspelund et al. [357],
recognized the potential role for shipping in developing the use
of CO2 for EOR, identifying the financial incentive of EOR,
giving a value to CO2. Further benefits of ship transport poin-
ted out by this study were the flexible collection of CO2 from
several low-costs sources, flexibility for delivery to different loc-
ations and the relatively low capital expenditure for ship-based
transport compared to pipeline transport.

When comparing ship transport to pipeline transport it is
intuitive that transport distance is a key parameter. Economic
studies show that long transport distance favours ship transport
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of CO2 over pipe transport [358]. Technical-economic studies on
ship transport of CO2 were performed by Roussanaly et al. [359]
who compared costs for CO2 transport by ship or by onshore
pipeline between Le Havre and a hub at Rotterdam, with the
concept of onward transport for storage or EOR from there. In
this specific case it was concluded that shipping cost around 10 %
more. Skagestad et al. [360] pointed out that the liquefaction
and operational costs are the main cost drivers for the ship, and
capital investment cost is the main driver for pipeline transport.

Aspelund et al. [357] assumed pure CO2 transported in a
state close to the triple point, e.g. 6.5 bar and the corresponding
saturation temperature, approximately −52 ◦C. These conditions
are used in most later studies on CO2 ship transport. However, a
study by Nam et al. [361] optimized conditions over an entire
transport chain, including pipeline sections and intermediate
storage, and concluded on global optimum conditions of 10 bar
and −39 ◦C.

Vermeulen [358] published a knowledge-sharing report con-
sidering the entire chain of liquid CO2 transport by ship. Several
types of infrastructure for offshore offloading system were con-
sidered, and well simulations were preformed to characterize the
temperature dynamics stemming from the batchwise injection of
CO2. The hydrate temperature in the reservoir was identified as
a defining criterion for the injection, requiring heat exchangers
for conditioning at the injection site. The shipping solution con-
sidered was a modified liquefied petroleum gas (LPG) carrier
with a cargo capacity of 30 000 m3. The report encompassed
most aspects of CO2 transport by ship, but did not address im-
purities of CO2, determined by the specification of the captured
CO2 and the liquefaction process.

Omata [362] considered LPG carriers and transport of satur-
ated liquid at −10 ◦C (2.65 MPa to 2.8 MPa). The report covers
the technical and economic feasibility of a concept for CO2
transport using a carrier ship with injection equipment on board,
to deliver directly to a subsea injection wellhead. It argues that
in regions, such as Eastern Asia, where bulk resources are fre-
quently traded long distances internationally by sea, it makes
sense to consider the same for CO2 transport.

Brownsort [363] summarized literature regarding CO2 ship
transport with the main purpose of EOR. It was pointed out that
many publications do not debate liquefaction process options,
focusing instead on a single process, which may be selected
from corporate experience, but without clear justification.

The general conclusion from the CO2 ship-transport studies
are that this is technically feasible, albeit at a generally higher
unit price than transport by pipeline. As mentioned earlier, this
depends on the transport distance. Longer transport distance
favours ship transport. However, there are still open technical
questions, e.g., regarding the liquefaction process, the injection
system and the well integrity as well as unloading time.

5.2. Vessel depressurization

The study of vessel depressurizations appears to be relevant
for ship-transport of CO2 and to other parts of the CO2 chain
where vessels are employed. Even though during normal unload-
ing, the pressure in the storage vessels will be maintained by gas

injection, accidental and uncontrolled depressurization might
happen. Experimental data from vessel depressurizations could
also be useful for model verification. This subject has received
limited attention so far.

The blowdown of CO2 from initially supercritical condi-
tions was studied by Eggers and Green [364], Gebbeken and
Eggers [365], motivated by the use of CO2 in food-processing
technology. The data may serve as validation cases for models
involving CO2 with phase transition induced by depressurization
and heat transfer. Fredenhagen and Eggers [366] extended the
study to CO2-N2 mixtures and presented a model based on local
thermodynamic equilibrium and a drift-flux phase slip. The data
of Gebbeken and Eggers [365] were considered in the model-
ling study of Zhang et al. [367] aimed at the safety analysis of
supercritical water-cooled nuclear reactors.

Han et al. [368] studied the temperature and pressure devel-
opment in 4.75 mm tubes used for the controlled depressuriza-
tion of a CO2 vessel.

Vree et al. [369] studied the depressurization of pure CO2
in a tube of inner diameter 50 mm and length 30 m wound up
in a coil of diameter 1.94 m and height 1.25 m. We expect the
results to lie somewhere between those of vessels and straight
tubes. The effect of nozzle sizes between 3 mm to 12 mm was
investigated, as was the effect of depressurizing from the lower
or upper end of the coil. The coldest temperature was observed
for depressurization from the upper end of the coil.

5.3. Boiling liquid expanding vapour explosion

Boiling liquid expanding vapour explosion (BLEVE) may
occur in storage and transportation of high-pressure liquefied
CO2. If the containing pipe or vessel ruptures, violent boiling
of superheated CO2 might cause a destructive shock wave. In
Worms, Germany, a catastrophic failure of a liquid CO2 storage
vessel resulted in three fatalities, additionally eight people in-
jured and significant material damage to a production facility
[370]. A comprehensive review of the BLEVE phenomenon was
presented by Abbasi and Abbasi [371].

Bjerketvedt et al. [372] conducted small-scale experiments
with CO2 BLEVE. By placing dry ice in a plastic container
and applying heat, a phase change and pressure increase was
induced. The pressure was increased until the tube ruptured,
and pressure waves were measured at different distances from
the container. A need to understand the boiling mechanisms of
metastable CO2 was identified. Bjerketvedt et al. concluded that
there is a need for EOS validation and large-scale experiments to
develop and validate CFD codes to perform risk analysis. Later,
the same group performed rapid depressurization experiments of
liquid CO2 in a vertical shock tube [373]. With the aid of a high-
speed camera, the evaporation wave propagating into the liquid
was studied. A near-constant velocity of 20 m s−1 to 30 m s−1

of the liquid-vapour front was reported. The initial pressures
were 3.5 and 5.5 MPa. Due to missing temperature and pressure
measurements, the authors could not conclude regarding the
thermodynamic path of the fluid.

van der Voort et al. [374] measured blast waves after frac-
turing 40 l liquid CO2 bottles. Two cutting charges installed on
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opposite sides of the bottles were used in order to induce a fast
and complete rupture of the CO2 bottle. Simulations employing
the Euler equations in 1D and 2D using simplified thermody-
namics were compared with the measured blast wave, to give
a qualitative fit. In order to give more realistic predictions of
the BLEVE blast wave, explicit modelling of phase transition
and proper fluid property models are required. The measured
blast wave was disturbed by the initial detonation of the cutting
charges and reflection from the walls of the test bunker.

Building on these experiments, van der Voort et al. [375]
conducted 12 experiments using 40 l liquid CO2 bottles to test
the temperature dependence of the BLEVE problem. The tem-
perature range was from −25.4 ◦C to 21.3 ◦C. The motivation
was to evaluate the risk of BLEVE occurring below what the
authors referred to as the homogeneous nucleation temperature.
With data from a reference experiment with an empty bottle,
some of the measurement disturbance from the initial detonation
of the cutting charges could be removed. The conclusion regard-
ing the homogeneous nucleation temperature remains, however,
unclear.

5.4. Flow in wells
Whether the CO2 has been transported by pipeline, ship, or

other means, it will have to be injected into a reservoir through
a well. Numerical models to perform calculations of transient
scenarios in wells will have many similarities with those for
pipelines.

For CO2 injection into depleted gas reservoirs, or into relat-
ively shallow reservoirs, pressures will be relatively low, such
that CO2 phase change will be more likely than what it usually
is for EOR [376].

Many of the existing well-flow models for CO2 are aimed
at capturing essentially steady-state solutions, e.g. [377, 378],
or slow transients. Cronshaw and Bolling [379] developed a
finite-difference model for the flow of single- or two-phase CO2
in wellbores, accounting for conduction to the surroundings. A
semi-implicit integration procedure was employed. The ther-
mophysical properties were taken from look-up tables. The
solubility of water in liquid CO2 and that of CO2 in liquid wa-
ter were neglected. The flow transients were assumed to be
sufficiently slow, so that kinetic-energy changes across control
volumes could also be neglected.

Pan et al. [380] developed a transient drift-flux model (DFM)
for two-phase CO2-brine mixtures to calculate leakages through
the wellbore. A DFM was also studied by Lu and Connell
[381, 382]. The Peng and Robinson [245] EOS was employed,
with the assumption of full thermodynamic equilibrium. The
computations included the effect of transient boundary condi-
tions at the well inlet.

Ruan et al. [383] employed Fluent® to study the effect of
water convection in the annulus surrounding the well assuming
2D axisymmetry. Musivand Arzanfudi and Al-Khoury [384]
considered the leakage of CO2 through an air-filled abandoned
wellbore using a mixed finite-element discretization scheme. A
main aim was to achieve a high numerical efficiency.

de Koeijer et al. [385] identified a need for experiments on
shut-ins and depressurization in CO2 injection wells. In order

to characterize the reservoir, shut-in and depressurization op-
erations are performed on the well. Especially the interaction
between CO2 and brine in the reservoir is of interest. A new in-
frastructure, drilling a 200 m to 250 m deep well, was suggested.

For safety, and to maintain the purpose of CCS, it is essen-
tial to ensure the integrity of CO2 wells. Thermal cycling is
one factor which can lead to debonding at the casing-cement or
cement-rock interface. CO2 injection may impose lower temper-
atures and stronger temperature variations on wells than what is
done for oil and gas production. Therefore, it is of great interest
to develop modelling tools which can assess various designs and
operational procedures. Lund et al. [386] developed a radial
heat-transfer model designed to account for the discontinuous
thermal properties at the casing-cement and cement-rock inter-
face. Good agreement with laboratory experiments was obtained.
Future work should include the assessment of radial asymmetry,
and the coupling to well-flow and reservoir models.

6. Conclusions

Although CO2 is transported in various ways today, the
amount required for full-scale CCS implementation motivates
the search for solutions being as safe and reliable as required
and as efficient as possible. To do this, simulation tools handling
the transient flow of single- and multiphase CO2 and CO2-rich
mixtures inside, and out of, pipes and vessels are needed to
perform calculations relevant for design, operation and safety.
Today’s models are in need of improvement with respect to both
fluid flow and thermophysical properties.

The risk associated with CO2 pipelines has been evaluated
to be very low, but the fracture propensity must be successfully
mitigated. Today’s semi-empirical fracture-propagation models
cannot be applied to dense-phase CO2 pipelines, and it has been
recommended to perform at least two full-scale burst tests for
each design case. The development of coupled fluid-structure
fracture-propagation control models may lead to a better predict-
ive capability.

Two-phase flow conditions can be expected to occur during
various transient events even for systems designed to operate in
the single-phase state. Such events can be varying CO2 supply,
start-up, shut-in or depressurization. Therefore, there is a need
to develop validated simulation tools able to accurately predict
these situations. Existing two-phase flow modelling tools can be
expected to have moderate accuracy due to the limited data for
CO2 flow.

Depressurization experiments of pipes and tubes consti-
tute one type of input needed for the development of fracture-
propagation models, and two-phase flow models in general. It
appears that two-phase flow models aiming to accurately de-
scribe rapid depressurizations need to take non-equilibrium ef-
fects into account. Among the different two-phase flow model
formulations available today, there is not a ‘generally preferred’
one. Nevertheless, the relatively simple homogeneous equi-
librium model has yielded good results in several cases. For
depressurizations down to atmospheric conditions, models will,
in many cases, need to take the formation of dry ice into account.
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This was shown in our case study considering expansion-tube
experimental data.

Regarding depressurizations of tubes, the shorter the time
scale, the better the description provided by pure depressuriz-
ation fluid dynamics and thermodynamics. For longer times,
effects from friction, flow topology and heat transfer enter into
play, rendering the interpretation of both experimental and mod-
elling results complex.

The depressurization of vessels have, in many respects, a
simpler flow configuration than the depressurization of pipes.
Therefore, such data should be useful for validation of thermo-
physical and heat-transfer models relevant for CO2 transport.

Regarding ship-transport of CO2, one of the main challenges
appears to be the optimal chain design. It has to include the
liquefaction, conditioning and possible processing at the injec-
tion site. Issues like well integrity and the response of the CO2
reservoir should also be considered. This will require good
knowledge of the relevant CO2-rich fluid properties, as well as
flow in the well, the interaction of brine and CO2, etc. There
also seems to be a need for a better understanding of the safety
aspects of transporting CO2 in large vessels, such as the pos-
sible occurrence of boiling liquid expanding vapour explosion
(BLEVE).

Removing a large portion of impurities produced by CO2
capture processes could have a high cost. Hence the effect
of impurities in CO2-rich mixtures, which could be different in
CCS than in the current US CO2-transportation pipeline systems,
must be known for cost and energy optimization. Even if strict
purification standards are enforced, the impact of impurities will
still have to be predicted in order to design efficient conditioning
processes or to understand CO2 injection processes or EOR
or storage reservoir behaviour. For some properties, relatively
accurate equilibrium models exist for pure CO2. There are also
thermodynamic models addressing the impact of impurities, but
mixture models for transport properties are less developed.

Fiscal metering will be needed in order to facilitate govern-
ment control and transactions in a future CCS market and the
lack of accurate property models could have large cost impacts.

Currently, the best property models are empirical in nature,
and hence cannot be more accurate than the experimental data
to which they are fitted. In order to model mixtures, complete
binary mixture data sets are desired, with ranges in temperature,
pressure, and composition beyond what are expected for the
given application. In the current work, the data situation of some
important fluid equilibrium properties for CO2-rich mixtures
has been surveyed, combining and extending a number of more
specialized reviews in the literature. Data for phase behaviour,
density, speed of sound, viscosity, and thermal conductivity have
been investigated, primarily for binary mixtures between CO2
and 17 other components. With regard to density and vapour-
liquid equilibria (VLE), the data situation for binary mixtures
between CO2 and water and the most common components in
natural gas, like methane and nitrogen, appears to be satisfactory.
For other relevant impurities, like for instance O2, there are large
holes in the data sets for density and VLE. For other binary
systems, like for instance CO2-COS and CO2-NO, neither VLE
nor density data have been found.

In addition to VLE, phase equilibria involving more than one
liquid phase (VLLE) and equilibria involving solids / hydrates
have been investigated. In general, there are very little exper-
imental data for such phase equilibria, as well as for speed of
sound, viscosity, and thermal conductivity. In many cases, there
is either no data or only a single data set available per binary
mixture system and phase even for the most common impurities,
covering at best only a small part of the region of interest in
terms of temperature, pressure, or composition. With regard to
thermal conductivity, even the most reputable current model for
pure CO2 is still not based on data in the high-temperature zero
density region or the important liquid phase.
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