

Overview of new products/features/modifications: Introduction of new inline engine OM 656

Service Information

Mercedes-Benz

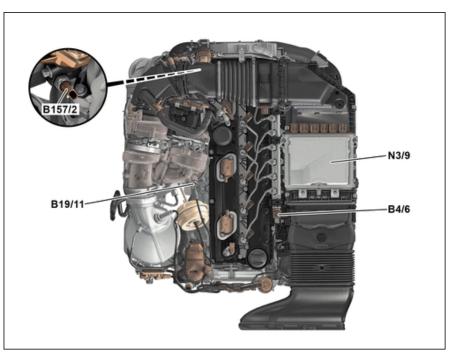
SN00.00-P-0064A	Overview of new products/features/modifications: Introduction of	12.07.2017
	new inline engine OM 656	

Model 222 with engine 656.9

OM 656 - the new 6-cylinder inline engine generation

The new inline engine cylinder, OM 656, will be introduced to the 2017 facelift of model series 222 in two output variants, the 350 d with 210 kW and the 400 d with 250 kW. Thus it takes over from the V6 diesel engine OM 642.

The new engine generation is characterized by the following components and systems:


- · An oil pump integrated in the crankcase
- Gearwheel drive in combination with a timing chain on the flywheel side for driving the high-pressure pump, oil pump, balance shafts and the two camshafts
- Optimized heat management
- Two-stage exhaust gas recirculation (EGR) with coolant-cooled precooler and exhaust gas recirculation cooler with switchable bypass duct

Cylinder head with 2-piece coolant jacket

- Rapid glowing system with glow output stage
- Load-level controlled preinjection and postinjection
- Fuel injectors with piezo valves
- 2-stage exhaust gas turbocharger with electronic boost pressure regulator
- Combined, near-engine mounted emissions control system
- CAMTRONIC on exhaust valves

View of the engine from above

B4/6	High pressure fuel
	pressure sensor
B19/11	Temperature sensor upstream of turbocharger
B157/2	Low-pressure exhaust gas recirculation temperature sensor
N3/9	CDI control unit

P07.16-4304-76

View of the engine from above Y27/7 Camshaft Hall sensor Vent line heater element Low-pressure exhaust gas recirculation actuator R39/1 Y49/24 *High-pressure exhaust* gas recirculation actuator Y49/23 Cylinder 1 and 2 0 1 0 Y49/22 exhaust CAMTRONIC actuator Cylinder 3 and 4 exhaust CAMTRONIC actuator Cylinder 5 and 6 exhaust CAMTRONIC actuator Y27/8 B6/1

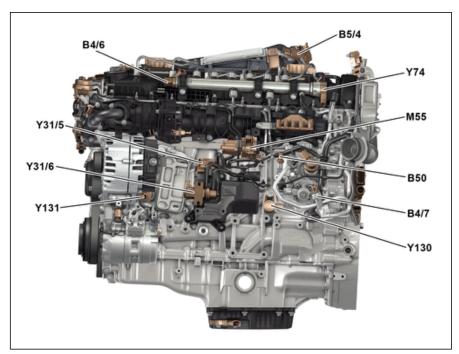
P07.16-4312-76

B6/1

R39/1

Y27/7

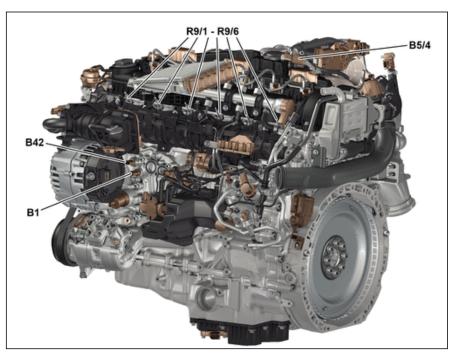
Y27/8


Y49/22

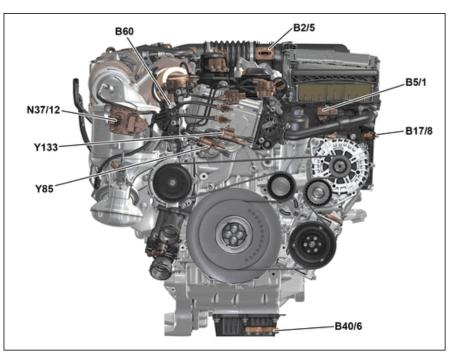
Y49/23

Y49/24

View of engine from left


view of eng	
B4/6	High pressure fuel
	pressure sensor
B4/7	Fuel pressure sensor
B5/4	Low-pressure
	turbocharger boost
	pressure sensor
B50	Fuel temperature
	sensor
M55	Intake port shutoff
	actuator motor
Y31/5	Boost pressure control
	pressure transducer
Y31/6	Wastegate pressure
	transducer
Y74	Pressure regulator
	valve
Y130	Engine oil pump valve
Y131	Oil spray nozzle shutoff
	valve

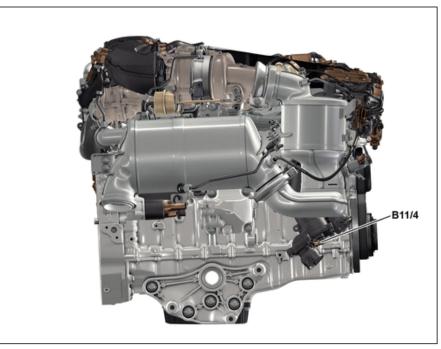
P07.16-4305-76


View of engine from rear left

B1	Engine oil temperature sensor
B5/4	Low-pressure turbocharger boost pressure sensor
B42	Engine oil pressure sensor
R9/1	Cylinder 1 glow plug
R9/2	Cylinder 2 glow plug
R9/3	Cylinder 3 glow plug
R9/4	Cylinder 4 glow plug
R9/5	Cylinder 5 glow plug
R9/6	Cylinder 6 glow plug

P07.16-4313-76

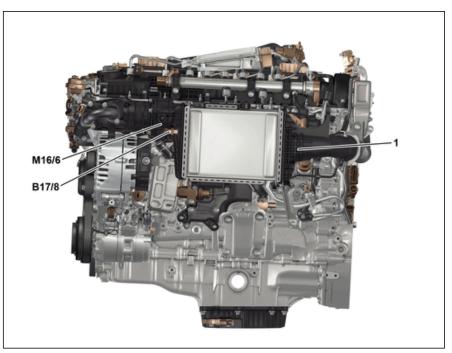
View of the engine from the front			
B2/5	Hot film mass air flow sensor		
B5/1	Boost pressure sensor		
B17/8	Charge air		
	temperature sensor		
B40/6	Engine oil fill level		
	sensor		
B60	Exhaust pressure		
	sensor		
N37/12	Control unit of NOx		
	sensor upstream of		
	diesel oxidation		
	catalytic converter		
Y85	Exhaust gas		
	recirculation cooler		
	bypass switchover		
	valve		
Y133	Coolant pump		



P07.16-4309-76

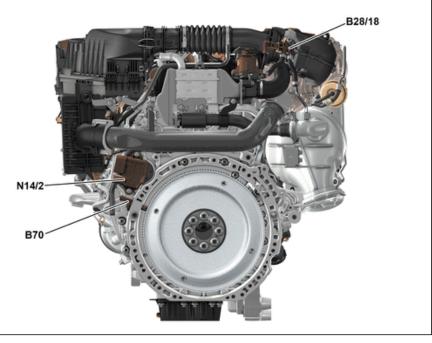
View of engine from right

B11/4 Coolant temperature sensor


switchover valve

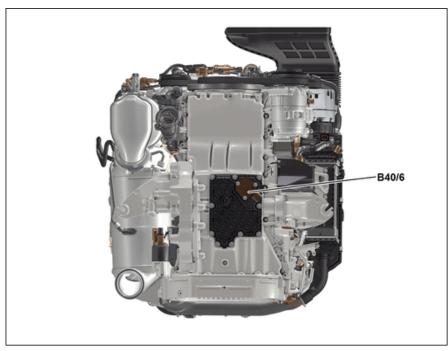
P07.16-4310-76

View of engine from left


1	Charge air cooler
B17/8	Charge air temperature
	sensor
M16/6	Throttle valve actuator

P07.16-4311-76

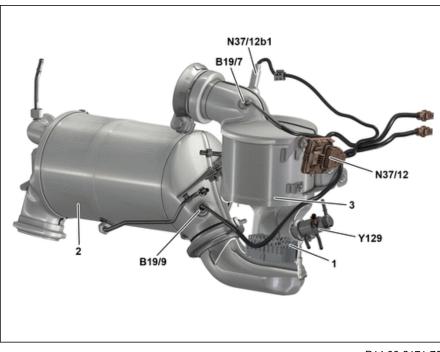
View of the engine from the rear


	-
B28/18	Low-pressure exhaust
	gas recirculation
	differential pressure
	sensor
B70	Crankshaft Hall sensor
N14/2	Glow output stage

P07.16-4306-76

Engine view from below

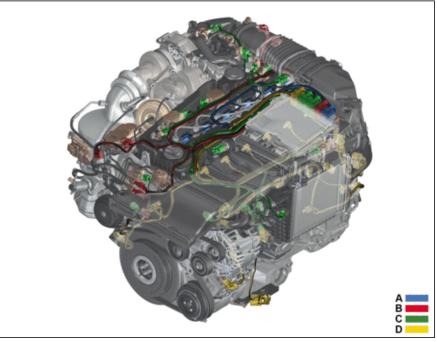
B40/6 Engine oil fill level sensor


P07.16-4308-76

Y74

View of fue	I high-pressure system	A
1	Fuel system high	Y76/1 - Y76/6
	pressure pump	
B4/6	High pressure fuel	
	pressure sensor	B4/6
Y74	Pressure regulator	
	valve	
Y76/1	Cylinder 1 fuel injector	
Y76/2	Cylinder 2 fuel injector	21 7 7
Y76/3	Cylinder 3 fuel injector	
Y76/4	Cylinder 4 fuel injector	<i>11</i> '
Y76/5	Cylinder 5 fuel injector	K
Y76/6	Cylinder 6 fuel injector	930
Y94	Quantity control valve	
		Y94
		C.S.M. C.

P07.16-4307-76


Partial view of the exhaust system			
1	Evaporator discs		
2	Diesel particulate		
	filter / SCR		
	catalytic converter		
3	Diesel oxidation		
	catalytic converter		
B19/7	Temperature		
	sensor upstream		
	of catalytic		
	converter		
B19/9	Temperature		
	sensor upstream		
	of diesel		
	particulate filter		
N37/12	Control unit of NOx		
	sensor upstream		
	of diesel oxidation		
	catalytic converter		
N37/12b1	NOx sensor		
	upstream of diesel		
	oxidation catalytic		
	converter		
Y129	AdBlue® metering		
	valve		

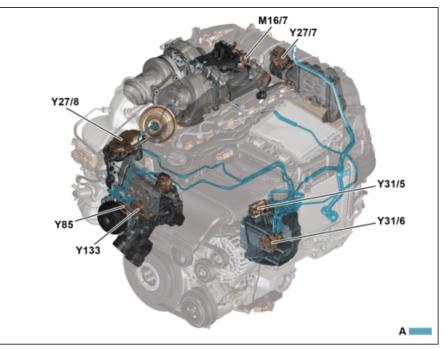
P14.00-2171-76

View of engine wiring harnesses

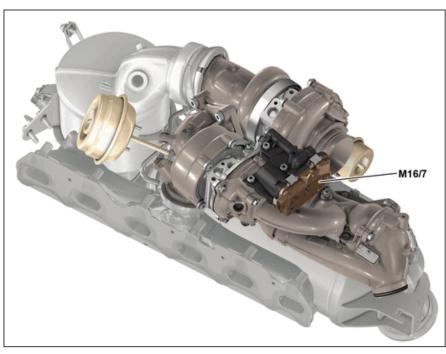
- A Crankcase wiring harness
- B Cylinder head and intake air system wiring harnesses
- C Exhaust system wiring harness
- D Injection wiring harness

P07.16-4368-76

View of vacuum system


	aum system
M16/7	Boost pressure control flap actuator
Y27/7	Low-pressure exhaust gas recirculation actuator
Y27/8	High-pressure exhaust gas recirculation actuator
Y31/5	Boost pressure control pressure transducer
Y31/6	Wastegate pressure transducer
Y85	Exhaust gas recirculation cooler bypass switchover valve
Y133	Coolant pump switchover valve
Α	Vacuum lines

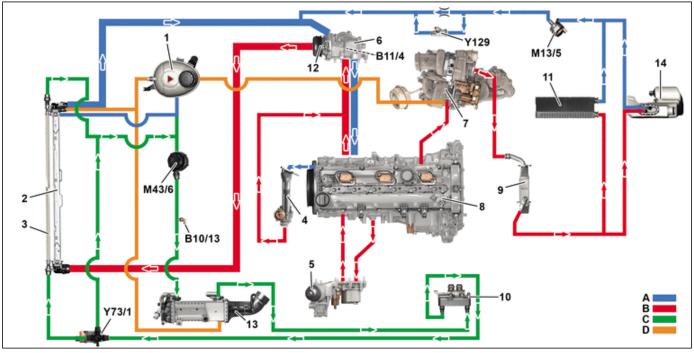
Boost pressure control


flap actuator

View of ATL

M16/7

P07.09-2056-76

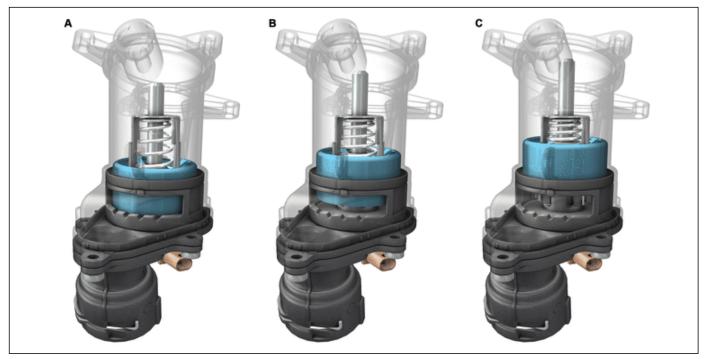

P09.40-2552-76

Mechanical engine systems

The mechanical components in engine OM 656 are fundamentally designed for maximum efficiency, advantageous thermodynamic properties and the lowest possible friction losses. These different requirements are achieved by the following measures:

- NANOSLIDE® coating of cylinder barrels
- · Use of steel pistons
- Off-set crank assembly (this means that cylinder bores opposite the crankshaft axis are offset towards the cold side)

Optimized control drive


P20.00-2629-79

Coolant circuit, shown schematically

Coolant C	ncun, snown schematicany	,			
1	Coolant expansion reservoir	9	Low pressure exhaust gas recirculation cooler	M13/5	Coolant circulation pump
2	Radiator	10	Transmission oil heat exchanger	M43/6	Low temperature circuit circulation pump 1
3	Low-pressure cooler	11	Heating system heat exchanger	Y73/1	Low-temperature circuit switchover valve
4	High pressure exhaust gas recirculation cooler	12	Coolant pump	Y129	AdBlue® metering valve
5	Engine oil heat exchanger	13	Charge air cooler	A	Coolant cold
6	Coolant thermostat	14	Washer fluid reservoir	В	Coolant, warm
7	Turbocharger	B10/13	Low-temperature circuit temperature sensor	С	Low temperature circuit
8	Crankcase	B11/4	Coolant temperature sensor	D	Coolant circuit ventilation

Heat management

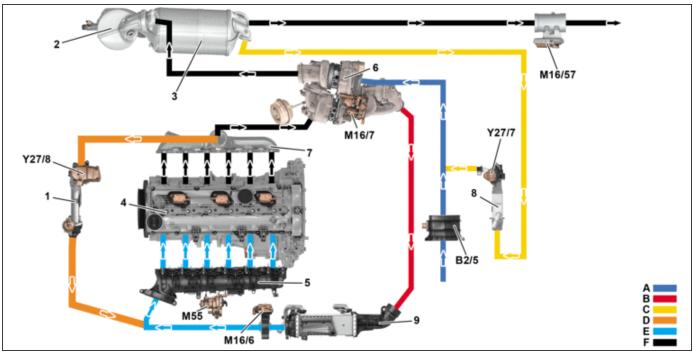
Engine OM 656 has optimized heat management which significantly increases the engine's thermodynamic efficiency. This increase is achieved through, among other features, an electric auxiliary pump which is actuated independently of the high-temperature circuit and thus performs demand-based cooling of the components. In addition, a sleeve valve thermostat is used. This sleeve valve thermostat is designed for small flow cross-sections with low pressure losses and achieves a flow volume of 290 l/min.

P20.10-2496-79

Positions for annual slider thermostat

A Position for full throttling

Position for mixed-fuel mode


C Position for radiator operation

Emissions

The OM 656 is designed for future RDE (Real Driving Emissions) emissions legislation. All of the components relevant to emissions reduction (diesel oxidation catalytic converter, diesel particulate filter, AdBlue® system) are installed directly on the engine. Thanks to its near-engine mounting, the exhaust gas aftertreatment system has low thermal losses and favorable operating conditions. This is enhanced by the switchable CAMTRONIC exhaust

В

camshaft. This aids in heating up the exhaust system without having any effect on consumption. The OM 656 features multiway exhaust gas recriculation (EGR), which combines cooled high pressure and low-pressure exhaust gas recirculation. This allows the untreated emissions of the engine to be significantly lowered even further throughout the entire characteristics map, while maintaining the combustion process within an economical range.

P14.20-2421-79

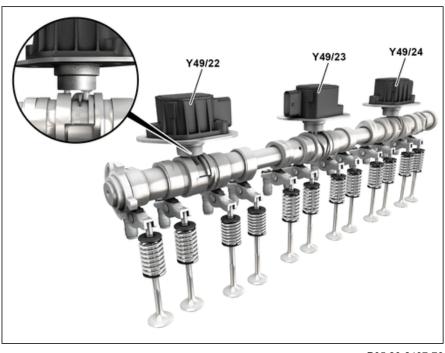
EGR shown schematically

	oononnatioany				
1	High pressure exhaust gas recirculation cooler	9	Charge air cooler	A	Intake air
2	Diesel oxidation catalytic converter	B2/5	Hot film mass air flow sensor	В	Charge air (uncooled)
3	Diesel particulate filter / SCR catalytic converter	M16/6	Throttle valve actuator	С	Low-pressure exhaust gas recirculation
4	OM 656	M16/7	Boost pressure control flap actuator	D	High-pressure exhaust gas recirculation
5	Charge air distributor	M16/57	Exhaust flap controller	E	Charge air (cooled)
6	Turbocharger	M55	Intake port shutoff actuator motor	F	Exhaust
7	Exhaust manifold	Y27/7	Low-pressure exhaust gas recirculation actuator		
8	Low pressure exhaust gas recirculation cooler	Y27/8	High-pressure exhaust gas recirculation actuator		

Exhaust gas recirculation

In order to reduce the engine's untreated emissions, multiway exhaust gas recriculation is used in OM 656. This consists of a high-pressure and a low-pressure exhaust recirculation path. The EGR is active from neutral through to the upper partial-load range. The recirculated exhaust is cooled and then fed back into the charge air (cooled). Effects achieved from recirculation:

- Reduction of oxygen (O2) concentration in combustion chamber
- Reduction of the combustion temperature through reduction of the combustion speed
- Reduction of the combustion temperature through a higher heat capacity of the recirculated exhaust compared to the intake air


i

Heat capacity

The heat capacity is a material property and indicates how much heat a substance can store per temperature change.

Partial view of camshaft with CAMTRONIC

Y49/22	Cylinder 1 and 2 exhaust CAMTRONIC actuator
Y49/23	Cylinder 3 and 4 exhaust CAMTRONIC actuator
Y49/24	Cylinder 5 and 6 exhaust CAMTRONIC actuator

P05.20-2497-76

Camtronic

In order to achieve effective exhaust gas cleaning with the desired speed, the CAMTRONIC switchable exhaust camshaft is being used on diesel engines for the first time.

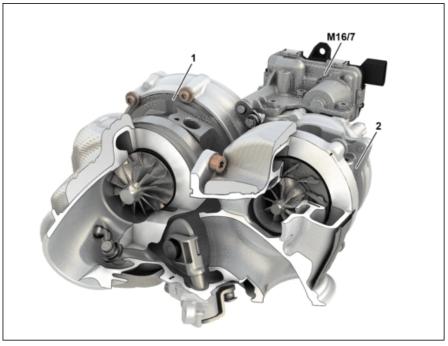
In low-load operation, the CDI control unit controls the exhaust CAMTRONIC actuator for cylinder 1 and 2, the exhaust CAMTRONIC actuator for cylinder 3 and 4 and the

exhaust CAMTRONIC actuator for cylinder 5 and 6. This actuation triggers a second lift of the exhaust camshaft. This second lift causes hot exhaust gases to flow back into the combustion chamber. These uncooled exhaust gases increase the temperature in the combustion chamber, which in turn causes emission control to become effective earlier.

Forced induction, shown schematically

1	Charge air cooler		
2	Intake manifold		
M16/7	Boost pressure control flap actuator		
Α	Exhaust		
В	Fresh air		

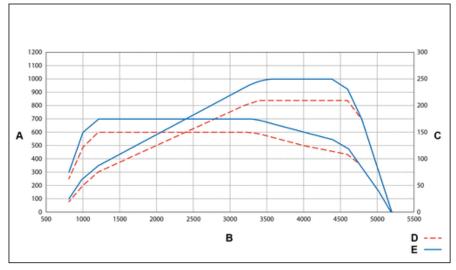
|--|


P09.00-2163-75

2-stage charging

The necessary boost pressure is generated by the high pressure and the low-pressure turbocharger or just by the low-pressure turbocharger according to the load condition of the engine. For charging by the high pressure and the low-pressure turbocharger a larger or a smaller portion of the exhaust flow in the exhaust turbine housing of the highpressure turbocharger upstream of the high-pressure turbocharger turbine is directed directly to the low-pressure turbocharger turbine wheel dependent on the boost pressure needed. In this way the low-pressure turbocharger turbine wheel is driven by more or less exhaust energy. Distribution of the exhaust flow is regulated by the position of the boost pressure control flap. The wastegate and the check valve are closed. If the low-pressure turbocharger is in the position to build up the whole boost pressure on its own, the boost pressure build up takes place by the lowpressure turbocharger. The check valve is opened and the compressed charge air from the low-pressure turbocharger led past the high-pressure turbocharger compressor impeller housing. The boost pressure is limited over the waste gate.

Turbocharger cross-section


	-	
1	Low-pressure	
	turbocharger	
2	High-pressure	
	turbocharger	
M16/7	Boost pressure control	
	flap actuator	

P09.40-2595-76

OM 656 performance graph

- A Torque in Nm
- B Rotational speed in rpm
- C Output in KW
- D OM 656 with 210 kW
- E OM 656 with 250 kW

P01.00-3725-75

Maintenance

The current Mercedes-Benz maintenance strategy also applies to OM 656, country-specific deviations are possible:

- ECE: Fixed maintenance intervals with the "every 25,000 km/12 months" interval
- CHN: Fixed maintenance intervals with the "every 10,000 km/12 months" interval
- USA: Fixed maintenance intervals with the "every 10,000 mi/12 months" interval

• Service A and B always alternate

Additional operations are carried out at these intervals (ECE example):

- Replace air filter insert: every 75,000 km/3 years
- Replace fuel filter on diesel engines: every 75,000 km/ 3 years

New: Draining the engine oil:

Engine OM 656 no longer has an oil dipstick tube and so also no oil dipstick. The engine oil is drained using a drain

screw in the oil pan. The engine oil level is checked using a sensor in the oil pan and via the display on the instrument cluster. This is called up using the steering wheel buttons.

	Unit	OM 642 LS D30 SCR	OM 656 D29 R SCR	OM 656 D29 SCR
Number of cylinders	-	6	6	6
Design	-	V	Inline	Inline
Number of valves/ cylinders	-	4	4	4
Single cylinder volume	Cm ³	498	488	488
Swept volume	Cm ³	2987	2927	2927
Cylinder spacing	mm	106	90	90
Hole	mm	83	82	82
Stroke	mm	92.0	92.4	92.4
Stroke/bore		1.11	1.13	1.13
Rated output	kW	190	210	250
	at 1/rpm	3600	4000	4000
Maximum torque	Nm	620	600	700
	at 1/rpm	16002400	12003200	12003200
Compression	Σ	15.5	15.5	15.5
Injection pressure	bar	1800	2500	2500