NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for teknisk kybernetikk

Helikopterlab

TTK4115 – Lineær systemteori

Prosjektrapport 20.10.03

Av:

Gruppe 14

Rune Haugom & Frode Efteland

Del 1 – Matematisk modellering

1.1 Modellering

Difflikn. Pitch p

$$\sum T = J_{p} \cdot \alpha = J_{p} \cdot \ddot{p} , \alpha = \text{vinkelakselerasjon}$$

$$\sum T = kraft \cdot arm = (F_{f} - F_{b}) \cdot l_{h} = (V_{f} - V_{b})K_{f}l_{h} =$$

$$[0.5(V_{s} + V_{d}) - 0.5(V_{s} - V_{d})]K_{f}l_{h} = \underline{V_{d}K_{f}l_{h}}$$

$$\Rightarrow V_{d}K_{f}l_{h} = J_{p} \cdot \ddot{p}$$

$$\Rightarrow \ddot{p} = \frac{K_{f}l_{h}}{J_{p}} \cdot V_{d} = K_{1} \cdot V_{d} , \text{ hvor } K_{1} = \frac{K_{f}l_{h}}{J_{p}}$$

$$(1.1)$$

Difflikn. Elevasjon e

$$\begin{split} \sum T &= J_e \cdot \alpha = J_p \cdot \ddot{\mathbf{e}} &, F_m = \text{ kraft viftemotor} \\ \sum T &= kraft \cdot arm = (F_g + F_m) \cdot arm &, F_g = \text{effektiv tyngde} \\ &= [-g \cdot m_g + (V_f + V_b)K_f] l_a &, g \cdot m_g = K_p \\ &= (-K_p + V_s K_f) l_a \\ &\Rightarrow (-K_p + V_s K_f) l_a = J_e . \ddot{\mathbf{e}} \end{split}$$

$$\Rightarrow \ddot{e} = \frac{K_f l_a}{J_e} V_s - \frac{K_p l_a}{J_e} = K_3 V_s - K_4 \quad \text{, hvor } K_3 = \frac{K_f l_a}{J_e}, K_4 = \frac{K_p l_a}{J_e} \tag{1.2}$$

Difflikn. Vandringshastigheten r

$$\begin{split} \sum T &= J_t \cdot \alpha = J_t \cdot \dot{r} \\ \sum T &= kraft \cdot arm = (-F_x - F_{luft}) \cdot arm \qquad , F_{luft} = K_{luft}r^2 \\ &= (-K_p \sin p - \text{sgn}(-p)K_{luft}r^2)l_a \qquad , K_{luft} > 0 \\ &\Rightarrow (-K_p \sin p - \text{sgn}(-p)K_{luft}r^2)l_a = J_t \cdot \dot{r} \end{split}$$

$$\Rightarrow \dot{r} = -\frac{K_p l_a}{J_t} \sin p - \frac{\operatorname{sgn}(-p) K_{luft} l_a}{J_t} r^2 = -K_2 \sin p - K_t r^2$$

hvor
$$K_2 = \frac{K_p l_a}{J_t}, K_l = \frac{\operatorname{sgn}(-p)K_{luft}l_a}{J_t}$$

Lineariserer \dot{r} ved å anta at p og r er små:

$$\underbrace{\frac{\dot{r} = -K_2 p}{\dots}}_{(1.4)}$$

(1.3)

Konstanter:

$$K_{1} = \frac{K_{f} l_{h}}{J_{P}} = \frac{0.5 \frac{N}{V} 0.18m}{0.0364 kg \ m^{2}} = \frac{2.47 \frac{1}{Vs^{2}}}{\underline{\qquad}}$$
(1.5)

$$K_{2} = \frac{K_{p}l_{a}}{J_{t}} = \frac{0.686N \cdot 0.63m}{0.91kg \ m^{2}} = \underbrace{0,47\frac{1}{s^{2}}}_{\underline{m}}$$
(1.6)

$$K_{3} = \frac{K_{f} l_{a}}{J_{e}} = \frac{0.5 N_{V} \cdot 0.63m}{0.91 kg m^{2}} = 0.35 \frac{1}{Vs^{2}}$$
(1.7)

$$K_4 = \frac{K_P l_a}{J_e} = \frac{0.686N \cdot 0.63m}{0.91 kg \ m^2} = \underbrace{0.47 \frac{1}{s^2}}_{\underline{m^2}}$$
(1.8)

1.2 Joystickstyring

For å finne et passelig pådrag, kan vi sette betingelser for \ddot{p} og \ddot{e} .

Velger akselerasjon på elevasjonen, $\ddot{e} = 1 \frac{rad}{s^2}$ (1.9)

Vi løser likn (1.2) mhp V_s .

$$V_{s} = \frac{\ddot{e} + K_{4}}{K_{3}} = \frac{1 \frac{rad}{s^{2}} + 0.47 \frac{1}{s^{2}}}{0.35 \frac{1}{Vs^{2}}} = \underline{4.2V}$$
(1.10)

Velger akselerasjon på pitchaksen, $\ddot{p} = 1 \frac{rad}{s^2}$ (1.11) Løser så likn (1.1) mhp V_d :

$$V_{d} = \frac{\ddot{p}}{K_{1}} = \frac{1\frac{rad}{s^{2}}}{2.47\frac{1}{Vs^{2}}} = \underline{0.4V}$$
(1.12)

X-aksen er tilkoblet V_d med joystickforsterkning 0.1 Y-aksen er tilkoblet V_s med joystickforsterkning 1

1.3 Likevektstilstand

Ved observasjon oppnås helikopterets likevektstilstand (horisontal elevasjon) når:

$$V_s = V_f + V_b = 2.15V + 2.15V = \underline{4.3V}$$
(1.13)

Ved likevekt er kraften fra motorene $F_m = (K_f \cdot V_s)$ og effektiv tyngde F_g like store.

Spenningen V_s i likevektspunktet:

$$V_{s} = \frac{K_{f}}{m_{g}g} = \frac{0.5\frac{N}{V}}{0.073kg \cdot 9.81\frac{m}{s^{2}}} = \underline{1.4V}$$
(1.14)

Bereknet V_s stemmer ikke overens med likevektstilstanden funnet i likn (1.13). Vi får en differanse (4.3V-1.4V=2.9V) og berekner ny K_f, K_{f^*} :

$$m_g g = V_s K_{f^*} \Longrightarrow K_{f^*} = \frac{m_g g}{V_s} = \frac{0.073 kg \cdot 9.81 \frac{m}{s^2}}{4.3V} = \underbrace{0.17 \frac{N}{V}}_{\underline{I}}$$
 (1.15)

Justerte konstanter med ny K_{f^*} :

$$K_{1*} = \frac{K_{f*}l_h}{J_p} = \frac{0.17\frac{N}{V} \cdot 0.18m}{0.0364kg\ m^2} = \underbrace{0.84\frac{1}{Vs^2}}_{\underline{\qquad}}$$
(1.16)

$$K_{3*} = \frac{K_{f*}l_a}{J_e} = \frac{0.17 N_V \cdot 0.63m}{0.91 kg m^2} = \frac{0.12 \frac{1}{Vs^2}}{\frac{1}{Vs^2}}$$
(1.17)

Disse konstantene brukes i resten av oppgaven.

Konklusjon del 1

Enkelte parametre er unøyaktige som kraftkonstanten til motorene. Vi bereknet ny K_f som påvirker likningene for pitch (1.1) og elevasjon (1.2). Kan også rekne ut ny K_p , men endringen blir liten, og siden det sannsynligvis også er visse unøyaktigheter i de andre oppgitte fysiske dataene, velger vi å ikke endre verdien av K_p . Helikopteret er vanskelig å styre uten regulering.

Del 2 – Monovariabel regulering

2.1 PD-regulering pitch

PD-regulator på pitch-aksen:

$$V_{d} = K_{pp}(p_{c} - p) - K_{pd}\dot{p} \qquad \text{der}\,K_{pp}, K_{pd} > 0$$
(1.18)

Difflikn for pitch-aksen (1.1) og transferfunksjon fra p_c til p:

$$\ddot{p} = \frac{K_{f*}l_{h}}{J_{p}} \cdot V_{d} = K_{1*} \cdot V_{d} = K_{1*} \cdot [K_{pp}(p_{c} - p) - K_{pd}\dot{p}]$$

$$s^{2}p(s) = K_{1*}K_{pp}(p_{c}(s) - p(s)) - K_{1*}K_{pd}s \cdot p(s)$$

$$(s^{2} + K_{1*}K_{pd}s + K_{1*}K_{pp})p(s) = K_{1*}K_{pp}p_{c}(s)$$

$$\frac{p(s)}{p_{c}(s)} = \frac{K_{1*}K_{pp}}{s^{2} + K_{1*}K_{pd}s + K_{1*}K_{pp}} = \frac{1}{\frac{1}{K_{1*}K_{pp}}s^{2} + \frac{K_{pd}}{K_{pp}}s + 1}$$
(1.19)

Krav til regulatoren:

-ingen svingninger (kritisk dempning $\zeta = 1$) -rask pitch-regulering

Valg av K_{pp}, K_{pd} :

$$\frac{K}{\left(\frac{s}{\omega_0}\right)^2 + \frac{2\zeta}{\omega_0} + 1}$$
, hvor $\zeta = 1$ gir et kritisk dempet system. (1.20)

Valg av båndbredde for pitch-aksen:

$$\omega_0 = 5 \frac{rad}{s} \tag{1.21}$$

Polynomsammenlikning gir:

$$\frac{K}{\left(\frac{s}{\omega_0}\right)^2 + \frac{2\zeta}{\omega_0} + 1} \tag{1.22}$$

$$I: \frac{1}{\omega_0^2} = \frac{1}{K_{1*}K_{pp}} \Longrightarrow K_{pp} = \frac{\pi}{180^\circ} \frac{\omega_0^2}{K_{1*}} = \frac{\pi}{180^\circ} \frac{\left(5\frac{rad}{s}\right)^2}{0.84\frac{1}{Vs^2}} = 0.10\frac{V}{grader}$$
(1.23)

$$II: \frac{2\zeta}{\omega_0} = \frac{K_{pd}}{K_{pp}} \Longrightarrow K_{pd} = \frac{2K_{pp}}{\omega_0} = \frac{2 \cdot 0.10^{V/grader}}{5 \frac{rad}{s}} = 0.04^{Vs/grader}$$
(1.24)

Vi bruker blokker i kontinuerlig tid i SIMULINK.

Justerte verdier for PD-regulator:

$$K_{pp} = 0.10 \frac{V}{grader}$$

$$K_{pd} = 0.05 \frac{Vs}{grader}$$
(1.25)

2.2 P-regulator vandringshastighet

Hastigheten til vandringen styres med en enkel P-regulator:

$$p_c = K_{rp}(r_c - r) \quad \text{der } K_{rp} < 0$$
 (1.26)

antar også at pitch er perfekt regulert, $p = p_c$

Transferfunksjon r_c til r:

$$p_{c} = K_{rp}(r_{c} - r)$$

$$\dot{r} = -K_{2}p_{c} = -K_{2} \cdot K_{rp}(r_{c} - r)$$

$$s \cdot r(s) = -K_{2}K_{rp}(r_{c}(s) - r(s))$$

$$(s - K_{2}K_{rp})r(s) = -K_{2}K_{rp}r_{c}(s)$$

$$\frac{r(s)}{r_{c}(s)} = \frac{-K_{2}K_{rp}}{s - K_{2}K_{rp}} = \frac{1}{\frac{1}{-K_{2}K_{rp}}s + 1} = \frac{1}{T_{1}s + 1} , T_{1} = \frac{1}{-K_{2}K_{rp}}$$
(1.27)

Valg av K_{rp} . Velger $T_1=2s$:

$$K_{rp} = \frac{1}{-K_2 T_1} = \frac{1}{-0.47 \frac{1}{s^2} 2s} = \frac{-0.94s}{-0.47 \frac{1}{s^2} 2s}$$
(1.28)

Justerte verdier for P-regulator:

$$K_{rp} = \underline{-1.0s} \tag{1.29}$$

Konklusjon del 2

Utreknede verdier stemte bra overens med virkeligheten. Det var lett å styre helikopteret. Robust mot forstyrrelser.

Del 3 - Multivariabel regulering

3.1 Tilstandsrom:

$$\dot{x} = Ax + Bu$$

$$\dot{x} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{e} \\ p \\ \dot{p} \end{bmatrix} + \begin{bmatrix} K_{3^*} & K_{3^*} \\ 0 & 0 \\ K_{1^*} & -K_{1^*} \end{bmatrix} \begin{bmatrix} V_f \\ V_b \end{bmatrix}$$
(1.30)

3.2 Styrbarhet

$$\Box = \begin{bmatrix} B & AB & A^{2}B \end{bmatrix} = \begin{bmatrix} K_{3*} & K_{3*} & 0 & 0 & 0 & 0 \\ 0 & 0 & K_{1*} & -K_{1*} & 0 & 0 \\ K_{1*} & -K_{1*} & 0 & 0 & 0 \end{bmatrix}$$
(1.31)
rank(\Box) = 3 = n \Rightarrow full rang = styrbart

Styrbarhetsmatrisen har full rang. Dvs vi kan styre alle tilstandene til en ønsket tilstand innen endelig tid.

Laget en tilstandstilbakekoblet regulator vha polplassering. Polene ble valgt ved eksperimentering.

p=[-2.8 -2.8+j -2.8-j]; K=place(A,B*180/pi,p)

K-matrise:

$$K = \begin{bmatrix} 0.2036 & 0.0918 & 0.0582 \\ 0.2036 & -0.0918 & -0.0582 \end{bmatrix}$$
(1.32)

3.3 Integralvirkning

Sammenliknet referansen fra joysticken med utgangene elevasjonshastighet og pitchvinkel og integrerte opp avviket. Det integrerte avviket ble skalert med en matrise K_i .

$$K_i = \begin{bmatrix} -0.5\\ -0.5 \end{bmatrix}, \text{ der } K_i \text{ er forsterkning til integratorleddet.}$$
(1.33)

Konklusjon del 3

Uten integralvirkning var helikopteret rimelig raskt og stabilt, robust mot små forstyrrelser og greit å styre. Elevasjonsreguleringen er litt treg.

Med integralvirkning ble resultatet noe tregere regulering og mindre robust mot forstyrrelser. Men helikopteret var lettere å styre.

Del 4 – Tilstandsestimering

4.1 Tilstandsrommodell:

4.2 Observerbarhet:

$$rank(Obs) = rank \begin{bmatrix} C \\ CA \\ CA^{2} \\ CA^{3} \\ CA^{4} \\ CA^{5} \end{bmatrix} = 6 = n \Rightarrow full \ rang = \underline{observerbart}$$
(1.36)

Observerbarhetsmatrisens finnes lettest i Matlab, <<obs=obsv(a,c); rank(obs)>> Matrisen har full rang (n=6) som betyr at alle tilstander er observerbare.

Vi laget en observer basert på (1.35) med tilbakekobling fra de estimerte tilstandene. Polene ble valgt ved eksperimentering.

p=[-8.73-5.57*j,-8.73+5.57*j,-5.58+16.7*j,-5.58-16.7*j,-2.25-20.8*j,-2.25+20.8*j]; L=(place(a',c',p))'

$$L = \begin{bmatrix} 11.1394 & -0.3677 & 0.0940 \\ 310.8891 & 6.9161 & -2.5546 \\ -0.3677 & 4.6403 & 1.2355 \\ 6.9161 & 433.6778 & -31.4375 \\ 0.0940 & 1.2355 & 17.3404 \\ -2.5546 & -31.9075 & 110.2990 \end{bmatrix}$$

4.3 Observer

Vis at systemet er observerbart basert på målingene λ og e:

$$y = Cx \Rightarrow \begin{bmatrix} e \\ \lambda \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} e \\ \dot{e} \\ p \\ \dot{p} \\ \dot{\lambda} \\ r \end{bmatrix}$$
(1.37)
$$rank(Obs_{2}) = rank \begin{bmatrix} C \\ CA \\ CA^{2} \\ CA^{3} \\ CA^{4} \\ CA^{5} \end{bmatrix} = 6 = n \Rightarrow full \ rang = \underline{observerbart}$$
(1.38)

Vis at systemet ikke er observerbart når en måler $e \circ g p$:

$$y = Cx \Rightarrow \begin{bmatrix} e \\ p \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} e \\ \dot{e} \\ p \\ \dot{p} \\ \dot{\lambda} \\ r \end{bmatrix}$$
(1.39)
$$rank(Obs_{3}) = rank \begin{bmatrix} C \\ CA \\ CA^{2} \\ CA^{3} \\ CA^{4} \\ CA^{5} \end{bmatrix} = 4 \neq n \Rightarrow \underline{ikke \ observerbart}$$
(1.40)

Systemet har ikke full rang, 4 < (n = 6). Dvs ikke alle tilstander er observerbare.

Vi laget en tilstandsestimator basert på (1.37).

Konklusjon del 4

Styring og regulering av helikopteret fungerte bra da vi målte elevasjon, pitch og vandring. Da vi ikke målte pitch, fungerte estimatoren dårlig. Grunnen til det kan være unøyaktige tallverdier i helikoptermodellen og forenklede modellikninger.

Konklusjon helikopterprosjekt:

Alle reguleringsprinsippene ga en grei regulering. Multivariabel regulering ga litt tregere regulering enn monovariabel og tilstandsestimering. Alle taklet små forstyrrelser bra. Ved bedre finjustering av polene kunne nok resultatet blitt enda bedre i del 3.