TTK4150 Nonlinear Control Systems Exercise 1

Department of Engineering Cybernetics Norwegian University of Science and Technology

Fall 2003

Exercise 1 (Exercise 3.2 in Khalil)

Exercise 2 (Exercise 3.16 in Khalil)

Exercise 3 (Exercise 2.2 in Khalil)

Exercise 4

For the systems 1 and 2 in Exercise 3, construct the phase portrait and discuss the qualitative behavior of the system.

Exercise 5 (Exercise 2.21 in Khalil)

Exercise 6 (Exercise 2.24 in Khalil)

Exercise 7

A synchronous generator (for instance used on a water or gas power plant) connected to a infinite bus (no dynamics in the net) can be described by the equations

$$\begin{aligned} M\ddot{\delta} &= P - D\dot{\delta} - \eta_1 E_q \sin \delta \\ \tau \dot{E}_q &= -\eta_2 E_q + \eta_3 \cos \delta + E_{FD} \end{aligned}$$

where δ a angle related to the rotor (a simplification states $\dot{\delta} = \omega_{rotor} - \omega_{net}$), E_q is voltage, E_{FD} is the field current voltage (manipulated input), P is mechanical effect (for instance given by the water running through the turbine), D is a damping coefficient, M a energy constant, τ is a time constant and η_i are various constants. The control objective is to maintain a constant frequency ($\dot{\delta} = 0$) at a desires voltage.

1. Find the state space model using P and E_{FD} as inputs.

2. Use

$$P = 0.815$$

$$E_{FD} = 1.22$$

$$M = 0.0147$$

$$\frac{D}{M} = 4$$

$$\eta_1 = 2$$

$$\eta_2 = 2.7$$

$$\eta_3 = 1.7$$

and calculate the equilibrium points. The parameters given represents normalized parameters where it is desirable to have $E_q \approx 1$ and a small angle δ . Comment on the equilibrium points found.

Exercise 8

An auto pilot for a large tanker is shown together with a detailed block diagram in Figure 1. Symbols used in the figure is explained in Table 1.

Figure 1:

1. Find the state space model of the system in Figure 1.

<i>x</i> ₁₀	course reference
x_1	course angle
x_2	angular velocity
$f(x_2)$	hydrodynamic damping
I_z	moment of inertia
K	rudder constant
K_p	controller gain $(K_p > 0)$
T_d	controller derivative time constant $(T_d > 0)$

Table 1: Symbols used in Figure 1

2. In the remaining of this exercise we will use

$$K = I_z = 1$$

 $f(x_2) = -x_2 + x_2 |x_2|$

Find the equilibrium points of the system.

- 3. Derive the type of equilibrium points expressed in terms of K_p and T_d , and show the result in a diagram in the (K_p, T_d) -plane.
- 4. What type of equilibrium point correspond to the controller values $K_p = T_d = 4$. Draw the trajectories of the following initial conditions in the phase plane when the system is exposed to a step from $x_1^* = 0$ to $x_1^* = 2$.
 - (a) $x_1 = x_2 = 0$
 - (b) $x_1 = x_2 = 2$