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Solution 1
1. The Jacobian matrix evaluated at x = 0 is given by

A =
∂f

∂x

¯̄̄̄
x=0

=

· −1 2x2
0 −1

¸¯̄̄̄
x=0

=

· −1 0
0 −1

¸
and the eigenvalues are calculated as

λ1,2 = −1
Using Lyapunov’s indirect method, it is concluded that the origin is
asymptotically stable. Using phase plane analysis, it is concluded that
the origin is a stable node.

2. The Jacobian matrix evaluated at x = 0 is given by

A =
∂f

∂x

¯̄̄̄
x=0

=

·
3x21 − 2x1x2 + x22 − 1 2x1x2 − x21 − 3x22 + 1
2x1x2 + 3x

2
1 + x22 − 1 2x1x2 + x21 + 3x

2
2 − 1

¸¯̄̄̄
x=0

=

· −1 1
−1 −1

¸
and the eigenvalues are calculated as

λ1,2 = −1± i
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Using Lyapunov’s indirect method, it is concluded that the origin is
asymptotically stable. Using phase plane analysis, it is concluded that
the origin is a stable focus.

3. The Jacobian matrix evaluated at x = 0 is given by

A =
∂f

∂x

¯̄̄̄
x=0

=

· −1 −1
1 3x22

¸¯̄̄̄
x=0

=

· −1 −1
1 0

¸
and the eigenvalues are calculated as

λ1,2 = −1
2
±
√
3

2
i

Using Lyapunov’s indirect method, it is concluded that the origin is
asymptotically stable. Using phase plane analysis, it is concluded that
the origin is a stable focus.

4. The Jacobian matrix evaluated at x = 0 is given by

A =
∂f

∂x

¯̄̄̄
x=0

=

· −1 9x22
−1 −1

¸¯̄̄̄
x=0

=

· −1 0
−1 −1

¸
and the eigenvalues are calculated as

λ1,2 = {−2, 0}

Using Lyapunov’s indirect method results in no conclusion. Using
phase plane analysis results in no conclusion.

Solution 2
The 2× 2 system where

M =

·
m11 m12

m21 m22

¸
2
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is given by

xTMx = m11x
2
1 +m21x1x2 +m12x1x2 +m22x

2
2

Taking the time derivative of this system results in

d

dt

¡
xTMx

¢
= 2m11x1ẋ1 + 2m22x2ẋ2

+m21ẋ1x2 +m21x1ẋ2 +m12ẋ1x2 +m12x1ẋ2 + 2m22x2ẋ2

= x1 (m11 +m11) ẋ1 + x2 (m22 +m22) ẋ2

+x2 (m21 +m12) ẋ1 + x1 (m21 +m12) ẋ2

= xT
¡
M +MT

¢
ẋ

= ẋT
¡
M +MT

¢
x

When M is symmetric, it can be seen that

d

dt

¡
xTMx

¢
= xT

¡
M +MT

¢
ẋ

= xT (M +M) ẋ

= xT2Mẋ

= 2xTMẋ

and

d

dt

¡
xTMx

¢
= ẋT

¡
M +MT

¢
x

= ẋT (M +M)x

= ẋT2Mx

= 2ẋTMx

Solution 3
1. The system is given by

ẋ1 = −x1 + x22
ẋ2 = −x2

where it can be seen that the equilibrium points are given by (x∗1, x
∗
2) =

(0, 0). A general quadratic Lyapunov function candidate is given by

V (x) =
1

2
xTPx, P = P T
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which is positive definite if and only if all the leading principal minors
of P are positive

p11 > 0

p11p22 − p212 > 0

(and it follows that p22 > 0). The derivative of the Lyapunov function
candidate along the trajectories of the system is given by

V̇ (x) = ẋTPx

=

· −x1 + x22
−x2

¸T ·
p11 p12
p12 p22

¸ ·
x1
x2

¸
=

· −x1 + x22
−x2

¸T ·
p11x1 + p12x2
p12x1 + p22x2

¸
=

¡−x1 + x22
¢
(p11x1 + p12x2)− x2 (p12x1 + p22x2)

= p12x
3
2 − p11x

2
1 − p22x

2
2 − 2p12x1x2 + p11x1x

2
2

By choosing p12 = 0, the term x32 and x1x2 vanishes and the derivative
is rewritten as

V̇ (x) = −p11x21 − p22x
2
2 + p11x1x

2
2

= −p11x21 − (p22 − p11x1)x
2
2

= −p11x21 − p11

µ
p22
p11
− x1

¶
x22

< 0, ∀p22
p11

> x1

Taking D =
n
x ∈ Rn|x1 < p22

p11

o
, where p22

p11
may be chosen arbitrary

large, shows that the equilibrium point is locally asymptotically stable.

2. The system is given by

ẋ1 = (x1 − x2)
¡
x21 + x22 − 1

¢
ẋ2 = (x1 + x2)

¡
x21 + x22 − 1

¢
where it can be seen that the equilibrium points are given by

(x∗1, x
∗
2) = (0, 0)

and the set
x∗21 + x∗22 = 1
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This implies that the origin can not be globally asymptotically stable,
since by starting the system in one of the points x∗21 + x∗22 = 1 will
keep the system in this point. A general quadratic Lyapunov function
candidate is given by

V (x) =
1

2
xTPx, P = P T

which is positive definite if and only if all leading principal minors of
P have positive determinants, that is

p11 > 0

p11p22 − p212 > 0

(and it follows that p22 > 0). The derivative of the Lyapunov function
candidate along the trajectories of the system is given by

V̇ (x) = ẋTPx

=

·
(x1 − x2) (x

2
1 + x22 − 1)

(x1 + x2) (x
2
1 + x22 − 1)

¸T ·
p11 p12
p12 p22

¸ ·
x1
x2

¸
=

¡
2x1x2p12 − x1x2p11 + x1x2p22 + x21p11 + x21p12 − x22p12 + x22p22

¢ ¡
x21 + x22 − 1

¢
= xT

·
p11 + p12 p12 − 1

2
p11 +

1
2
p22

p12 − 1
2
p11 +

1
2
p22 p22 − p12

¸
x
¡
x21 + x22 − 1

¢
= xTQx

¡
x21 + x22 − 1

¢
By choosingQ such that xTQx > 0 ∀x 6= 0 and takingD = {x ∈ R2|x21 + x22 < 1},
it can be seen that

V̇ (x) < 0 ∀x ∈ D

Choosing p12 = 0, the matrix P is positive definite if and only if

p11 > 0

p22 > 0

and the matrix Q is positive definite if and only if

p11 > 0

p22 > 0

by which it can be concluded that the origin of the system is asymp-
totically stable.
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3. The system is given by

ẋ1 = −x1 − x2

ẋ2 = x1 − x32

where it can be seen that the equilibrium point is given by

(x∗1, x
∗
2) = (0, 0)

A general quadratic Lyapunov function candidate is given by

V (x) =
1

2
xTPx, P = P T

which is positive definite if and only if all the leading principal minors
of P are positive, that is

p11 > 0

p11p22 − p212 > 0

(and it follows that p22 > 0). The derivative of the Lyapunov function
candidate along the trajectories of the system is given by

V̇ (x) = ẋTPx

=

· −x1 − x2
x1 − x32

¸T ·
p11 p12
p12 p22

¸ ·
x1
x2

¸
= −p11x1x2 − p12x1x2 + p22x1x2 − p11x

2
1 + p12x

2
1 − p12x

2
2 − p22x

4
2 − p12x1x

3
2

= − (p11 − p12)x
2
1 − (p11 + p12 − p22)x1x2 − p12x

2
2 − p22x

4
2 − p12x1x

3
2

In order to eliminate the undesirable terms, pi is chosen according to

p11 + p12 − p22 = 0

p12 = 0

⇒ p11 = p22

which fulfills the requirements imposed in order to guarantee V (x) pos-
itive definite. The derivative of V (x) is now found as

V̇ (x) = −p11x21 − p11x
4
2

< 0 ∀x ∈ R2 − {0}
Since V (x) is radially unbounded, it can be concluded that the origin
is globally asymptotically stable.
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4. The system is given by

ẋ1 = −x1 + 3x32
ẋ2 = −x2 − x1

where it can be seen that the equilibrium point is given by

(x∗1, x
∗
2) = (0, 0)

Consider the Lyapunov function candidate

V (x) =
1

2
p1x

2
1 +

1

4
p2x

4
1 +

1

2
p3x

2
2 +

1

4
p4x

4
2

The derivative is found as

V̇ (x) = p1x1ẋ1 + p2x
3
1ẋ1 + p3x2ẋ2 + p4x

3
2ẋ2

=
¡
p1x1 + p2x

3
1

¢ ¡−x1 + 3x32¢+ ¡p3x2 + p4x
3
2

¢
(−x2 − x1)

= −p1x21 − p2x
4
1 − p3x

2
2 − p4x

4
2

− (p4 − 3p1)x1x32 + p2x
3
1x
3
2 − p3x1x2

By choosing

p1 =
1

3
p4

p2 = 0

p3 = 0

p4 > 0

it can be seen that

V (x) =
1

6
p4x

2
1 +

1

4
p4x

4
2

> 0 ∀x ∈ R2 − {0}

and

V̇ (x) = −1
3
p4x

2
1 − p4x

4
2

< 0 ∀x ∈ R2 − {0}

Since The Lyapunov function is radially unbounded, it can be con-
cluded that the origin of the system is globally asymptotically stable.
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Solution 4
By using kxk44 = x41 + x42 it can be seen that

1

4
kxk44 ≤ V (x) ≤ 1

4
kxk44

The derivative V̇ (x) along the trajectories of the system is found as

V̇ (x) = x31ẋ1 + x32ẋ2

= x31
¡−x32 − x1

¢
+ x32

¡
x31 − x2

¢
= −x31x32 − x41 + x32x

3
1 − x42

= −x41 − x42
= − kxk44

By Theorem 4.10, taking k1 = k2 =
1
4
and k3 = 1, it can be concluded that

the system is globally asymptotically stable.

Solution 5
It can be seen that the function V (x) is not a Lyapunov function, however the
function is radially unbounded. The derivative of V (x) along the solutions
of the system is given by

V̇ (x) = x1ẋ1 +
1

γ
(x2 − b) ẋ2

= x1 (ax1 − x2x1) +
1

γ
(x2 − b) γx21

= ax21 − x2x
2
1 + x2x

2
1 − bx21

= − (b− a)x21
≤ 0

Let D = R2 and noticing that Ωc =
n
x ∈ R2|V (x) ≤ c, V̇ (x) ≤ 0

o
=

{x ∈ R2|V (x) ≤ c} is a compact positively invariant and set for any fi-
nite c due to the radially unboundedness of V (x). Let Ω = Ωc, the set

E is then found as E =
n
x ∈ Ω| V̇ (x) = 0

o
= {x ∈ Ω|− (b− a)x21 = 0} =

{x ∈ Ω|x1 = 0}. From the calculation of the equilibrium points it is known
that x1 = 0 is a invariant set. This implies that the largest invariant set in
E is given by M = E. By Theorem 4.4 that every solution starting in Ω
approaches x1 = {x ∈ Ω|x1 = 0} as t→∞. The steady state gain k is given
by the value of x2 when the system settles down, that is when x1 reaches
zero. The value of k will depend on the initial conditions, as illustrated in
Figure 1.
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Figure 1: Simulation of the adaptive controller using a = γ = 1.

Solution 6
The system is given by

ẋ1 = 4x21x2 − f1 (x1)
¡
x21 + 2x

2
2 − 4

¢
ẋ2 = −2x31 − f2 (x2)

¡
x21 + 2x

2
2 − 4

¢
In order to show that x21 + 2x

2
2 − 4 = 0 is a invariant set, a new variable

z = x21 + 2x
2
2 − 4 is defined. The derivative of z is found as

ż = 2x1ẋ1 + 4x2ẋ2

= 2x1
¡
4x21x2 − f1 (x1)

¡
x21 + 2x

2
2 − 4

¢¢
+4x2

¡−2x31 − f2 (x2)
¡
x21 + 2x

2
2 − 4

¢¢
= −2x1f1 (x1)

¡
x21 + 2x

2
2 − 4

¢− 4x2f2 (x2) ¡x21 + 2x22 − 4¢
= − (2x1f1 (x1) + 4x2f2 (x2))

¡
x21 + 2x

2
2 − 4

¢
= −2 (x1f1 (x1) + 2x2f2 (x2)) z

where it can be seen that z = 0 is a equilibrium point for the system, and
consequently a invariant set for the system. This implies that x21+2x

2
2−4 = 0

is a invariant set for the system. Consider the function

V (x) =
¡
x21 + 2x

2
2 − 4

¢2
9
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which is radially unbounded. The derivative of V is found as

V̇ (x) = 2
¡
x21 + 2x

2
2 − 4

¢
(2x1ẋ1 + 4x2ẋ2)

= −4 (x1f1 (x1) + 2x2f2 (x2))
¡
x21 + 2x

2
2 − 4

¢2
≤ 0

since x1f1 (x1) and x2f2 (x2) are grater than or equal to zero. LetD = R2 and
noticing that Ωc =

n
x ∈ R2|V (x) ≤ c, V̇ (x) ≤ 0

o
= {x ∈ R2|V (x) ≤ c} is

a compact positively invariant set for any finite c due to the radially un-
boundedness of V (x). Let Ω = Ωc, the set E is then found as

E =
n
x ∈ Ω| V̇ (x) = 0

o
=

©
x ∈ Ω|x21 + 2x22 − 4 = 0 or (x1f1 (x1) + 2x2f2 (x2)) = 0

ª
=

©
x ∈ Ω|x21 + 2x22 − 4 = 0 or x1 = x2 = 0

ª
From the state space model it can be seen that x1 = x2 = 0 is a equilibrium
point for the system (f1(0) = f2(0) = 0). This implies that the largest
invariant set in E is given by

M =
©
x21 + 2x

2
2 − 4 = 0

ª ∪ {x1 = x2 = 0}
By Theorem 4.4 it can be concluded that every solution starting in Ω ap-
proaches x21 + 2x

2
2 = 4 or the origin as t → ∞. By choosing for instance

Ω = Ω15 =
n
x ∈ R2|V (x) ≤ 15, V̇ (x) ≤ 0

o
, it can be seen that

E =
©
x ∈ Ω|x21 + 2x22 − 4 = 0

ª
and

M =
©
x21 + 2x

2
2 − 4 = 0

ª
which by Theorem 4.4 implies that every solution starting in Ω approaches
x21 + 2x

2
2 = 4. However, the set {x21 + 2x22 − 4 = 0} is not a limit cycle since

it contains equilibrium points (for instance (x∗1, x
∗
2) =

¡
0,±√2¢).

Solution 7
The system is given by

ẋ1 = x2

ẋ2 = − (x1 + x2)− h (x1 + x2)

Let

g (x) =

·
αx1 + βx2
γx1 + δx2

¸
10
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where the symmetry requirement imposes the limitations

β = γ

The derivative of V along the trajectories of the system is now given by

V̇ (x) = g (x) f (x)

=

·
αx1 + βx2
βx1 + δx2

¸T ·
x2

− (x1 + x2)− h (x1 + x2)

¸
= (αx1 + βx2)x2 + (βx1 + δx2) (− (x1 + x2)− h (x1 + x2))

taking β = δ

V̇ (x) = (αx1 + βx2)x2 + β (x1 + x2) (− (x1 + x2)− h (x1 + x2))

= (αx1 + βx2)x2 − β (x1 + x2)
2 − β (x1 + x2)h (x1 + x2)

= αx1x2 + βx22 − β
¡
x21 + 2x1x2 + x22

¢− β (x1 + x2)h (x1 + x2)

= αx1x2 − βx21 − β2x1x2 − βx22 − β (x1 + x2)h (x1 + x2)

= −βx21 − (2β − α)x1x2 − β (x1 + x2)h (x1 + x2)

taking β = 1
2
α

V̇ (x) = βx21 − β (x1 + x2)h (x1 + x2)

< 0 ∀x ∈ R2

The function V is now found as

V (x) =

Z x1

0

αy1dy1

+

Z x2

0

(γx1 + δy2) dy2

= α

·
1

2
y21

¸x1
0

+ γx1 [y2]
x2
0 + δ

·
1

2
y22

¸x2
0

=
1

2
αx21 + γx1x2 +

1

2
δx22

= βx21 + βx1x2 +
β

2
x22

= xTPx

where

P =

·
β β

2
β
2

β
2

¸
11
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and

β > 0

β2

2
− β2

4
> 0

which implies that P > 0 (and V (x) is positive definite on R2 and radially
unbounded). By Theorem 4.2 it is concluded that the origin is globally
asymptotically stable.

Solution 8
1. From the figure it can be seen that

ẋ1 = −g (e) + 2x2 − x1

ẋ2 = g (e)− x2

e = −x1
and the system is given by

ẋ1 = x31 + 2x2 − x1

ẋ2 = −x31 − x2

2. Clearly the function V (x) is positive definite and radially unbounded.
The derivative of V (x) along the trajectories of the system is given by

V̇ (x) =
1

2
ẋTPx+

1

2
xTPẋ

= −x21 − x22 − 2x31x2
= −x21 − x22 − 2xT

·
0 1

2
x21

1
2
x21 0

¸
x

= −xT
·
1 0
0 1

¸
x− xT

·
0 x21
x21 0

¸
x

= −xT
·
1 x21
x21 1

¸
x

= −xTQ (x)x
where positive definiteness of Q (x) implies that the origin is asymp-
totically stable. In order for Q (x) to be positive definite, is is required
that all its leading principal minors are positive. This imposes the
requirements

1 > 0

1− x41 > 0

12
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Taking D = {x ∈ R2| |x1| < 1} and applying Theorem 4.1, shows that
the origin is asymptotically stable.

3. Since V (x) is radially unbounded it is known that the setΩc = {x ∈ R2|V (x) ≤ c},
where c is chosen such that |x1| < 1 ∀x ∈ Ωc, is positively invariant.
The constant c is found as

c = min
|x1|=1

V (x)

= min
|x1|=1

xTPx

= min
|x1|=1

µ
1

2
x21 + x1x2 +

3

2
x22

¶
= min

½
1
2
+ x2 +

3
2
x22, ∀x1 = 0

1
2
− x2 +

3
2
x22, x1 = 0

where it can be seen that

∂

∂x2

µ
1

2
+ x2 +

3

2
x22

¶
= 1 + 3x2

∂

∂x2

µ
1

2
− x2 +

3

2
x22

¶
= −1 + 3x2

which implies that

c = min
|x1|=1

V (x)

= minV (x) , x ∈
½µ
−1,−1

3

¶
,

µ
1,
1

3

¶¾
= min

½
V

µ
−1,−1

3

¶
, V

µ
1,
1

3

¶¾
=

1

3

Taking Ω = Ω 1
3
, E =

n
x ∈ Ω| V̇ (x) = 0

o
= (0, 0) = M which by

Theorem 4.4 concludes that Ω may be taken as a estimate of the region
of attraction. The parameter of the ellipsoid is calculated according to

q1³q
2c
λ1

´2 + q2³q
2c
λ2

´2 = 1
13



TTK4150 Nonlinear Control Systems Solution 2

where

Λ =

·
0.29289 0
0 1.707 1

¸
M =

· −0.923 88 0.382 68
0.382 68 0.923 88

¸
and consequently a = 2.27 and b = 0.39 in the q system. The angle θ
between the systems are found as

θ = arccos (−0.923 88)
= 2.748 9[rad]

= 157.50[deg]

Figure 2 shows a plot of the region of attracting.

Figure 2: A estimate of the region of attraction
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