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Solution 1
The function is given by

V (x) =
(x1 + x2)

2

1 + (x1 + x2)
2 + (x1 − x2)

2

1. Let x1 = 0, then V (x) is given by

V (x) =
x22

1 + x22
+ x22

and it can be seen that V (x) = x22
1+x22

+ x22 → ∞ as |x2| → ∞. Let
x2 = 0, then V (x) is given by

V (x) =
x21

1 + x21
+ x21

and it can be seen that V (x) = x21
1+x21

+ x21 →∞ as |x1|→∞.

2. On the set x1 = x2 the function is given by

V (x) =
4x21

1 + 4x21

and it can be seen that V (x) = 4x21
1+4x21

→ 1 as |x1|→∞.
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Solution 2
1. Given f (x) =

R 1
0

∂
∂x
f (σx)xdσ

xTPf (x) + fT (x)Px = xTP

Z 1

0

∂

∂x
f (σx)xdσ +

µZ 1

0

∂

∂x
f (σx)xdσ

¶T

Px

= xTP

Z 1

0

∂

∂x
f (σx)xdσ +

Z 1

0

xT
µ

∂

∂x
f (σx)

¶T

dσPx

= xT

Ã
P

Z 1

0

∂

∂x
f (σx) dσ +

Z 1

0

µ
∂

∂x
f (σx)

¶T

dσP

!
x

= xT
Z 1

0

Ã
P

∂

∂x
f (σx) +

µ
∂

∂x
f (σx)

¶T

P

!
dσx

and by using P ∂
∂x
f (σx) +

¡
∂
∂x
f (σx)

¢T
P ≤ −I the expression may be

upper bounded by

xTPf (x) + fT (x)Px ≤ xT (−I)x = −xTx = − kxk22

2. Given the function V (x) = fT (x)Pf (x) where P is symmetric and
positive definite. To show that V (x) is positive definite, we need to
show that f (x) = 0 if and only if x = 0. In other words we need to
show that the origin is a unique equilibrium point. Suppose, to the
contrary that there is a p 6= 0 such that f (p) = 0. Then

pTp ≤ − ¡pTPf (p) + fT (p)Pp
¢
= 0

which is a contradiction since p 6= 0 (in order to satisfy the above in-
equality p needs to equal zero). Hence the origin is a unique equilibrium
point. To see that the function is radially unbounded notice that

xTPf (x)

kxk22
=

xTPf (x)

2 kxk22
+

fT (x)Px

2 kxk22
=

1

2 kxk22
¡
xTPf (x) + fT (x)Px

¢
≤ 1

2 kxk22
¡− kxk22¢

= −1
2
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Suppose now that kf (x)k2 ≤ c as kxk2 →∞. Then°°xTPf (x)°°
2

kxk22
≤

°°xT°°
2
kPk2 kf (x)k2
kxk22

≤
°°xT°°

2
kPk2 c

kxk22
=

kPk2 c
kxk2

tends to zero when kxk2 → 0 which is a contradiction to

xTPf (x)

kxk22
≤ −1

2

It follows that the function V (x) is radially unbounded (kf (x)k2 →∞
as kxk2 →∞).

3. We have sown that V (x) is positive definite and radially unbounded.
The time derivative of the function is found as

V̇ (x) = ḟT (x)Pf (x) + fT (x)P ḟ (x)

=

µ
∂

∂x
f (x) ẋ

¶T

Pf (x) + fT (x)P

µ
∂

∂x
f (x) ẋ

¶
=

µ
∂f (x)

∂x
f (x)

¶T

Pf (x) + fT (x)P

µ
∂f (x)

∂x
f (x)

¶
= fT (x)

µ
∂f (x)

∂x

¶T

Pf (x) + fT (x)P

µ
∂f (x)

∂x
f (x)

¶
= fT (x)

Ã
P
∂f (x)

∂x
+

µ
∂f (x)

∂x

¶T

P

!
f (x)

≤ −fT (x) f (x)
= − kf (x)k22

Since origin is a unique equilibrium point and all of the conditions
are globally, the origin is a globally asymptotically stable equilibrium
point.

Solution 3
The system is given by

ẋ1 = x2

ẋ2 = −g (x1) (x1 + x2)
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where it can be seen that the origin is a unique equilibrium point. Using
g (y) ≥ 1 ∀y it can be recognized thatZ x1

0

yg (y) dy ≥
Z x1

0

ydy

=
1

2
x21

Using this, the function V (x) is lover bounded by

V (x) =

Z x1

0

yg (y) dy + x1x2 + x22

≥ 1

2
x21 + x1x2 + x22

=
1

2
xT
·
1 1
1 2

¸
x

which shows that the function is positive definite and radially unbounded.
The time derivative of the function is found as

V̇ (x) = (x1g (x1) + x2) ẋ1 + (x1 + 2x2) ẋ2

= (x1g (x1) + x2)x2 + (x1 + 2x2) (−g (x1) (x1 + x2))

= g (x1)x1x2 + x22 − g (x1)x
2
1 − g (x1)x1x2 − 2g (x1)x1x2 − g (x1) 2x

2
2

= x22 − g (x1)x
2
1 − 2g (x1)x1x2 − g (x1) 2x

2
2

= −g (x1)
¡
x21 + 2x1x2 + 2x

2
2

¢
+ x22

= −g (x1)xT
·
1 1
1 2

¸
x+ x22

= −g (x1)xTQx+ x22

Since Q is positive definite and g (x1) ≥ 1, the time derivative may be upper
bounded by

V̇ (x) ≤ −xTQx+ x22
= − ¡x21 + 2x1x2 + 2x22¢+ x22
= − ¡x21 + 2x1x2 + x22

¢
= − (x1 + x2)

2

and it follows that V̇ (x) is negative semi definite. Using Corollary 4.2 it can
be recognized that the set s is given by

S =
©
x ∈ R2¯̄x1 = −x2ª
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and it can be seen from the system equation that no solution can stay iden-
tical in S other than the trivial solution x = 0, and globally asymptotically
stability of the origin follows.

Solution 4
The system is given by

ẋ1 = x2

ẋ2 = −h1 (x1)− x2 − h2 (h3)

ẋ3 = x2 − x3

1. From the system equations it can be seen that the equilibrium point is
given by

0 = x2

0 = −h1 (x1)− h2 (x3)

0 = x2 − x3

which is equivalent to

x2 = 0

−h1 (x1)− h2 (0) = 0

x3 = 0

since h3 (0) = 0 and h1 (x1) = 0 only when x1 = 0, origin is a unique
equilibrium point.

2. Since V (x) is a sum of nonnegative functions functions (hi (y) ≥ 0 ∀y ≥
0) it is a positive semi definite function. To show that it is positive
definite, we need to show that

V (x) = 0⇒ x = 0

Since yhi (y) > 0 ∀y 6= 0, the integral
R z
0
hi (y) dy vanish if and only if

xi = 0, and it follows that V (x) is positive definite.

3. The time derivative of the function

V (x) =

Z x1

0

h1 (y) dy +
1

2
x22 +

Z x3

0

h2 (y) dy

along the trajectories of the system is found as

V̇ (x) = h1 (x1) ẋ1 + x2ẋ2 + h2 (x3) ẋ3

= h1 (x1)x2 + x2 (−h1 (x1)− x2 − h2 (x3)) + h2 (x3) (x2 − x3)

= −x22 − h2 (x3)x3

= − ¡x22 + h2 (x3)x3
¢
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since h2 (x3)x3 > 0 ∀x3 6= 0 we have that V̇ (x) is negative semi definite.
In order to prove asymptotic stability, we apply Corollary 4.1. From
V̇ (x) it can be seen that the set S is given by

S =
©
x ∈ R3¯̄x2 + x3 = 0

ª
and it can be seen from the system equation that no solution can stay
identical in S other than the trivial solution x = 0, and asymptotic
stability of the origin follows.

4. To show global asymptotically stability the function V (x) need to
be radially unbounded. This is the case if the functions hi satisfiesR z
0
hi (y) dy →∞ as |z|→∞.

Solution 5
If r1 ≥ r2 we have that r1 + r2 ≤ 2r1 which implies that

α (r1 + r2) ≤ α (2r1) ≤ α (2r1) + α (2r2)

and if r2 ≥ r1 we have that r1 + r2 ≤ 2r2 which implies that
α (r1 + r2) ≤ α (2r2) ≤ α (2r1) + α (2r2)

where it has been used that a class K function is strictly increasing in its
argument. Using the two different cases, we can conclude that the inequality
α (r1 + r2) ≤ α (2r1) + α (2r2) is always satisfied.

Solution 6
The system is given by

ẋ1 =
1

L (t)
x2

ẋ2 = − 1

C (t)
x1 − R (t)

L (t)
x2

where L (t), C (t) and R (t) continuously differentiable and bounded from
below and above. The Lyapunov function candidate is given by

V (t, x) =

µ
R (t) +

2L (t)

R (t)C (t)

¶
x21 + 2x1x2 +

2

R (t)
x22

1. The function can be upper bounded by

V (t, x) ≤
µ
k6 +

2k2
k3k5

¶
x21 + 2x1x2 +

2

k5
x22
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and lower bounded by

V (t, x) ≥
µ
k5 +

2k1
k4k4

¶
x21 + 2x1x2 +

2

k6
x22

Using the upper bounds it is clear that V (t, x) is decresent. If we try
to use the lower bounds to show that V (t, x) is positive definite, we
will have to restrict the constants to

2k5
k6
+
4k1
k26k4

− 1 > 0

Instead of making this restriction, we work directly with V (t, x) and
rewrite it as

V (t, x) = xT

" ³
R (t) + 2L(t)

R(t)C(t)

´
1

1 2
R(t)

#
x

≥ xT
·
R (t) 1
1 2

R(t)

¸
x

= xT P̃x

The eigenvalues of P̃ are calculated as

λ1,2 =

½
1
R

¡
1
2
R2 − 1

2

√
R4 + 4 + 1

¢
1
R

¡
1
2
R2 + 1

2

√
R4 + 4 + 1

¢
The smallest eigenvalue is given by

λmin =
1

2

Ãµ
R+

2

R

¶
−
r
R2 +

4

R2

!

=
1

2

µR+ 2

R

¶
−
sµ

R+
2

R

¶2
− 4


where it is easily seen that there are positive constants c1 and c2 such
that

¡
R+ 2

R

¢2−4 ≥ c1 and λmin ≥ c2 for all t, which shows that V (t, x)
is positive definite.

2. The time derivative of V (t, x) is found as

V̇ (t, x) = − 2

C (t)

Ã
1 + Ṙ (t)

µ
L (t)

R2 (t)
− C (t)

2

¶
+

L (t) Ċ (t)

R (t)C (t)
− L̇ (t)

R (t)

!
x21

− 2

L (t)

Ã
1 +

L (t) Ṙ (t)

R2 (t)

!
x22
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Suppose L̇ (t), Ċ (t) and Ṙ (t) satisfy

1 + Ṙ (t)

µ
L (t)

R2 (t)
− C (t)

2

¶
+

L (t) Ċ (t)

R (t)C (t)
− L̇ (t)

R (t)
> c3

1 +
L (t) Ṙ (t)

R2 (t)
> c4

Then
V̇ (t, x) < −2c3

k3
x21 −

2c4
k1

and V̇ (t, x) is negative definite. This implies that the origin is uni-
formly asymptotically stable. Using Theorem 4.10 it is concluded that
the origin is exponentially stable.

Solution 7
The system is given by

ẋ1 = h (t)x2 − g (t)x31
ẋ2 = −h (t)x1 − g (t)x32

where h (t) and g (t) are bounded, continuously differentiable functions and
g (t) ≥ k > 0 ∀t ≥ 0.
1. It can be recognized from the model that x = 0 is a equilibrium point.
The stability properties are analyzed using the Lyapunov function can-
didate

V (x) =
1

2

¡
x21 + x22

¢
The time derivative along the trajectories of the system is found as

V̇ (x) = x1
¡
h (t)x2 − g (t)x31

¢
+ x2

¡−h (t)x1 − g (t)x32
¢

= −g (t)x41 + h (t)x1x2 − h (t)x1x2 − g (t)x42
= −g (t)x41 − g (t)x42
= −g (t) ¡x41 + x42

¢
≤ −k ¡x41 + x42

¢
Hence, the origin is uniformly asymptotically stable.

2. The Lyapunov function does not satisfy Theorem 4.10. The next step
is to use Theorem 4.15, where

A (t) =
∂f(t, x)

∂x

¯̄̄̄
x=0

=

·
0 −h (t)

−h (t) 0

¸
8
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Consider the Lyapunov function candidate

V (x) =
1

2

¡
x21 + x22

¢
The time derivative along the trajectories of the system is found as

V̇ (x) = x1h (t)x2 − x2h (t) x1

= 0

This shows that a solution starting at V (x) = c remains on that set
1
2
(x21 + x22) = c for all t, by which we conclude that the origin of the
linear system ẋ = A (t)x is not exponentially stable. Moreover, using
Theorem 4.15 we conclude that the origin of the system ẋ = f (t, x) is
not exponentially stable.

3. Since V (x) = 1
2
(x21 + x22) is a radially unbounded Lyapunov function

for the system with a time derivative satisfying V̇ (x) ≤ −k (x41 + x42)
globally, we conclude by Theorem 4.9 that the origin is globally uni-
formly asymptotically stable.

4. Since the system is not exponentially stable, it can not be globally
exponentially stable.

Solution 8
The set D in the phase plane is found as

210-1-2

1

0.5

0

-0.5

-1

x1

x2

x1

x2
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where

∂D =


x2 = −1|− 2 ≤ x1 ≤ 0
x2 = 1| 0 ≤ x1 ≤ 2

x2 = x1 − 1|− 2 ≤ x1 ≤ 0
x2 = x1 + 1| 0 ≤ x1 ≤ 2


To estimate the region of attraction, we calculate

c = min
x∈∂D

V (x)

and the estimate is then given by the set©
x ∈ R2¯̄V (x) < c

ª
since this set will be contained in D and all trajectories starting in this set
will remain in this set and since V̇ (x) < 0. Using ∂D the following is found

min
x2=−1|−2≤x1≤0

V (x) = min
x2=−1|−2≤x1≤0

¡
x21 + x22

¢
= min

x2=−1|−2≤x1≤0

¡¡
1 + x22

¢¢
= 1

and

min
x2=1|0≤x1≤2

V (x) = min
x2=1|0≤x1≤2

¡
x21 + x22

¢
= min

x2=1|0≤x1≤2

¡
x21 + 1

¢
= 1

and

min
x2=x1−1|−2≤x1≤0

V (x) = min
x2=x1−1|−2≤x1≤0

¡
x21 + x22

¢
= min

−2≤x1≤0
¡
x21 + (x1 − 1)2

¢
= min

−2≤x1≤0
¡
2x21 − 2x1 + 1

¢
=

1

2

and

min
x2=x1+1|0≤x1≤2

V (x) = min
x2=x1+1|0≤x1≤2

¡
x21 + x22

¢
= min

0≤x1≤2
¡
x21 + (x1 + 1)

2¢
= min

0≤x1≤2
¡
2x21 + 2x1 + 1

¢
=

1

2
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which gives c = 1
2
. A estimate of the region of attraction is then given by©

x ∈ R2|x21 + x22 <
1
2

ª
.
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