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1 Introduction

The magnetic levitation experiment, or for short "maglev", consists of an electro-
magnet, a ball and a post encased in a rectangular enclosure as shown in Figure
1. One electromagnet pole faces a black post upon which a 2.54 [cm] steel ball

Figure 1: The maglev experiment

rests. The ball elevation from the post is measured using a sensor embedded in
the post. The post is designed such that with the ball at rest on its surface, the
top of the ball is 12.5 [mm] from the face of the electromagnet (not 14 [mm] as
stated in the manual [1]). The purpose of the experiment is to analyse and design
controllers that levitates the ball from the post according to a desired set point or
a desired trajectory. The post also provide repeatable initial condition for control
system performance evaluation. For further description and understanding of the
system consult with [1] which is available in the laboratory.
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2 Mathematical model

In this section we will derive a mathematical model for the system. First the
mechanical dynamics describing the ball is derived, then a model describing the
current in the electromagnet is derived. Before deriving the dynamics we define
the variables used in this section.

Definition 2.1

x1 = x

x2 = ẋ

x3 = i

x =
£
x1 x2 x3

¤T
u = E

Be careful not to confuse the state vector, x, with the position variable, x. In
the following all vectors will be expressed in bold face.

2.1 Mechanical model

The forces experienced by the ball are a force due to gravity and a force due to
the electromagnet, as illustrated in Figure 2. By using Newton’s second law of

Figure 2: Mechanical system
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motion, we may write
mẍ =W − FE (1)

where m is the mass of the ball, x is the position at the top of the ball relative
to the electromagnet, W is the weight of the ball and FE is the force on the ball
due to the electromagnet. The forces are given by

W = mg (2)

FE = Ki
i2

(x+ d)2
(3)

where g is the acceleration due to gravity on the surface of the Earth, i is the
current running through the coil in the electromagnet, Ki is the magnetic force
constant for the electromagnet/ball pair and d is a constant describing the "point
of attack" on the ball due to the electromagnetic force (notice that FE given here
is different from the one given in [1]). By using (2) and (3) we may rewrite (1) as

mẍ = W − FE

= mg −Ki
i2

(x+ d)2

⇔ ẍ = g − Ki

m

i2

(x+ d)2
(4)

2.2 Electrical model

The coil used in the electromagnet is modeled as a inductance and a resistance
in series, assuming constant inductance. Further a resistance is coupled in series
with the coil (this resistance is used to measure the current through the coil).
Figure 3 shows the electrical system. The current loop may be analyzed using
Kirchoff’s second rule

E = Rli+ L
di

dt
+Rsi

where Rl is the resistance in the coil, L is the inductance in the coil and Rs is
the series resistance. This equation may be rewritten as

L
di

dt
= E −Rli−Rsi

= − (Rl +Rs) i+E

⇔ di

dt
= −Rl +Rs

L
i+

1

L
E (5)

2.3 The overall model

When describing and working with the system, its preferable to have formulated
it in state space. The state space model will describe both the ball and the
current dynamics.
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Figure 3: Electrical system

Exercise 1
a) Derive the state space model ẋ = f(x, u).

b) Derive the equilibrium point (x∗, u∗) and show that

x∗1 =

s
Ki

mg
x∗3 − d (6)

=

s
Ki

mg

1

Rl +Rs
u∗ − d (7)

x∗2 = 0 (8)

x∗3 =

r
mg

Ki
(x∗1 + d) (9)

=
1

Rl +Rs
u∗ (10)

What kind of information can be drawn given a equilibrium point?

2.4 Stability

In the previous section we formulated a state space representation and derived
the equilibrium point of the system. We will now analyse the stability of the
possible equilibrium points in the open loop system (when u is constant).

Exercise 2
a) Let A denote the Jacobian at the equilibrium point and show that it is
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given by

A =

 0 1 0
a21 0 −a23
0 0 −a33

 (11)

where

a21 =
2g

x∗1 + d
(12)

a23 =

r
gKi

m

2

(x∗1 + d)
(13)

a33 =
Rl +Rs

L
(14)

and aij ≥ 0 ∀ {i, j |x∗1 ≥ 0}
b) Investigate the stability of the open loop system and determine if there

are any practical feasible stable equilibrium points (remember that x1 in
practice is limited to the set x1 ∈ [0, 12.5 · 10−3]).
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3 Control based on linear methods

In [1] the distributor of the "maglev" experiment suggest a control law for the
system based on linear theory. The closed loop system is designed in two steps
using pole placement. First a control law for position (levitation) is designed,
then a control law for the current loop is designed. When designing the position
control loop, the current is used as control input assuming that the closed loop
current dynamics (the loop is closed with a control law) is infinite fast relative
to the position loop. In this section we will analyse this approach using theory,
simulation and finally testing the control law on the actual system. First we
define the variables used in this section.

Definition 3.1

ū1 = u1 − u∗1
x̄1 = x1 − x∗1
x̄2 = x2 − x∗2
x̄3 = x3 − x∗3
x̄3d = x3 − x3d

x̄4 =

Z
x̄1dt

x̄5 =

Z
x̄3dt

x̄6 =

Z Z
x̄1dt

x̄1 =
£
x̄1 x̄2 x̄4

¤T
x̄2 =

£
x̄3 x̄5

¤T
x̄ =

£
x̄1 x̄2 x̄3 x̄4 x̄5 x̄6

¤T
where u1 is the current regarded as control input in the position control loop and
u∗1 is the magnitude of the current in equilibrium.

3.1 Position control loop

When considering the position control loop, the current is regarded as input
and the current dynamics is ignored. In the following a state feedback setpoint
control law will be analyzed (the control loop has a constant reference). Since we
are using linear control theory, the model for the position dynamics need to be
linearized. The state space model for the position system is given by·

ẋ1
ẋ2

¸
=

"
x2

g − Ki

m

u21
(x1+d)

2

#
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Linearizing this model about a desired equilibrium results in (consult Section 2.4)·
˙̄x1
˙̄x2

¸
=

·
0 1
a21 0

¸ ·
x̄1
x̄2

¸
+

·
0
−a23

¸
ū1

In order to achieve integral effect in the closed loop, we extend the state space
with the state x̄4. The extended linear system may now be written

˙̄x1 =

 0 1 0
a21 0 0
1 0 0

 x̄1 +
 0
−a23
0

 ū1
= A1x̄1 +B1ū1 (15)

A state feedback control law is then given by

ū1 = −K1x̄1

= −k1x̄1 − k2x̄2 − k4x̄4

= −k1x̄1 − k2 ˙̄x1 − k4

Z
x̄1dt (16)

and it can be seen from (16) that the control law represents a PID for the position.

Remark 3.1
In implementations (simulation and real system) the contribution from the deriv-
ative element is reduced at high frequencies. This is to avoid an infinite control
input for step changes in the reference and large control input for high frequency
disturbances. The derivative element is approximated by

k2s

1 + Td
=

k2
Td
s

1
Td
s+ 1

=
k2ωmaxs

ωmax + s

where ωmax represents the maximum frequency up to which the derivative is
active. Below this frequency the approximation acts as a derivative and above
this frequency the derivative acts a gain. It can be recognized that ωmax =
2πfmax, where the frequency is chosen as fmax = 200[Hz]. Since this frequency is
high relative to the system dynamics, this approximation will be ignored in our
theoretical analyses of the system.

3.2 Current control loop

In the following a state feedback setpoint control law for the current loop will be
designed. Since the current dynamics is linear no linearization is required. How-
ever, we need to shift the equilibrium to the origin in order to apply our methods
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for analyzing stability properties of the equilibrium. The current dynamics is
given by

ẋ3 = −Rl +Rs

L
x3 +

1

L
u

= −a33x3 + bu

Using Definition 3.1 the equilibrium is shifted to origin according to

˙̄x3 = ẋ3 − ẋ∗3
= ẋ3

= −a33x3 + bu

= −a33 (x̄3 + x∗3) + bu

= −a33x̄3 + bu− a33x
∗
3

= −a33x̄3 + b
³
u− a33

b
x∗3
´

= −a33x̄3 + b (u− u∗)

= −a33x̄3 + bū

where u∗ = a33
b
x∗3. As in the previous section we desire integral effect in the closed

loop. This is achieved by extending the state space with the variable x̄5. The
extended linear system may now be written

˙̄x2 =

· −a33 0
1 0

¸
x̄2 +

·
b
0

¸
ū

= A2x̄2 +B2ū (17)

The state feedback control law is then given by

ū = −K2x̄2

= −k3x̄3 − k5x̄5

= −k3x̄3 − k5

Z
x̄3dt (18)

and it can be seen from (18) that the control law represents a PI for the current.

3.3 The overall control loop

We will now analyse the stability of the proposed control law for the actual
nonlinear system. Notice that even though we have designed two control laws,
the practical system "sees" only one (the one commanding the input u). The
position loop requires a specified current demanded by its control law. This is
not in accordance with our previous analysis since the desired current is fed to the
current loop as a non constant reference in the actual system, not as a constant
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reference as assumed in the design of the current control law. This motivates the
introduction of a new variable x3d which denotes the desired current from the
position loop that is feed as a reference to the current loop and x̄3d = x3 − x3d
which describes the deviation between the actual current the desired current from
the position control law.

Exercise 3
a) Draw a block diagram containing the blocks "Position Control Law", "Cur-
rent Control Law" and "Plant", and the signals x1, x∗1, −x̄1, ū1, u∗1, u1, x3d,
x3, −x̄3d, ū, u∗ and u. What kind of "control structure" does u∗1 and u∗

represent.

b) Show that
x̄3d = x̄3 +K1x̄1

and that the current control law in the actual system is given by

ū = −k3K1x̄1 −K2x̄2 − k1k5x̄4 − k2k5x̄1 − k4k5x̄6

c) Show that the actual closed loop system may be written as

˙̄x =



x̄2

g − Ki(x̄3+x∗3)
2

m(x̄1+x∗1+d)
2

−a33x̄3 + b (−k3K1x̄1 −K2x̄2 − k1k5x̄4 − k2k5x̄1 − k4k5x̄6)
x̄1
x̄3
x̄4


d) Let Ā denote the Jacobian calculated at the origin. Calculate Ā.

e) Get familiar with the m-file initMaglev1.m and calculate the control gains
for x∗1 = 7[mm]. Evaluate the stability of the equilibrium points x∗1 =
{3, 6.5, 7, 7.5, 11} [mm] using the control gains found for x∗1 = 7[mm].

f) Get familiar with the simulink file simMaglev1.mdl. Simulate the system
using a square wave generator with frequency 0.125[Hz] and amplitudes
7±4 and 7±0.5. Plot the current versus its reference and the ball position
versus its reference.

g) Get familiar with the simulink file runMaglev1.mdl and Appendix A and
repeat the previous exercise in the laboratory.

h) Comment on the result from theory, simulation and laboratory.
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4 Phase plane

In this section we will analyse our system using the phase plane method. Since
phase plane analysis apply to second-order systems, the closed loop current dy-
namics is ignored in the following. Further, we are not able to analyse the PID
control law derived in Section 3.1 since this introduced a new state turning the
position system into a third order system. However, we will be able to analyse
the PD part of the control law. The variables used in this section is given in
Definition 4.1.

Definition 4.1

x1 = x

x2 = ẋ

x =
£
x1 x2

¤T
u1 = i

Exercise 4
a) Justify the fact that we are ignoring the closed loop current dynamics.

b) Draw a phase portrait of the open loop nonlinear system at equilibrium
x∗1 = 7[mm] and comment on the qualitative behavior of the equilibrium.

c) Calculate the open loop eigenvalues at the equilibrium x∗1 = 7[mm] and
comment.

d) Let the equilibrium be given by x∗1 = 7[mm]. Draw a phase portrait of the
closed loop linearized system using the PD part of the PID control law from
Section 3.1. Comment on the qualitative behavior of the equilibrium.

e) Calculate the eigenvalues at the equilibrium x∗1 = 7[mm] of the closed loop
linearized system and comment.
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5 The describing function method

In this section we will investigate the effect of a backlash-element in the feedback
from the position measurement. This implies that the value of the measurement
feed to the control law is dependent on wether or not the position is increasing
or decreasing. This effect is not critical in this laboratory setup, but appears
quite often in mechanical systems. Since our laboratory setup is not bothered
with this effect, a backlash-element is inserted in the simulink diagram in the
laboratory. We will see that the backlash-element introduces limit cycles in the
system. These limit cycles will be analyzed with theory, simulations and testing
on the laboratory installation.
The system to be analyzed is given by Figure 7.1 in [2] and it can be recognized

that in our case we have r = 0, u = −ψ (x̄1) and y = x̄1. In all of our analysis we
will use x∗1 = 7[mm] and let ∆ denote the deadband width. Further, we assume
that the current control loop in infinite fast relative to the position control loop.
This implies that we are only considering position dynamics in theoretical analysis
and simulations, taking i as the system input. The position loop is closed with
the previously derived state feedback control law (the PID derived in Section 3.1)

Exercise 5
a) Calculate G (s) = gr (s) gp (s) where gr (s) is the control law and gp (s) is
the linearized model. Show, by using Nyquist, that the closed loop system
is stable when ignoring the backlash-element.

b) Simulate the linearized system and the nonlinear system, when the backlash-
element is included, with ∆ = 0.1 · 10−3, ∆ = 0.3 · 10−3 and ∆ = 0.5 · 10−3.

c) Conduct tests in the laboratory, when the backlash-element is included,
with ∆ = 0.1 · 10−3, ∆ = 0.3 · 10−3 and ∆ = 0.5 · 10−3.

d) Use the theory of describing functions to predict whether or not there is
a limit cycle in the system, and estimate the amplitude and frequency of
possible limit cycles.
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6 Input-output linearization

In this section we will design a control law using input output linearization. In
this method the closed loop is designed in two steps. First the control input is
used to linearize the system and leaving a fictive input, then the fictive input
is used to control the linear system (with for instance pole placement or other
linear methods). After having theoretically designed the control law, we will use
simulations and laboratory testing to confirm our results. Before designing the
control law we define the variables used in this section.

Definition 6.1

x1 = x

x2 = ẋ

x3 = i

u = E

y = x1

x =
£
x1 x2 x3

¤T
6.1 Linearization

The first step in the design consist of linearizing the model using the control
input.

Exercise 6
a) Using Definition 6.1 and the notation from [2] show that

f(x) =

 x2

g − Ki

m

x23
(x1+d)

2

−Rl+Rs

L
x3


g(x) =

 0
0
1
L


h(x) = x1

b) Show that the system has relative degree ρ = 3 in {x ∈ R3 |x3 6= 0}.
c) Express

...
y in terms of Lie Derivative and show that

u = −Lm(x1 + d)2

2Kix3
v +

Lx3x2
(x1 + d)

+ (Rl +Rs)x3

in order to satisfy
...
y = v.
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d) Explain why we have no zero dynamics. Using the notation from [2] show
the following

Ac =

 0 1 0
0 0 1
0 0 0


Bc =

 00
1


Cc =

 0 1 0
0 0 1
0 0 0


What is this state space representation called?

6.2 Control

This section can be regarded as the control part of the method, a control law for
the remaining linear system is designed. We have already created a part of the
overall control by using u to linearize the system. What remains is completing
the control law by specifying the fictive linear control input v.

Exercise 7
a) Using the state vector ζ =

£
ξT−ξ∗T R

ζ1dt
¤T
, where ζ1 = y− y∗ and y∗

is a constant reference, show that the state space may be written

ζ̇ =


0 1 0 0
0 0 1 0
0 0 0 0
1 0 0 0

 ζ +

0
0
1
0

 v
= Aζ +Bv

b) Derive a expression for the state feedback control law v = −Kζ in terms
of y1 and y∗1. What kind of control law is this?

c) Design K using pole placement

d) Simulate the system with a square wave generator with frequency 0.125 Hz
that oscillates around x∗1 = 7[mm]. How large amplitudes can you achieve?

e) Test the control law in the laboratory under the same conditions as above.
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