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Abstract
We consider nanostructures that are constructed from superconducting,
ferromagnetic, and spin–orbit-coupled materials. These structures are
analyzed both theoretically and numerically, under both equilibrium
and nonequilibrium conditions. Special emphasis is placed on how
one can exert control over the superconducting properties of these
systems. For instance, this includes developing new ways to toggle
superconductivity on and off via electric or magnetic input signals, and
new ways to shape the charge and spin supercurrents flowing through
these systems. The thesis itself provides an introduction to how we
performed our calculations, as well as a summary of some interesting
research results. The main body of research consists of 15 enclosed
publications, where we go into more detail on each specific project.
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Preface
This document is submitted as a doctoral thesis in theoretical con-
densed matter physics at the Center for Quantum Spintronics (QuSpin),
Norwegian University of Science and Technology (ntnu). The research
presented herein was conducted as part of a 3.5-year doctoral program,
which included 1 year of courses and teaching duties. The doctoral
research has been supervised by Prof. Jacob Linder, and builds directly
on a previous 1-year master project [1, 2]. This research was funded
by the Research Council of Norway, under grants 240806 and 262633.

In addition to the thesis and research papers, a significant part of the
doctoral work has been to develop a general numerical solver for the
Usadel equation, which is available at github.com/jabirali/geneus. The
thesis itself was written in lualatex, using a custom-made template
available at github.com/jabirali/ThesisTemplate. Most illustrations and
plots were created in Adobe Illustrator and Gnuplot, respectively.
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Notation
Most notation in this thesis follows the usual conventions in condensed
matter physics. For instance, real and complex scalars are written in
italics, geometric vectors and tensors are written in bold italics, while
chemical elements and physical units are written in an upright font.
Matrix transposition is denoted with a superscriptt, complex conjuga-
tion with an asterisk∗, and Hermitian conjugation with a daggerB. In
the thesis itself, we use ≔ for definitions, ∼ for proportionalities, and ≈
for approximations. In the papers, we sometimes use ≡ for definitions
and identities, ∼ for orders of magnitude, and ≃ or ≅ for approxima-
tions. Differentiation operators are abbreviated to ∂𝑥 ≔ ∂/∂𝑥, while
commutators and anticommutators are denoted [𝐴, 𝐵] ≔ 𝐴𝐵 − 𝐵𝐴 and
{𝐴, 𝐵} ≔ 𝐴𝐵 + 𝐵𝐴. Finally, the expectation value of Ω is written ⟨Ω⟩.

Geometric vectors and tensors are described using the Cartesian
unit vectors 𝒆𝑥, 𝒆𝑦, 𝒆𝑧 ∈ ℝ3, and the associated derivative operator is
∇ ≔ ∂𝑥𝒆𝑥 + ∂𝑦𝒆𝑦 + ∂𝑧𝒆𝑧. Rank-2 spinors are described using the Pauli
matrices 𝜎0, 𝜎1, 𝜎2, 𝜎3 ∈ ℂ2×2. Spin-dependent phenomena can often be
analyzed either in terms of vectors or spinors, and these representations
are connected via the Pauli vector 𝝈 ≔ 𝜎1𝒆𝑥 + 𝜎2𝒆𝑦 + 𝜎3𝒆𝑧. Notably, an
inner product 𝜔 = 𝒘 ⋅ 𝝈 projects a vector onto the spinor basis, while
a trace 𝒘 = Tr(𝜔𝝈)/2 projects it back onto the vector basis. To avoid
notational clutter, we denote these spinors in the same way as scalars.

The interactions between electrons and holes in a superconductor
can also be modelled using spinors. This is referred to as having a
structure inNambu space, and is described by Pauli matrices ̂𝜏0, ̂𝜏1, ̂𝜏2, ̂𝜏3
with the same definitions as the basis 𝜎𝑛 that spans spin space. We use
hats to denote that an object has a Nambu structure. The propagators
used tomodel superconducting proximity systems are in general rank-2
bispinors with both Nambu and spin structures, which can be described
using the 16 basis matrices ̂𝜏𝑛⊗𝜎𝑚 ∈ ℂ4×4 that arise from the Kronecker
products of Pauli matrices. We use the convention that sums and
products between incompatible spinors should be resolved by taking
Kronecker products with appropriate identity elements. Specifically,
the product ̂𝜏𝑛𝜎𝑚 ↦ ( ̂𝜏𝑛 ⊗ 𝜎0)( ̂𝜏0 ⊗ 𝜎𝑚) = ̂𝜏𝑛 ⊗ 𝜎𝑚, while the sum
𝑎 + 𝑏𝜎1 + 𝑐 ̂𝜏2 ↦ 𝑎( ̂𝜏0 ⊗ 𝜎0) + 𝑏( ̂𝜏0 ⊗ 𝜎1) + 𝑐( ̂𝜏2 ⊗ 𝜎0). It is also useful
to define 𝝈̂ ≔ diag(𝝈, 𝝈∗) ∈ ℂ3×4×4, which takes the role of the Pauli
vector for spin-dependent processes involving both electrons and holes.
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Units
In this thesis and the enclosed papers, we use rationalized natural units.
These units are defined by normalizing fundamental physical constants
to one: the speed of light 𝑐, Planck’s reduced constant ℏ, Boltzmann’s
constant 𝑘b, and the rationalized gravitational constant 1/4𝜋𝐺. Since
the vacuum permittivity 𝜀0 and permeability 𝜇0 are related to the speed
of light via 𝑐 = 1/√𝜀0𝜇0, it is also possible to set 𝜀0 and 𝜇0 to one. Thus,
the unit system itself can be summarized by the following equation:

𝑐 = 𝜀0 = 𝜇0 = ℏ = 𝑘b = 1/4𝜋𝐺 = 1.

Natural units make derivations in theoretical physics much simpler
than e.g. si units, and can prevent the unit system from obscuring the
natural relationships between physical quantities. For instance, 𝑘b = 1
makes it slightly clearer that temperature is a measure of energy, how
entropy can be measured in bits, and that the ideal gas constant is just
an artifact of an unnatural unit system. If required for clarity, these
constants are written explicitly even though we use natural units; for
example, explicit factors ℏ/2 can be useful when discussing spins. It is
also worth mentioning that we take 𝑒 < 0 to mean the electron charge.

The units above are convenient for theoretical derivations, and can
also be useful for describing e.g. the conditions in the early universe.
However, the magnitudes of the base units are impractical for describ-
ing low-energy phenomena in condensed matter physics. For instance,
the energy unit √ℏ𝑐5/4𝜋𝐺 ≈ 1030 meV is extremely large compared to
the order parameter Δ ≈ 0.1–10meV of a conventional superconductor,
while the length unit √4𝜋𝐺ℏ/𝑐3 ≈ 10−25 nm is correspondingly small
compared to the superconducting coherence length 𝜉 ≈ 10–1000 nm.
When discussing physical observables, we therefore tend to restore an
appropriate unit system by comparing quantities with similar physical
interpretations. For example, in superconductors, we compare energies
to the order parameter Δ, temperatures to the critical temperature 𝑇c,
and lengths to the coherence length 𝜉. These material-dependent units
make it easy to provide material-independent theoretical predictions,
and the results can easily be translated to e.g. si units by looking up
values for the characteristic scales Δ, 𝑇c, 𝜉 for a given superconductor.
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Errata
After publication, some errors have been discovered in the enclosed
papers. Luckily, none of these affect any published physical predictions.
Below, we list the mistakes that have been discovered so far.

• In equation (a17) of paper ii, the identities𝑁𝛾 = 𝛾 ̃𝑁 and ̃𝑁 ̃𝛾 = ̃𝛾𝑁
are correct, but the similar-looking 𝑁 ̃𝛾 = ̃𝛾 ̃𝑁 and ̃𝑁𝛾 = 𝛾𝑁 are
not. These erroneous identities are not used in the derivations.

• In equations (b16) and (b18) of paper ii, two 𝑓 k
↑↓ should be re-

placed by 𝑓 k
↓↑. However, the following equation (b19) is correct.

• In equations (1–2) and (5–6) of paper iv, there is a factor 1/2
missing in front of each ∇2. These equations are only used to
qualitatively discuss the spin–orbit-induced spin-valve effect,
and are not used for the numerical fits presented afterwards.

• In equation (4) of paper ix, an imaginary unit 𝑖 is missing in
front of 𝛼sf and 𝛼so. However, these terms had been correctly
implemented in the numerical code, and this 𝑖 does not affect
the analytical argument for conservation of spin supercurrents.

• In figure 4 of paper x, the vertical axis should be labeled 𝐽 /𝐽c
and not 𝐽 (𝑧)/𝐽c. As the horizontal axis correctly indicates, the
charge current is plotted as function of phase difference, and is
of course conserved as function of position in a 1d system.

In some cases, what may appear to be mistakes are rather just cases of
inconsistent notation between the papers, which have been written at
different stages in the learning process and with different coauthors.
For instance, depending on the paper, the matrix current has been
defined as ̌𝐼 = 𝐷𝑁f ̌𝑔∇̃ ̌𝑔 , ̌𝐼 = +𝐷 ̌𝑔∇̃ ̌𝑔 , ̌𝐼 = −𝐷 ̌𝑔∇̃ ̌𝑔 , and ̌𝐼 = ̌𝑔∇̃ ̌𝑔 .
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1Introduction
1.1 Background and motivation

Roughly a century has passed since the discovery of superconductivity.
The relevantmaterials are oftenmetallic at room temperature,¹ and only
transition into their superconducting state at cryogenic temperatures.
Macroscopically, this state is characterized by two properties [3, 4].
The first is a complete lack of electrical resistance, as discovered by
Onnes in 1911. The second is an imperviousness to magnetic fields,
as discovered by Meissner and Ochsenfeld in 1933. However, a full
microscopic understanding of superconductivitywas not achieved until
the seminal work by Bardeen, Cooper, and Schrieffer in 1957 [5, 6].
The so-called bcs theory of superconductivity won them a Nobel prize,
and is by now referred to as conventional superconductivity—a category
that covers most elemental superconductors like Nb and Al.

Since then, research and applications related to superconductivity
has exploded. One long-standing goal has been to engineer materials
that remain superconducting at higher and higher temperatures, with
the hope of one day achieving room-temperature superconductivity.
If this technology could be realized and mass-produced, it could help
combat the single dominant source of energy waste: resistive heating.
Initially, progress was slow, with the critical-temperature record only
increasing from 4K (Hg) to 23 K (Nb3Ge) during the first 75 years
of research [3]. However, after the discovery of superconductivity in
cuprates [3, 7], the record skyrocketed—and in less than a decade, it had
already reached its peak value of 133 K (HgBa2Ca2Cu3O8) [8, 9]. This
remains the record at ambient pressure [9], although the mechanism
behind its unconventional superconductivity is still controversial [10].

Less than a year ago, some progress was made with the discovery
of superconductivity in twisted bilayer graphene [11]. Although its
critical temperature was below 2K, its phase diagram and coupling
strength was reminiscent of the cuprates. Since it is also a simpler
system to analyze theoretically than the cuprates, this finding has
already spurred a lot of theoretical interest, and has raised hopes for
understanding unconventional superconductivity in the near future.

1. High-temperature superconductors such as cuprates are notable exceptions.
They are usually bad metals in their non-superconducting state.
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Another noteworthy result was the discovery of superconductivity in
high-pressure hydrides [9, 12, 13]. This technically raised the critical-
temperature record to first 203 K (SH3) and recently 250 K (LaH10).
In contrast to cuprates, hydrides can be understood as conventional
superconductors. While interesting for fundamental-physics reasons,
the hydrides are still quite far from realizing superconductivity at
ambient conditions. They require pressures above 150GPa (1.5 million
atmospheres) to operate at high temperatures, which is likely more
challenging for applications than liquid-nitrogen cryogenic systems.

While superconductivity at ambient conditions remains a dream for
now, this has not stopped the known superconductors from finding
applications. One example is superconducting electromagnets, where
a superconducting coil is used to produce an intense magnetic field in
an energy-efficient manner. These are routinely used for mri machines
at hospitals, nmr and ms analyses in chemistry, plasma confinement
in fusion reactors, and beam control in particle accelerators [14]. The
current world record for superconducting magnets is a field strength
of 32 T [15]. For comparison, this is a million times the field strength
of the Earth, a thousand times the field strength of a typical fridge
magnet, and about twice the field strength required to diamagnetically
levitate a small animal in Earth’s gravitational field [16, 17].

Superconductors have also found applications in high-precision
sensors. The perhaps best-known example is the squid, which is one
of the most accurate ways to measure magnetic fields [3, 4]. In addition
to being used routinely in a lab setting, these devices have been used
in space missions to measure fields down to the attotesla scale by
averaging measurements over a few days [18]. More recently, the
squid has been miniaturized to the nano-squid, which is sufficiently
sensitive to measure single-electron spins [19, 20]. Other examples
include cameras that can accurately detect the color of single photons
and thermometers with nanosecond time resolution [21–23].

Another application area for superconductors that is expected to
become important in the near future is high-performance computing.
So far, semiconductor-based computing has been extremely successful.
In the period 1975–2009, the average speed and energy efficiency of
semiconductor-based computers doubled roughly every 1.5 years [24].
This resulted in an exponential increase in both quantities, which since
wwii has resulted in a performance increase of more than 1012 [24].
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However, this development cannot continue for much longer. One
reason is that the newest generation of semiconductor devices already
have a minimum feature size of 7 nm; this corresponds to roughly
one transistor per 100×100 nm2, and is rapidly approaching the atomic
scale. At the same time as the development of semiconductor technol-
ogy is getting closer to its limits, there is an ever-increasing demand
for energy-efficient computation. Worldwide, data centers already con-
sume more power than the entire United Kingdom, and their power
consumption keeps doubling roughly every 4 years [25]. Even at
room temperature, the energy efficiency of classical computers could
in principle be improved by roughly a factor 105 before reaching the
fundamental Landauer limit, but it has become increasingly clear that
semiconductor technology cannot take us all the way there [26].

There is therefore interest in identifying a suitable technological heir,
and superconductor-based computing is a popular candidate. First of
all, the technology has already been proven to be realistic: a 20GHz
prototype for a superconducting cpu was realized nearly two decades
ago [27]. Furthermore, superconducting computers are projected to
be roughly 103 times more energy-efficient than conventional com-
puters [28]. Moreover, the technology can in principle be operated
at near-terahertz frequencies, resulting in a potential speed benefit
as well [28]. Finally, for data centers in particular, the lack of room-
temperature superconductivity is likely not a huge barrier to adoption
of the technology, since they already require sophisticated cooling
systems for today’s solutions. For these reasons, e.g. the United States
government views superconductor technology as the most promising
successor to semiconductor technology [29], and China has recently in-
vested heavily in the development of superconducting computers [30].

In this thesis, the focus is on superconducting spintronics, where
superconducting and magnetic elements are combined to produce
new device functionality [31–36]. Macroscopically, superconductivity
and magnetism appear to be antagonistic: weak magnetic fields are
completely expelled by superconductors, while strong magnetic fields
extinguish all traces of superconductivity. However, we will see that at
the nanoscale, new forms of superconductivity emerge from their inter-
actions, with different properties from either bulk material. In addition
to being interesting from a fundamental-physics perspective, this may
have applications in both classical and quantum computing [37].
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1.2 Fundamental concepts

Conventional bcs superconductivity arises due to a phonon-mediated
attraction between electrons [3, 4]. This attractive force creates an
instability in the Fermi liquid of an otherwise normal metal [3, 5]:
electrons of opposite spins and momenta form bound pairs, and these
Cooper pairs condense into a coherent state [6]. We describe this macro-
scopic quantum state via a complex order parameter Δ = |Δ|𝑒𝑖𝜒 [6].
The condensation energy associated with Cooper pairing is |Δ|, mean-
ing that an energy 2|Δ| is required to break a Cooper pair into two
excited electrons. This creates a gap |Δ| in the density of states around
the Fermi level, and directly affects electron tunneling into supercon-
ductors [38]. The critical temperature 𝑇c is by definition the highest
temperature at which a finite gap |Δ| > 0 exists. As for the condensate
phase 𝜒, it is directly related to any charge supercurrents 𝐽e ∼ ∇𝜒.

The attractive electron–electron interaction can be understood via
a simple classical picture [39]. We can think of a metal as a positive
ionic lattice inhabited by negative electrons. When an electron moves
through the lattice, it attracts nearby ions via the Coulomb interaction,
thus distorting the lattice. The ions can stay in this distorted state for
a long time after the electron has passed. Thus, the electron leaves
behind a positively charged wake, which can attract a new electron
afterwards. In a way, the positive lattice overscreens the negative
charge of the first electron, and this attracts the second electron [40].
The second electron can lower its energy by following the trail left
by the first one, and is then protected against scattering by an energy
barrier. Since the origin of electrical resistance is precisely electron
scattering, this energy barrier opens for the possibility of dissipation-
less transport. The optimal Cooper pair consists of two electrons
moving in opposite directions, since each electron can then follow the
other’s trail. This picture also explains why this is a low-temperature
phenomenon: at high temperatures the thermal vibrations of the lattice
would overshadow the electron-induced distortions. The above is a sat-
isfying explanation for the mechanism behind the attraction; but being
a classical explanation, it does not highlight the importance of phase
coherence. Quantum-mechanically, the lattice distortion is interpreted
as a phonon, and the electron pairs form a coherent many-body state.
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Figure 1.1: Cartoon picture of conventional superconductivity. The
top panel depicts an electron (blue) moving through the ionic lattice
of a metal (grey), which leaves behind a positively charged lattice
distortion (orange). The bottom panel depicts a Cooper pair of two
electrons following each other’s lattice distortions. By following
these positively charged trails, the electrons lower their energies
and enter a bound state, which protects them against scattering.
The quantum-mechanical treatment shows that all these individual
Cooper pairs condense into a macroscopic quantum state.
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Cooper pairs are born in superconductors, but are not necessarily
confined to their birthplace. When a superconductor (s) is brought
into contact with a normal metal (n), Cooper pairs can migrate back
and forth between them. This is known as the proximity effect, and
simultaneously induces superconductivity in n and diminishes it in s.
Microscopically, the proximity effect can be understood as being medi-
ated by Andreev reflections [41]. Basically, when a low-energy electron
in n reaches the s/n interface, it can pick up an electron of opposite
spin, and enter s in the form of a Cooper pair² This process leaves
behind a hole, which is retroreflected back into n.³ Conversely, when
a hole in n reaches the s/n interface, it can annihilate one electron in a
Cooper pair. The other electron of the pair is then ejected from s and
into n. Thus, electrons and holes in n can be converted into each other
if they simultaneously create or annihilate Cooper pairs inside s.

One consequence of these interactions is the formation of Andreev
bound states. An electron at the s/n interface can: (i) be converted into
a hole; (ii) move along a path that leads back to the interface; (iii) be
converted back into an electron; (iv) follow the time-reversed path
back to the starting point. This standing wave describes a quasiparticle
bound state in n, and is directly induced by the condensate in s. Each
electron–hole conversion creates or annihilates a Cooper pair in s,
which makes s sensitive to the properties of n. Each conversion is also
a phase-coherent process, so the bound states in n involve electrons
and holes with phases correlated to the condensate in s. Andreev pairs
in n in many ways behave like Cooper pairs that have leaked out of s,
which is a common and intuitive way to discuss proximity effects.

Another important process is the Josephson effect [42]. In Joseph-
son’s original treatment [43], it was shown that Cooper pairs could
tunnel between the superconductors in an s/i/s junction, where i is
an insulator. This causes a tunneling supercurrent 𝐽e ∼ sin(𝛿𝜒) to
manifest, which depends on the phase difference 𝛿𝜒 between the s’es.
Cooper pairs can also flow through s/n/s structures, in which case the
effect may be understood via Andreev reflections. The microscopic
picture is that a hole in n can annihilate a Cooper pair at the interface
to the first s, and the resulting electron can move to the second s. It
may then create a new Cooper pair, and be reflected as a hole again.

2. Low energy refers to an excitation energy |𝜀| below the condensation energy |Δ|.
These particles cannot enter a superconductor without forming a Cooper pair.

3. Retroreflectionmeans that the incoming electron and outgoing hole have opposite
momenta. In contrast, specular reflection would conserve transverse momentum.
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Figure 1.2: Illustration of (a) Andreev reflection, (b) an Andreev
bound state, and (c) Josephson tunneling. The yellow backgrounds
correspond to superconductors, and the blue backgrounds to normal
metals. These figures illustrate the simplest case of clean materials
with transparent interfaces. However, the same kind of processes
occur in dirty materials with resistive interfaces as well.
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Figure 1.3: Demonstration of the proximity effect in an s/n bilayer.
(a) In a bulk n, the density of states can be approximated by a
constant 𝑁F on a scale of a few meV around the Fermi level 𝜀 = 0.
(b) In a bulk s, a gap |Δ| opens up around the Fermi level. Panels
(c–d) show what happens when the two materials are placed into
contact: a minigap opens in n, and subgap states appear in s. The
local density of states can be probed in stm experiments [44–46].
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Cooper pairs in conventional superconductors are always spinless,
and the same goes for proximity structures involving normal metals. In
other words, these pairs must have a singlet spin structure |↑↓⟩ − |↓↑⟩,⁴
and are therefore called singlets. However, if a superconductor (s) is
connected to a homogeneous ferromagnet (f), opposite-spin triplets
|↑↓⟩ + |↓↑⟩ are generated in a process called spin mixing, where we
take the magnetization direction of f to be the spin-quantization axis.
Note that both singlets and opposite-spin triplets consist of electrons
from different spin bands, which have different Fermi momenta inside
ferromagnetic metals. This momentummismatch causes them to decay
rapidly in ferromagnets, and the leakage of superconductivity into such
a ferromagnet is therefore called a short-ranged proximity effect.

In the presence of inhomogeneousmagnetism, equal-spin triplets |↑↑⟩
and |↓↓⟩ are also produced [47]. The explanation for this is simply that
an opposite-spin triplet |↑↓⟩ + |↓↑⟩ along one spin axis can be written
as a linear combination of equal-spin triplets |↑↑⟩ and |↓↓⟩ along a
perpendicular spin axis. Thus, if a system contains two perpendicularly
magnetized layers, the opposite-spin triplets produced in the first layer
correspond to equal-spin triplets in the second layer. Note that equal-
spin triplets consist of electrons from the same spin band, and have the
same range inside a ferromagnet as any Andreev pair would have in a
normal metal. The leakage of such pairs into ferromagnets is therefore
called a long-ranged proximity effect [47, 48]. Other ways to induce
long-ranged proximity effects include spin–orbit coupling [49, 50]
and time-dependent magnetizations [51]. Equal-spin triplets open for
many new possibilities in superconducting spintronics devices. For
instance, the state |↑↑⟩ carries net spin, and can therefore be used to
transport dissipationless spin supercurrents through a material. These
spin supercurrents should exert torques on magnetic layers, and can
in principle be used to manipulate the magnetic texture of a device.

Triplet superconductivity in s/f proximity structures has proven to
be a rich research field. We will not give a complete overview here, but
provide a more thorough introduction in publication i (enclosed). Ped-
agogical introductions can also be found in e.g. references 31 and 32;
a detailed theoretical review is given in reference 33; and an experi-
mental review is given in reference 34. Brief introductions to relevant
subtopics are also provided in chapter 4 and publications ii–xv.

4. Throughout this thesis, we ignore the normalization factors 1/√2 of spin states.
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Figure 1.4: Illustration of spin-mixing at the interface between a su-
perconductor and a ferromagnetic insulator [33]. An insulator is a
classically forbidden region for low-energy quasiparticles, so incom-
ing spin-up and spin-down electrons are both reflected. However,
the energies of spin-up and spin-down particles in a ferromagnetic
insulator can be very different due to the spin splitting of the bands.
This means that spin-up particles can penetrate slightly deeper
into the insulator than spin-down particles before being reflected,
resulting in a spin-dependent interfacial phase shift. Thus, if the
incoming wave was in a singlet state |↑↓⟩−|↓↑⟩, the outgoing wave is
in the state |↑↓⟩ 𝑒𝑖 (𝜑↑−𝜑↓)− |↓↑⟩ 𝑒𝑖 (𝜑↓−𝜑↑). Defining the phase difference
𝛿𝜑 ≔ 𝜑↑ − 𝜑↓, the result can be written as an explicit singlet–triplet
mixture [|↑↓⟩−|↓↑⟩] cos(𝛿𝜑)+[|↑↓⟩+|↓↑⟩] 𝑖 sin(𝛿𝜑). A similar process
occurs in ferromagnetic metals [33]. In that case, the momentum
mismatch causes spin-up and spin-down electrons to oscillate at
different frequencies. This results in a spatial oscillation between
singlets and triplets, in addition to an exponential decay of both.
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1.3 Recent developments

Josephson junctions have been a very fruitful area of research [42].
For instance, they form the basis for the squid magnetometer [3, 4],
the rsfq architecture for superconducting classical computers [52],
and several suggestions for superconducting quantum computers [53].
Recently, two new families of Josephson junctions have been realized
experimentally, namely 𝜑 junctions [54–58] and 𝜑0 junctions [59–65].

The 𝜑 junction was constructed by connecting a 0 and 𝜋 junction in
parallel [54]. This results in a Josephson junction with a degenerate
ground-state phase difference 𝛿𝜒 = ±𝜑, where 𝜑 is determined by the
junction parameters. While the 𝜑 junction has a nontrivial current-
phase relation 𝐽e = 𝐽c1 sin(𝛿𝜒) − 𝐽c2 sin(2𝛿𝜒), we see that the current
remains zero in the absence of phase differences 𝛿𝜒 = 0, just like the
0 and 𝜋 junctions it is constructed from. Having a degenerate ground
state that can be magnetically switched might e.g. be useful as a qubit.

The 𝜑0 junction was constructed using a quantum dot as the inter-
layer [59]. This results in a Josephson junction with a non-degenerate
ground-state phase difference 𝛿𝜒 = 𝜑0, where 𝜑0 could be tuned via
electrostatic gating. Other suggested interlayers include three non-
collinear ferromagnets [60], spin–orbit-coupled materials [61], and
topological insulators [62]. In contrast to 𝜑 junctions, the current-phase
relation 𝐽e ∼ sin(𝛿𝜒−𝜑0) is a direct generalization of the 0 or 𝜋 junctions.
This implies that an anomalous supercurrent 𝐽e ∼ − sin(𝜑0) appears
when the phase difference 𝛿𝜒 = 0, which separates this junction from
0, 𝜋, 𝜑 junctions. Note that a 𝜑0 junction functions as a phase battery
when placed in a superconducting circuit: since phase gradients ∇𝜒
cause supercurrents to flow, and a 𝜑0 junction tries to set up a sponta-
neous phase difference, it can be used to force a supercurrent to flow
through a superconducting circuit. We explore a magnetic 𝜑0 junction
in paper xiv, where we show that the phase bias 𝜑0 can be tuned via
a transverse voltage bias. A thermal counterpart to the anomalous
charge supercurrent in a 𝜑0 junction was explored in reference 66.

There has been a strong focus on topology in physics recently, and
the field of superconductivity is no exception. In the context of Joseph-
son junctions, it has been demonstrated that multiterminal junctions
exhibit topological properties [vi, 67, 68]. This may provide an accessi-
ble platform for studying topological materials in higher dimensions.
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Combining superconductors with strongly polarized ferromagnets
is perhaps a particularly interesting prospect for superconducting
spintronics devices. One reason is that they can be used to generate
spin-polarized supercurrents via spin filtering. Spin supercurrents can
in principle be used to e.g. manipulate the magnetic texture of a system,
and may therefore be especially interesting for applications [31–34].
The first experimental indications that the ground-state magnetic
configuration is influenced by superconductivity were published last
year [69]. We investigate one way to control the magnetic ground
state in paper xiv. Strongly polarized ferromagnets also provide a way
to verify whether a long-ranged triplet proximity effect is taking place,
since only |↑↑⟩ and |↓↓⟩ pairs can survive inside a strong ferromagnet.

Long-ranged proximity effects in half-metallic ferromagnets were
realized experimentally already over a decade ago [70]. More recently,
some surprising findings were found using similar materials. For
instance, a critical temperature modulation of up to 1.8 K was demon-
strated in a half-metallic spin-valve setup, even though the supercon-
ductor was made very large compered to its coherence length [71]. An-
other surprising finding was that contacting a conventional supercon-
ductor to a half-metallic ferromagnet could lead to a large zero-energy
peak in the density of states deep inside the superconductor [72]. In
paper viii, we shed some light on these discoveries. While long-ranged
proximity effects provide evidence of the spin structure of a Cooper
pair, the odd-frequency nature of these pairs has also been explicitly
demonstrated in the form of a paramagnetic Meissner effect [73].

Instead of using magnetic inhomogeneity to generate long-ranged
proximity effects, it was shown in references 49–50 that spin–orbit
coupling can be used. Some novel effects related to spin–orbit cou-
pling in proximity structures were investigated in papers ii–iv. It
was also pointed out in reference 74 that long-ranged orbital effects
in superconductor/ferromagnet systems can occur in more systems
than previously anticipated. Some potential ramifications of this are
discussed in chapter 4. Finally, recent experiments on nonequilibrium
spin injection in superconducting junctions has opened for a new way
of controlling spin supercurrents [75]. Using spin pumping to control
the triplet proximity effect had previously been theoretically explored
in reference 51, and the effects of the associated spin injection on spin
supercurrents are investigated in reference 76 and paper xv.
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2Theoretical framework
In this chapter, we discuss the theoretical framework that underlies
our calculations. First, we introduce the basic theoretical formalism:
matrix propagators and matrix currents, which encapsulate informa-
tion about all physical observables in a system. We then discuss how
these propagators and currents can be calculated for physical systems
of interest, and how to extract physical predictions from them.

2.1 Propagators

Modern treatments of quantum field theory are often expressed in
the language of propagators. Their precise definitions vary between
authors and contexts. However, they usually have the same basic
structure, namely an expectation value of a product of field operators:

𝐺(𝒓, 𝑡 |𝒓′, 𝑡′) ≔ ⟨Ψ(𝒓, 𝑡)ΨB(𝒓′, 𝑡′)⟩ = ⟨Ω|Ψ(𝒓, 𝑡)ΨB(𝒓′, 𝑡′)|Ω⟩ . (2.1)

Here, ΨB is a creation operator, which places a particle at position 𝒓′

at time 𝑡′; Ψ is an annihilation operator, which removes a particle of
the same kind from position 𝒓 at time 𝑡; and |Ω⟩ is the state of the
physical system. Thus, ⟨Ω|Ψ(𝒓, 𝑡)ΨB(𝒓′, 𝑡′)|Ω⟩ may be interpreted as
injecting a particle at 𝒓′, letting it propagate on its own from 𝑡′ to 𝑡,
then attempting to measure it at 𝒓. Intuitively, the result should then
describe the probability of a particle propagating from (𝒓′, 𝑡′) to (𝒓, 𝑡).
Particles that propagate “backwards in time” are interpreted as holes.

More rigorously, we can identify the propagator 𝐺(𝒓, 𝑡 |𝒓′, 𝑡′) as an
inner product between two states ΨB(𝒓, 𝑡) |Ω⟩ and ΨB(𝒓′, 𝑡′) |Ω⟩, where
the former has an extra particle at position 𝒓 at time 𝑡, and the latter
has an extra particle at position 𝒓′ at time 𝑡′. Since inner products
in quantum mechanics are interpreted as probability amplitudes for
the transition between the corresponding states, this supports the
interpretation of𝐺(𝒓, 𝑡 |𝒓′, 𝑡′) as the probability amplitude for a particle
placed at (𝒓′, 𝑡′) to end up at (𝒓, 𝑡). Hence, the name propagator .¹

1. These objects are also called correlators, correlation functions, Green functions, and
Gorkov functions. These names also make sense: technically, the propagators do
measure correlations between field values at different points; andmathematically,
they are the Green functions that solve the Gorkov equation [77].
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We wish to describe superconductor/ferromagnet hybrid systems.
Superconductors induce electron–hole correlations in nearby materials
via interfacial Andreev reflections. Ferromagnets, on the other hand,
lift the degeneracy between spin-up and spin-down. Thus, we need to
describe correlations between four kinds of quasiparticle excitations:
spin-up electrons, spin-down electrons, spin-up holes, and spin-down
holes. This can be done succinctly via the bispinor operator [78],²

Ψ̂ ≔ ( Ψ↑, Ψ↓, ΨB
↑ , ΨB

↓ ), (2.2)

where Ψ𝜎 and ΨB𝜎 are the field operators for electrons with spin 𝜎.
Throughout this thesis, we employ the Keldysh formalism [80–85],
which defines the following 4 × 4 propagators in Nambu⊗ spin space,³

𝐺̂r(𝒓, 𝑡 |𝒓′, 𝑡′) ≔ −𝑖 ̂𝜏3 ⟨{Ψ̂(𝒓, 𝑡), Ψ̂B(𝒓′, 𝑡′)}⟩ 𝜃(𝑡 − 𝑡′), (2.3)

𝐺̂a(𝒓, 𝑡 |𝒓′, 𝑡′) ≔ +𝑖 ̂𝜏3 ⟨{Ψ̂(𝒓, 𝑡), Ψ̂B(𝒓′, 𝑡′)}⟩ 𝜃(𝑡′ − 𝑡), (2.4)

𝐺̂k(𝒓, 𝑡 |𝒓′, 𝑡′) ≔ −𝑖 ̂𝜏3 ⟨[Ψ̂(𝒓, 𝑡), Ψ̂B(𝒓′, 𝑡′)]⟩, (2.5)

where ̂𝜏3 = diag(+1, +1, −1, −1) is a Pauli matrix in Nambu space, and
𝜃 is the unit step function. Note that the commutators above have to
be interpreted in terms of outer products between the bispinors [89]:

{Ψ̂, Ψ̂B} ≔ Ψ̂ ⊗ Ψ̂B + Ψ̂B⊗ Ψ̂ = Ψ̂Ψ̂B + [(Ψ̂B)t(Ψ̂)t]t; (2.6)

[Ψ̂, Ψ̂B] ≔ Ψ̂ ⊗ Ψ̂B − Ψ̂B⊗ Ψ̂ = Ψ̂Ψ̂B − [(Ψ̂B)t(Ψ̂)t]t. (2.7)

The retarded, advanced, and Keldysh propagators defined above are
then collected into an 8 × 8 matrix in Keldysh⊗Nambu⊗ spin space,

̌𝐺 ≔ (
𝐺̂r 𝐺̂k

0 𝐺̂a) . (2.8)

As we will see later, the retarded and advanced components contain
information on e.g. the density of states in a material, while the Keldysh
component contains information on the occupation of those states.

2. Some authors define the bispinor operator as Ψ̂ = (Ψ↑, Ψ↓, ΨB
↓ , −ΨB

↑). In that basis,
time-reversal invariant quantities become proportional to the Nambu identity ̂𝜏0,
and spin-independent quantities become proportional to the spin identiy 𝜎0,
which results in more intuitive matrix structures for the propagators [79].

3. The Keldysh formalism is the standard way to treat nonequilibrium problems
in condensed matter physics. The most common alternative is the Matsubara
formalism, which simplifies equilibrium calculations via analytical continua-
tion to complex time [86]. Recently, this technique has also been extended to
nonequilibrium systems by introducing complex chemical potentials [87, 88].
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2.2 Quasiclassical limit

In principle, the exact propagator ̌𝐺 can be determined directly from the
Gorkov equation [77]. However, this is prohibitively difficult for all but
the simplest physical systems, so one typically relies on the quasiclas-
sical approximation to simplify the problem [80–84]. Mathematically,
this approximation can be introduced as follows. First, the propagator
is rewritten using center-of-mass coordinates, so that they describe
propagation from coordinates (𝒓 − 𝛿𝒓/2, 𝑡 − 𝛿𝑡/2) to (𝒓 + 𝛿𝒓/2, 𝑡 + 𝛿𝑡/2).
The propagation distance 𝛿𝒓 and time 𝛿𝑡 are then Fourier-transformed,
yielding a description in terms of the quasiparticle momentum 𝒑 and
energy 𝜀. Herein, we only consider stationary problems, so we can also
discard any dependence on the center-of-mass time 𝑡. We now have a
description ̌𝐺(𝒓, 𝒑, 𝜀) that is still exact, just parametrized differently.⁴

In this description, the quasiclassical approximation can be written

̌𝐺(𝒓, 𝒑, 𝜀) ≈ −𝑖𝜋𝛿(𝜁 ) Γ̌(𝒓, 𝒑f, 𝜀), (2.9)

where 𝜁 ≔ 𝒑2/2𝑚−𝜀f is the kinetic energy, 𝜀f is the Fermi energy, and𝑚
is the effective mass. The delta function above constrains the momen-
tum to the Fermi surface: |𝒑| = 𝑝f ≔ √2𝑚𝜀f. Finally, the right-hand
side is expressed in terms of a quasiclassical propagator Γ̌, which de-
pends on the transport direction 𝒏 via the Fermi momentum 𝒑f = 𝑝f𝒏.
The above can easily be inverted for Γ̌ by integrating over all 𝜁:

Γ̌ ≔ 𝑖
𝜋 ∫ d𝜁 ̌𝐺(𝒓, 𝒑, 𝜀). (2.10)

Starting from the Gorkov equation, one can similarly derive an equa-
tion of motion for Γ̌ known as the Eilenberger equation [80–83, 91],

𝒗f ⋅ ∇Γ̌ = 𝑖[Σ̌, Γ̌], (2.11)

where 𝒗f ≔ 𝒑f/𝑚 is the Fermi velocity. The energy matrix Σ̌ describes
how the effective energies of different quasiparticle species are shifted
by various types of scattering and decoherence in the material, and
is discussed in more detail later in this chapter. This equation can be
made dimensionless by introducing either the ballistic coherence length
𝜉0 ≔ 𝑣f/Δ0 or Andreev energy 𝜀a ≔ 𝑣f/𝐿 [81], where Δ0 is the zero-
temperature gap of a bulk superconductor, and 𝐿 is the material length.
4. This is sometimes called theWigner representation [80], due to its similarity to the

Wigner quasiprobability distribution in first-quantized quantum mechanics [90].
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Thequasiclassical approximation can be better understood by Fourier-
transforming equation (2.9) back from momentum space:

̌𝐺(𝒓, 𝛿𝒓, 𝜀) ∼ 𝑁f⟨Γ̌(𝒓, 𝒑f, 𝜀)𝑒𝑖𝒑f⋅𝛿𝒓⟩f, (2.12)

where 𝑁f is the normal-state density of states at the Fermi energy, and
the angle brackets ⟨⋯⟩f denote an average over the Fermi surface. As
illustrated in figure 2.1, the propagator ̌𝐺 has been separated into a
rapidly oscillating plane wave 𝑒𝑖𝒑f⋅𝛿𝒓 with a slowly varying envelope Γ̌.
Another difference is the explicit prefactor 𝑁f, which describes the
spectral density of electrons available for transport processes. In the
quasiclassical formalism, this is clearly factored out, resulting in a con-
venient normalization condition: Γ̌2 = 1 [83]. Thus, the quasiclassical
approximation lets us describe the system in terms of a normalized
and slowly varying propagator Γ̌ instead of the exact propagator ̌𝐺.
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Figure 2.1: Illustration of the quasiclassical approximation in 1d,
where the background colors indicate different materials. The full
quantum-mechanical propagator ̌𝐺(𝑥) ∼ Γ̌(𝑥) 𝑒𝑖𝑝𝑥 oscillates rapidly
on the atomic scale (≲1 nm). The quasiclassical propagator Γ̌(𝑥)
is found by integrating out these oscillations, and describes how
the envelope varies on the mesoscopic scale (10–1000 nm). Note
that the exact propagator ̌𝐺(𝑥) is continuous, while the quasiclassi-
cal propagator Γ̌(𝑥) can be discontinuous across sharp interfaces.
In other words, the quasiclassical approximation breaks down at
interfaces, so that appropriate boundary conditions are required.
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So when is the quasiclassical approximation 𝒑 ≈ 𝒑f valid? In general,
when all energy scales in the problem are much smaller than the Fermi
energy (≳1 eV); or equivalently, all length scales are large compared to
the Fermi wavelength (≲1 nm). This is the case for many materials. For
instance, the order parameter in a low-temperature superconductor like
Nb is ∼1meV [92], and in a weak magnet like Pd88Ni12 is ∼40meV [93].
However, there are some materials that are far outside this regime
as well. For instance, half-metallic ferromagnets have so high spin-
splitting that one spin band is conducting while the other is insulating,
and topological insulators have so strong spin–orbit coupling that
they have perfect spin–momentum locking. However, we note that in
these two specific cases, a generalized quasiclassical theory can still
be defined around their unconventional Fermi surfaces [viii, 94].

2.3 Diffusive limit

In this thesis, we focus on dirty materials, i.e. materials with a relatively
high concentration of random impurities. Formally, this means that the
mean free path for quasiparticles is much smaller than all other length
scales in the problem (except the Fermi wavelength). As illustrated in
figure 2.2, these frequent scatterings cause the quasiparticles to explore
the entire Fermi surface as they diffuse through the material. Since all
other physical properties were assumed to vary slowly compared to
the mean free path, the quasiparticles effectively see a Fermi-surface
average of these other properties. In other words: the quasiclassical
propagator Γ̌ should depend only weakly on the transport direction 𝒗f.

In the dirty limit, physical observables are therefore well-described
by the first two moments with respect to the transport direction:

̌𝑔 ≔ ⟨Γ̌⟩f, ̌𝑰 ≔ ⟨Γ̌𝒗f⟩f, (2.13)

where we have introduced the isotropic quasiclassical propagator ̌𝑔 and
anisotropic quasiclassical propagator ̌𝑰. From the normalization Γ̌2 = 1,
one can show that ̌𝑔2 ≈ 1 and { ̌𝑔 , ̌𝑰 } = 0. For brevity, we will simply
refer to ̌𝑔 as the propagator, while ̌𝑰 is usually called the matrix current
due to its close relationship to transport properties [53, 95, 96]. In terms
of these, the Eilenberger equation splits into two coupled equations:

∇ ⋅ ̌𝑰 = 𝑖[Σ̌, ̌𝑔], ̌𝑰 ≈ −𝐷 ̌𝑔∇ ̌𝑔 , (2.14)

where 𝐷 ≔ 𝜏𝑣2f /3 is the diffusion coefficient and 𝜏 the mean free time.
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Figure 2.2: Illustration of (a) ballistic transport in clean materials
and (b) diffusive transport in dirty materials. In the clean limit,
there are no impurities to scatter off, so quasiparticles continue
along their trajectories for long periods of time. This means that
each quasiparticle sees only a small part of the Fermi surface as
shown in panel (c), and is very sensitive to its initial momentum
direction. In the dirty limit, the high impurity concentration causes
frequent scatterings that randomize the quasiparticle momentum.
The quasiparticle population therefore explores the entire Fermi
surface on their journey through the material as shown in panel (d).
Thus, all physical quantities transported by these quasiparticles are
effectively averaged over the Fermi surface, causing only a weak
dependence on the initial momentum direction.
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The diffusive approximation can also be generalized to a perturbative
expansion in the mean free time 𝜏, in which case equation (2.14) can
be seen to be the 𝒪(𝜏) result. While we focus on the 𝒪(𝜏) equation in
this thesis, we note that qualitatively new physics sometimes emerge
at higher orders in 𝜏. For instance, a spin-dependent Lorentz force
appears at 𝒪(𝜏2) in spin–orbit-coupled materials [96], and gives rise
to superconducting analogues of the spin-Hall effect and its inverse.

In the presence of a u(1) or su(2) gauge field 𝑨, the diffusion equa-
tion then takes the same basic form as equation (2.14), except that all
derivatives are replaced by gauge-covariant derivatives [ii, 49, 50, 97]

∇̃( ⋅ ) ≔ ∇( ⋅ ) − 𝑖[𝑨̂, ⋅ ], (2.15)

where 𝑨̂ ≔ diag(+𝑨, −𝑨∗). The sign difference between the diagonal
blocks can be attributed to electrons have opposite charges and spins
compared to holes.⁵ One application of the gauge-covariant equations
is that the orbital effects of an applied magnetic field 𝑩 are described via
a spin-independent gauge field 𝑩 = ∇ × 𝑨. If the field is applied along
e.g. the 𝑥-axis, this can be described by 𝑨 = 𝐵𝑦𝒆𝑧 in the Landau gauge.
Another application of recent interest is that linear-in-momentum
spin–orbit coupling can be described as an emergent su(2) gauge field.
For instance, the Rashba coupling that arises due to broken inversion
symmetry along the 𝑧-axis can be described as 𝑨 = 𝛼(𝜎𝑥𝒆𝑦 − 𝜎𝑦𝒆𝑥).

In the diffusive limit, the matrix current ̌𝑰 is a slave variable of the
propagator ̌𝑔 . This means that equation (2.14) can be written as a
closed equation for ̌𝑔 called the Usadel equation [80–83, 98],

𝑖𝐷∇̃( ̌𝑔∇̃ ̌𝑔) = [Σ̌, ̌𝑔]. (2.16)

This can be made dimensionless by introducing either the diffusive
coherence length 𝜉 ≔ √𝐷/Δ0 or the Thouless energy 𝜀t ≔ 𝐷/𝐿2 [81],
where 𝐿 is the material length. Together with a model for the energy
matrix Σ̌ of a material, and appropriate boundary conditions for the
matrix current ̌𝑰 = −𝐷 ̌𝑔∇̃ ̌𝑔 , this provides a complete description of
superconducting structures in the quasiclassical and diffusive limits.

5. The fact that holes carry opposite spins from electrons can be seen from their
field operators. We define a spin-up hole as the quasiparticle created by the
operator Ψ↑, which is actually the annihilation operator for spin-up electrons.
Since annihilating a spin-up electron clearly has to decrease the spin of the
system, we conclude that the corresponding holes must carry spin-down.
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Similarly to equation (2.8), the propagator ̌𝑔 described by the Usadel
equation can be separated into components in Nambu⊗spin space:

̌𝑔 ≔ (
𝑔̂r 𝑔̂k

0 𝑔̂a) . (2.17)

These components are not independent. From the electron–hole sym-
metries of the quasiclassical propagators, one can derive the identities
𝑔̂a = − ̂𝜏3𝑔̂rB ̂𝜏3 and 𝑔̂r(−𝜀) = − ̂𝜏1𝑔̂r∗(+𝜀) ̂𝜏1. Furthermore, the normal-
ization condition ̌𝑔2 = 1 can be expanded as (𝑔̂r)2 = (𝑔̂a)2 = 1 and
𝑔̂r𝑔̂k + 𝑔̂k𝑔̂a = 0, which implies that we can parametrize the Keldysh
component as 𝑔̂k = 𝑔̂rℎ̂ − ℎ̂𝑔̂a. Here, ℎ̂ is known as the distribution
function, and describes the occupation numbers for the different states
in a material. This distribution function can chosen block-diagonal,⁶
and satisfies the same electron–hole symmetry ℎ̂(−𝜀) = − ̂𝜏1ℎ̂∗(+𝜀) ̂𝜏1.
These symmetry considerations justify that it is sufficient to calculate
the 4 × 4 matrices 𝑔̂r and ℎ̂ at positive energies 𝜀 > 0, since this is
clearly sufficient to reconstruct the full 8 × 8 propagator ̌𝑔 .

2.4 Energy matrices

Most information about a material lies in its energy matrix Σ̌, which
describes the effective energies of its quasiparticles. In this section, we
summarize the contributions accounted for in our models.

The simplest case is a normal metal, meaning a material without
any intrinsic superconducting or magnetic properties [80–83, 101]:

Σ̌0 = 𝜀 ̂𝜏3. (2.18)

In the absence of any emergent fields, external fields, or special scat-
tering processes, it is perhaps not surprising that the effective energies
are solely determined by the excitation energy 𝜀 itself. In a bulk nor-
mal metal, the solution to equation (2.16) is 𝑔̂r = ̂𝜏3. This result is
energy-independent because the quasiclassical theory neglects any

6. The distribution function ℎ̂ is not uniquely defined, since the Keldysh propa-
gator 𝑔̂k = 𝑔̂rℎ̂ − ℎ̂𝑔̂a is invariant under transformations ℎ̂ → ℎ̂ + 𝑔̂r ̂𝜒 + ̂𝜒 𝑔̂a

for arbitrary matrices ̂𝜒 [80]. We use a generalization of a convention due to
Schmid and Schön [80, 81, 99, 100], and take the distribution function to be
block-diagonal. Another interesting choice would be to define 𝑔̂rℎ̂ + ℎ̂𝑔̂a = 0,
which simplifies the parametrization of the Keldysh propagator to 𝑔̂k = 2𝑔̂rℎ̂.
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variations in the electronic band structure near the Fermi level, which
has been factored out as a constant prefactor 𝑁f. On the other hand,
when superconducting correlations are induced, the propagator 𝑔̂r

gains off-diagonal components proportional to ̂𝜏1 or ̂𝜏2. Substituted
into equation (2.16), we find that this leads to an energy-dependent
decay of these correlations inside a normal metal. This effect can be
understood as follows. Proximity-induced superconductivity can be
described as repeated Andreev reflections between electrons at an
energy 𝜀f + 𝜀 and holes at 𝜀f − 𝜀, where each such reflection creates or
annihilates an electron pair at the Fermi level 𝜀f in a superconductor.⁷
These electrons and holes accumulate phases 𝑒±𝑖 (𝜀f±𝜀)𝛿𝑡 when they prop-
agate for times 𝛿𝑡 in the normal metal. These propagation times are
equal for the electron and hole forming each such Andreev pair, since
they propagate at the Fermi velocity along time-reversed paths after
each Andreev reflection. This shows that the phases they accumulate
after two successive Andreev reflections cancel almost perfectly [102].
The net phase mismatch per reflection is clearly proportional to 𝜀 ≪ 𝜀f,
and this decoherence is captured by the energy matrix above.

In practice, we also have to let 𝜀 → 𝜀+𝑖𝜂, where the small but finite 𝜂
is the inelastic scattering rate or Dynes parameter [103, 104]. Physically,
this provides an approximative account of inelastic scattering processes
in the material, i.e. scattering processes where quasiparticles change
their kinetic energies after the collision. More precisely, the Dynes ap-
proximation provides a good description of how spectral features such
as e.g. the density of states are affected by inelastic scattering. However,
since it does not explicitly couple different energies 𝜀 in the Usadel
equation, it does not capture the relaxation of the distribution function
properly. A more rigorous approach would be to explicitly model
the electron–phonon and electron–electron scattering processes [99],
which however make the equations more cumbersome to solve. In this
thesis, we limit our attention to the Dynes approximation. We note

7. When we say the quasiparticles exist at 𝜀f ± 𝜀, we refer to where in the electronic
bands there is an additional ormissing electron. Since Andreev reflection requires
two electrons at 𝜀f±𝜀 to produce a Cooper pair at 𝜀f, an incoming “extra electron”
at 𝜀f + 𝜀 leads to an outgoing “missing electron” at 𝜀f − 𝜀. Electrons and holes
nevertheless have the same excitation energy 𝜀; this is because a hole excitation
requires moving an electron from 𝜀f − 𝜀 to 𝜀f, and an electron excitation requires
moving an electron from 𝜀f to 𝜀f + 𝜀, and both processes cost the same energy 𝜀.
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that in addition to its physical motivation, an infinitesimal 𝜂 → 0+

is formally required to separate the retarded and advanced branches
of the propagator mathematically,⁸ and a finite value for 𝜂 also im-
proves the convergence of numerical calculations by damping the bcs
coherence peaks. In most of our calculations, we have set 𝜂 = 0.01Δ0.

Next, we consider the mean-field description of conventional super-
conductors. These are described by Σ̌ = Σ̌0 + Σ̌sc, where [80–83, 101]

Σ̌sc = antidiag(+Δ, −Δ, +Δ∗, −Δ∗). (2.19)

The superconducting order parameter Δ in general a complex number,
where its magnitude describes the strength of the superconducting
correlations, and its argument describes the condensate phase. We see
that the energy matrix is antidiagonal in spin space, which is consistent
with conventional superconductors hosting a condensate of opposite-
spin electron pairs |↑↓⟩ − |↓↑⟩. We also see that it is antidiagonal in
Nambu space, corresponding to anomalous electron–hole correlations.
This contribution to the effective energy opens up a gap in the density
of states, shifting the lowest-energy excitations from |𝜀| = 0 to |𝜀| = |Δ|.
In general, the order parameter Δ has to be calculated self-consistently
from the propagators; this will be discussed in more detail in section 2.6.

The next material class of interest is that of ferromagnets. The intrin-
sic magnetic field in such materials cause three distinct physical effects
that are relevant in superconductor/ferromagnet proximity structures.
The first is a spin-splitting effect, whereby the effective energy of an
electron with spin 𝝈 is shifted from 𝜀 to 𝜀 + 𝒎 ⋅ 𝝈. This is parametrized
in terms of a magnetic exchange field 𝒎. The second is a polarization
effect, whereby the density of states for spin-up and spin-down quasi-
particles differ at the Fermi level. This can be parametrized in terms
of a polarization 𝑃 = (𝐷↑ − 𝐷↓)/(𝐷↑ + 𝐷↓), where 𝐷𝜎 is an effective
spin-dependent diffusion coefficient. Finally, there is an orbital effect
which can lead to e.g. spontaneous supercurrents and vortex excita-
tions in proximity systems. This is usually neglected in the case of
materials that are magnetized in the plane of a thin film, although this
approximation has recently been brought into question [74].

8. This is e.g. essential for Meissner effects in superconducting materials: the
screening currents arise from contributions of the kind 𝜂/[𝜂2 + 𝑓 (𝜀)2], which
converge to a delta function 𝜋𝛿[𝑓 (𝜀)] even in the limit 𝜂 → 0+.
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In weak ferromagnets, the polarization effect is usually neglected.
The energy matrix is then just Σ̌0 + Σ̌ex, where [35, 36, 101, 105]

Σ̌ex = 𝒎 ⋅ 𝝈̂ , (2.20)

and 𝝈̂ ≔ diag(𝝈, 𝝈∗). In the absence of superconductivity, this does
not change the solution 𝑔̂r = ̂𝜏3 to the Usadel equation. When su-
perconducting correlations are induced, on the other hand, this term
is responsible for singlet–triplet mixing and a rapid decoherence of
opposite-spin electron pairs. Instead of representing an actual ferro-
magnet, the model above can also describe the Zeeman-splitting of any
metal in a strong magnetic field [106]. Recently, the same model has
also been used for proximity-induced magnetism in materials near the
Stoner instability, by self-consistently calculating a magnetic exchange
field from the spin accumulation in the material [76].

In strong ferromagnets, the polarization effect becomes important,
and e.g. results in a strongly spin-dependent conductivity. On the other
hand, excitations in the two spin bands decouple, and the exchange
effect can be neglected. The energy matrix for a strong ferromagnet
polarized in the 𝑧-direction can therefore be approximated as [viii]

Σ̌pol = Π𝜀 ̂𝜏3, (2.21)

where the polarization matrix Π = 2(1 − 𝑃𝜎3)/(1 − 𝑃2), and 𝑃 is the
polarization of the diffusion coefficient as discussed above. Note that in
the half-metallic limit 𝑃 → 1, the polarization matrix Π → diag(1, ∞);
substituted into the Usadel equation, one finds that this destroys all
superconducting correlations involving the spin-down band. For a
derivation and application of this model, see paper viii.

This model can be understood as follows. The Usadel equation in
a normal metal is 𝑖𝐿2∇( ̌𝑔∇ ̌𝑔) = [𝜀/𝜀t, ̌𝑔], where the Thouless energy
for a material of length 𝐿 is 𝜀t ≔ 𝐷/𝐿2. Clearly, the generalization
to a spin-dependent diffusion coefficient 𝐷𝜎 ≔ 𝐷(1 ± 𝑃)/2 leads to a
spin-dependent Thouless energy as well. However, since the Usadel
equation only depends on the ratio 𝜀/𝜀t, this can be reinterpreted
as a spin-independent 𝜀t with spin-dependent effective quasiparticle
energies 2𝜀/(1 ± 𝑃)—which is precisely what the matrix Π𝜀 describes.
In the half-metallic limit, the effective quasiparticle energies of one
spin band become infinite, meaning that no excitations occur anymore.
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The orbital effect associated with magnetic fields can be accounted
for using a u(1) gauge field 𝑨, as shown in equation (2.15). However,
when a material is thin compared to the magnetic penetration depth 𝜆
and superconducting coherence length 𝜉, the effects of the field can
instead be approximated as an effective energy term [99, 106, 107]

Σ̌orb = 𝑖Δ0(𝐻/𝐻c)𝜅 ̂𝜏3 ̌𝑔 ̂𝜏3, (2.22)

where 𝜅 = 1 for out-of-plane and 𝜅 = 2 for in-plane fields. We
parametrize the orbital decoherence via a critical field 𝐻c, which is
the magnetic field at which superconductivity vanishes even at zero
temperature. This is generally much higher for in-plane than out-of-
plane fields, and can be calculated from the sample geometry [107].
This model was e.g. used to fit the experimental results in paper iv.

So far, we have discussed the different energy matrix contributions
that arise due to the intrinsic properties of a material. We now turn to
the extrinsic properties, which arise due to various scattering processes
involving random impurities. We treat these scattering processes in
the Born approximation, which means that some phenomena such as
ysr states [108–110] cannot be described. For a discussion of the quasi-
classical theory beyond the Born approximation, see e.g. reference 111.
The extrinsic contributions listed below can be added to the intrinsic
energy matrices describing superconductors, ferromagnets, or normal
metals in order to account for their impurities.

The first such contribution describes spin-independent scattering
processes involving non-magnetic impurities [82, 83]:

Σ̂imp = 𝑖
2𝜏 ̌𝑔 . (2.23)

This contribution has to be manually included when considering mod-
erately dirty materials using the Eilenberger equation. It has however
already been accounted for in the derivation of the Usadel equation,
and is the source of the mean free time 𝜏 in the diffusion coefficient.

In the case of impurities with magnetic moments or spin–orbit
coupling, more exotic scattering processes are also possible. If the
magnetic moments of the impurities are randomly oriented, this is
described as an isotropic spin-flip scattering [101, 112],

Σ̂sf =
𝑖

2𝜏sf
𝝈̂ ̌𝑔𝝈̂ . (2.24)
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If the magnetic moments are correlated, one obtains a uniaxial spin-flip
scattering by letting 𝝈̂ → 𝝈̂ ⋅ 𝒔 above [112], where 𝒔 parametrizes the
magnetic ordering axis. Similarly, impurities with atomic spin–orbit
coupling give rise to spin–orbit scattering [36, 112, 113],

Σ̂so = 𝑖
2𝜏so

̂𝜏3𝝈̂ ̌𝑔𝝈̂ ̂𝜏3. (2.25)

The energy matrices above are expressed in terms of a spin-flip time 𝜏sf
and spin–orbit time 𝜏so. We note that in general, spin-flip scattering
suppresses both singlet and triplet pairs, while spin–orbit scattering
only suppresses triplet pairs [112, 114]. Materials with spin-flip and
spin–orbit scattering were investigated in paper ix.

2.5 Boundary conditions

As we briefly discussed in section 2.2, the quasiclassical approximation
breaks down at the interfaces between materials. Thus, to bridge the
quasiclassical propagators across interfaces, one has to derive appro-
priate boundary conditions from the underlying non-quasiclassical
theory near the interface. Typically, the results are expressed in terms
of the quasiclassical matrix current ̌𝐼 ≔ ̌𝑰 ⋅𝒏 flowing out of an interface,
where 𝒏 is the normal vector of the interface. A trivial example would
be an interface to vacuum or a bulk insulator: since no quasiparticles
can exist there, the boundary conditions are simply ̌𝐼 = 0.

In this thesis, we mostly focus on low-transparency interfaces, in
which case we can use the boundary conditions [viii, 115–123]

(𝐿/𝐷) ̌𝐼 = (
1
2
𝐺t
𝐺n

) [ ̌𝑔 , 𝐹 ( ̌𝑔′)]

− (
𝑖
2
𝐺𝜑
𝐺n

) [ ̌𝑔 , ̂𝑟 ]

+ (
1
4
𝐺t𝐺𝜒
𝐺n𝐺𝜑

) 𝐹( ̌𝑔′) ̌𝑔 𝐹( ̌𝑔′)

+ (
1
8
𝐺𝜑𝐺𝜒
𝐺n𝐺t

) [ ̌𝑔 , ̂𝑟 ̌𝑔 ̂𝑟]

+ (
𝑖
8
𝐺𝜒
𝐺n

) [ ̌𝑔 , 𝐹 ( ̌𝑔′) ̌𝑔 ̂𝑟 + ̂𝑟 ̌𝑔 𝐹( ̌𝑔′)]

+ (
𝑖
8
𝐺′
𝜒

𝐺n
) [ ̌𝑔 , 𝐹 ( ̌𝑔′ ̂𝑟 ′ ̌𝑔′ − ̂𝑟 ′)],

(2.26)
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where we have defined the spin-filtering function

𝐹( ̌𝑣) ≔ ̌𝑣 + 𝑃
1 + √1 − 𝑃2

{ ̌𝑣, ̂𝑡 } + 1 − √1 − 𝑃2

1 + √1 − 𝑃2
̂𝑡 ̌𝑣 ̂𝑡. (2.27)

These boundary conditions are valid to second order in the tunneling
probabilities, second order in the spin-mixing angles, and all orders in
the interface polarization, assuming that these interface parameters
are not too different between the interfacial transport channels. This
is a new result derived in paper viii, which is significantly simpler
than the corresponding boundary conditions presented previously
in reference 115. Below, we discuss different limiting cases of these
boundary conditions, and how to interpret its various parameters.

Let us first consider a non-magnetic interface: 𝑃 = 𝐺𝜑 = 𝐺𝜒 = 𝐺′
𝜒 = 0.

The boundary conditions then reduce to a particularly simple form,

(2𝐿/𝐷) ̌𝐼 = (𝐺t/𝐺n) [ ̌𝑔 , ̌𝑔′], (2.28)

which are known as the Kuprianov–Lukichev boundary conditions
in the literature [123]. Here, ̌𝑔 is the propagator on the same side of
the interface as ̌𝐼 is being calculated, ̌𝑔′ the propagator on the other
side of the interface, 𝐿 the length of the material, and 𝐺n the normal-
state conductance of the material. The remaining parameter 𝐺t is the
tunneling conductance, which is related to the tunneling probability
and interfacial channel density. This description is valid to lowest
order in the tunneling probabilities, and is commonly used to model
imperfect interfaces to normal metals or weak ferromagnets.

Next, we include a finite spin-mixing conductance 𝐺𝜑, which is
associated with singlet–triplet mixing due to interfacial phase shifts,
and polarization 𝑃, which is associated with a spin-filtering effect. That
yields the following boundary conditions [115–122],

(2𝐿/𝐷) ̌𝐼 = (𝐺t/𝐺n) [ ̌𝑔 , 𝐹 ( ̌𝑔′)] − 𝑖(𝐺𝜑 /𝐺n) [ ̌𝑔 , ̂𝑟], (2.29)

which are valid to first order in the tunneling probabilities and spin-
mixing angles, and to all orders in the polarization. It has recently been
shown that the same boundary conditions can also be used to describe
uncompensated antiferromagnetic interfaces [124]. These boundary
conditions include a matrix ̂𝑡 ≔ 𝒕 ⋅ 𝝈̂, which describes the average
magnetization 𝒕 seen by electrons tunneling through the interface, and
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another matrix ̂𝑟 ≔ 𝒓 ⋅ 𝝈, which describes the magnetization 𝒓 seen
by reflected electrons. In completely homogeneous magnetic systems,
these can be taken to be equal. However, if the magnetic interface
is used as a model for e.g. tunneling through a thin ferromagnetic
insulator that contains a domain wall, or if an otherwise homogeneous
magnetic metal has its magnetization pinned in a different direction
at the interface, these magnetizations can be quite different. Since
magnetic inhomogeneities are associated with long-range triplet gen-
eration and spontaneous spin currents in superconducting systems,
the results of such inhomogeneity can be quite important.

The full second-order boundary conditions contain a number of new
terms. However, as described in paper viii, all the new terms can
be rewritten in terms of a single new parameter 𝐺𝜒. This is a mixed
interface conductance, in the sense that while 𝐺t describes tunneling
probabilities and 𝐺𝜑 describes spin-mixing processes, 𝐺𝜒 essentially
measures the correlation between these processes. In addition, the
boundary conditions involve 𝐺′

𝜒 and ̂𝑟 ′, which are simply the values of
𝐺𝜒 and ̂𝑟 on the other side of the interface. These new terms have rela-
tively straight-forward interpretations: every 𝐹 describes a tunneling
event, every ̂𝑟 describes spin-mixing on this side of the interface, and
every ̂𝑟 ′ spin-mixing on the other side of the interface. Thus, from top
to bottom, these terms describe (i) second-order tunneling, (ii) second-
order spin-mixing, (iii) a tunneling event combined with spin-mixing
on this side, (iv) a tunneling event combined with spin-mixing on
the other side. To second order in the tunneling and spin-mixing
amplitudes, this is of course the contributions one would expect.

For most projects presented in this thesis, the first-order magnetic
boundary conditions have been employed. A notable exception is
paper viii, where we investigated the effect of the second-order bound-
ary conditions in superconductor/half-metal structures in figure 10.
Unfortunately, the results were not that interesting: at least for that par-
ticular setup, including a finite 𝐺𝜒 did not yield any qualitatively new
physics, but rather just resulted in behaviour that could be reproduced
by slightly lowering the value of 𝐺𝜑. In that paper, we also investi-
gated the density of states in superconductor/ferromagnetic-insulator
bilayers. We then treated the magnetic properties to all orders in
spin-mixing angles, and found qualitatively new results compared to
the 𝐺𝜑 approximation, as shown in figure 5.
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In this thesis, we have focused on low-transparency interfaces. There
are however boundary conditions available for higher transparencies
as well: Nazarov’s boundary conditions describe non-magnetic inter-
faces with arbitrary transparencies [53, 95], and Eschrig’s boundary
conditions can be series-expanded to higher orders in the tunneling
probabilities and spin-mixing angles if required [115].

2.6 Physical observables

The solution to the Usadel equation is given by the retarded propaga-
tor 𝑔̂r and distribution function ℎ̂, which can be used to reconstruct
the entire propagator ̌𝑔 and matrix current ̌𝑰 = −𝐷 ̌𝑔∇̃ ̌𝑔 . In this section,
we discuss how to calculate physical observables from these results.

Before we proceed, it is convenient to parametrize the Nambu⊗spin
structure of the components 𝑔̂r, 𝑔̂k, ̂𝐼k as follows [33]:

𝑔̂r ≔ (
(𝑔r𝑠 + 𝒈r𝑡 ⋅ 𝝈 ) (𝑓 r

𝑠 + 𝒇 r
𝑡 ⋅ 𝝈 )𝑖𝜎2

−( ̃𝑓 r
𝑠 + ̃𝒇 r

𝑡 ⋅ 𝝈∗)𝑖𝜎2 −( ̃𝑔r𝑠 + ̃𝒈r𝑡 ⋅ 𝝈∗)
) , (2.30)

𝑔̂k ≔ (
(𝑔k𝑠 + 𝒈k𝑡 ⋅ 𝝈 ) (𝑓 k

𝑠 + 𝒇 k
𝑡 ⋅ 𝝈 )𝑖𝜎2

( ̃𝑓 k
𝑠 + ̃𝒇 k

𝑡 ⋅ 𝝈∗)𝑖𝜎2 ( ̃𝑔k𝑠 + ̃𝒈k𝑡 ⋅ 𝝈∗)
) , (2.31)

̂𝐼k ≔ (
(𝐼k𝑠 + 𝑰k𝑡 ⋅ 𝝈 ) (𝐽k𝑠 + 𝑱 k𝑡 ⋅ 𝝈 )𝑖𝜎2

−( ̃𝐽k𝑠 + ̃𝑱 k𝑡 ⋅ 𝝈∗)𝑖𝜎2 −( ̃𝐼k𝑠 + ̃𝑰k𝑡 ⋅ 𝝈∗) ) . (2.32)

The 𝑔’s defined here are referred to as normal components, and the
𝑓’s as anomalous components. We have also introduced the notation
̃𝑢(+𝜀) ≔ 𝑢∗(−𝜀), which represents an electron–hole conjugation. For

notational transparency, we consider the current ̂𝐼k ≔ ̂𝑰k ⋅ 𝒏 along
the junction direction 𝒏. The generalization to 3d transport problems
is straight-forward: the matrix 𝐼k𝑠 becomes a vector 𝑰k𝑠 that points
along the transport direction, while 𝑰k𝑡 becomes a rank-2 tensor since
it has both a transport direction and spin polarization. The structures
of the matrices above follow from the normalization and symmetry
constraints discussed in section 2.3. The exceptions are the 𝑖𝜎2 factors,
which simplify the physical interpretation of anomalous correlations.⁹

9. For historical reasons, this is often referred to as 𝒅-vector notation [125, 126].
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Once the matrices 𝑔̂r, 𝑔̂k, ̂𝐼k have been calculated at positive ener-
gies, the components introduced above can easily be calculated for
any energy. Using well-known identities for traces, together with the
definition of the electron–hole-conjugation above, we e.g. see that:

𝑔k𝑠 (+𝜀) =
1
4 Tr[( ̂𝜏0 + ̂𝜏3)𝑔̂k(+𝜀)], (2.33)

𝑔k𝑠 (−𝜀) =
1
4 Tr[( ̂𝜏0 − ̂𝜏3)𝑔̂k(+𝜀)]∗, (2.34)

𝑓 k
𝑠 (+𝜀) =

1
4 Tr[(−𝑖𝜎̂2)( ̂𝜏1 − 𝑖 ̂𝜏2)𝑔̂k(+𝜀)], (2.35)

𝑓 k
𝑠 (−𝜀) =

1
4 Tr[(+𝑖𝜎̂2)( ̂𝜏1 + 𝑖 ̂𝜏2)𝑔̂k(+𝜀)]∗. (2.36)

In terms of these quantities, the density of states can be written [33]

𝑁𝒔(𝒓, 𝜀) = 𝑁f Re[𝑔r𝑠 (𝒓, 𝜀) + 𝒔 ⋅ 𝒈r𝑡 (𝒓, 𝜀)], (2.37)

where 𝒔 refers to the spin-projection of the quasiparticles. In other
words, the spin-independent density of states is just 𝑁f Re[𝑔r𝑠 ], while
the spin-polarization of the density of states is given by𝑁f Re[𝒈r𝑡 ]. This
provides a simple physical interpretation of the retarded propagator 𝑔̂r.

Another important quantity is the superconducting order parame-
ter Δ. Its magnitude determines e.g. the gap in the density of states,
while its complex phase is important for e.g. Josephson effects. For a
bulk superconductor at zero temperature, we can take the order param-
eter to be a real constant Δ0. For a current-carrying superconductor,
we present a semi-analytical solution in paper xii. More generally,
the order parameter has to be determined fully self-consistently. As
shown in appendix b of paper ii, the self-consistency equation for a
weakly coupled conventional superconductor is

Δ(𝒓) = 1
4 log(2𝜔c/Δ0) ∫

+𝜔c

−𝜔c

d𝜀 𝑓 k
𝑠 (𝒓, 𝜀). (2.38)

The integral is taken up to the Debye cutoff 𝜔c, which we in our simu-
lations usually set to 𝜔c = 30Δ0. Clearly, the anomalous component
𝑓 k
𝑠 has to describe the singlet pairs associated with conventional su-
perconductivity. Similarly, 𝒇 k

𝑡 can be shown to describe triplet pairs.
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The next observables we consider are the charge accumulation 𝜌e,
spin accumulation 𝝆s, charge current 𝐽e, and spin current 𝑱s:

𝜌e(𝒓) = −14 𝑒𝑁f∫
+∞

−∞
d𝜀 Re[𝑔k𝑠 (𝒓, 𝜀)], (2.39)

𝝆s(𝒓) = −14
ℏ
2𝑁f∫

+∞

−∞
d𝜀 Re[𝒈k𝑡 (𝒓, 𝜀)], (2.40)

𝐽e(𝒓) = −14 𝑒𝑁f∫
+∞

−∞
d𝜀 Re[𝐼k𝑠 (𝒓, 𝜀)], (2.41)

𝑱s(𝒓) = −14
ℏ
2𝑁f∫

+∞

−∞
d𝜀 Re[𝑰k𝑡 (𝒓, 𝜀)]. (2.42)

We derive these equations from the Heisenberg equations for the field
operators in the supplemental of paper xv. This provides physical
interpretations for the Keldysh propagator 𝑔̂k and matrix current ̂𝑰k:
the former describes the local charge and spin imbalance, and the latter
the flow of charge and spin between positions.

Energy and spin-energy transport are described in a similar way [99]:

𝜌he(𝒓) =
1
4𝑁f∫

+∞

−∞
d𝜀 Re[𝜀𝑔k𝑠 (𝒓, 𝜀)], (2.43)

𝝆hs(𝒓) =
1
4𝑁f∫

+∞

−∞
d𝜀 Re[𝜀𝒈k𝑡 (𝒓, 𝜀)], (2.44)

𝐽he(𝒓) =
1
4𝑁f∫

+∞

−∞
d𝜀 Re[𝜀𝐼k𝑠 (𝒓, 𝜀)], (2.45)

𝑱hs(𝒓) =
1
4𝑁f∫

+∞

−∞
d𝜀 Re[𝜀𝑰k𝑡 (𝒓, 𝜀)]. (2.46)

The most obvious contributions to the energy and spin-energy are heat
and spin-heat. Heat refers to a spin-independent excitation of electrons
and holes, which can be interpreted as an effective increase in the
electronic temperature. Spin-heat, on the other hand, refers to a higher
effective temperature for one spin species than the other, corresponding
to e.g. an excess of spin-up electrons and spin-down holes. However,
the energy and spin-energy also contain contributions from charge
and spin accumulation that depend on the chemical potential [127].
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It is a common misconception that these equations can be derived
in the same manner as the charge and spin transport equations, since
the results are similar. However, the rigorous derivation actually starts
from the energy–momentum tensor of the quantum fields [127–129],

𝑇𝜇𝜈𝜎 =
∂𝐿𝜎

∂(∂𝜈Ψ𝜎)
(∂𝜇Ψ𝜎) + (∂𝜇ΨB𝜎)

∂𝐿𝜎
∂(∂𝜈ΨB𝜎)

− 𝛿𝜇𝜈𝐿𝜎, (2.47)

where the kinetic part of the Langrangian for spin-𝜎 particles is

𝐿𝜎 = 𝑖[ΨB𝜎 (∂𝑡Ψ𝜎) − (∂𝑡ΨB𝜎)Ψ𝜎] − (1/2𝑚)(∇ΨB𝜎)(∇Ψ𝜎). (2.48)

Here, 𝑇𝑡𝑡𝜎 is the spin-𝜎 energy density operator, which is related to the
spin-𝜎 energy accumulation. Similarly, (𝑇𝑡𝑥𝜎, 𝑇𝑡𝑦𝜎, 𝑇𝑡𝑧𝜎) is the spin-𝜎
energy flux operator, which is usually interpreted as a spin-𝜎 energy
current. Such an analysis shows that e.g. the spin-𝜎 energy current in
the system can be calculated from the expectation value

𝐽h𝜎 = (−1/2𝑚) (∂𝑡∇𝒓′ + ∇𝒓 ∂𝑡′) ⟨ΨB𝜎(𝒓′, 𝑡′)Ψ𝜎(𝒓, 𝑡)⟩, (2.49)

which after the quasiclassical approximation yields the usual expres-
sions for the energy and spin-energy currents 𝐽h↑ ± 𝐽h↓.

In equilibrium, the distribution function reduces to the Fermi–Dirac
form ℎ̂ = tanh(𝜀/2𝑇 ) ̂𝜏0, where 𝑇 is the temperature of the system. The
components of 𝑔̂k are then directly related to those of 𝑔̂r:

𝑔k𝑠 (𝒓, 𝜀) = 2Re[𝑔𝑠(𝒓, 𝜀)] tanh(𝜀/2𝑇 ), (2.50)
𝒈k𝑡 (𝒓, 𝜀) = 2Re[𝒈𝑡(𝒓, 𝜀)] tanh(𝜀/2𝑇 ), (2.51)
𝑓 k
𝑠 (𝒓, 𝜀) = [𝑓 r

𝑠 (𝒓, +𝜀) − 𝑓 r
𝑠 (𝒓, −𝜀)] tanh(𝜀/2𝑇 ), (2.52)

𝒇 k
𝑡 (𝒓, 𝜀) = [𝒇 r

𝑡 (𝒓, +𝜀) + 𝒇 r
𝑡 (𝒓, −𝜀)] tanh(𝜀/2𝑇 ). (2.53)

This provides an interpretation of 𝑓 r
𝑠 and 𝒇 r

𝑡 as a kind of density of
states for singlet and triplet pairs. Similarly, we see that the charge
and spin accumulation can be interpreted in terms of the density of
states and distribution function. It is therefore commonly stated that 𝑔̂r

describes the equilibrium properties of a material, while 𝑔̂k = 𝑔̂rℎ̂−ℎ̂𝑔̂a

describes the nonequilibrium properties. This is however not entirely
true: if superconductivity is treated self-consistently, 𝑔̂r and 𝑔̂a are
also implicitly functions of ℎ̂ via the self-consistency equation for Δ.
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Another useful fact is that the matrix current ̂𝑰k can be written [80]:

̂𝑰k ≔ ̂𝑰ks + ̂𝑰kr, (2.54)
̂𝑰ks = −𝐷 [(𝑔̂r∇̃𝑔̂r)ℎ̂ − ℎ̂(𝑔̂a∇̃𝑔̂a)], (2.55)
̂𝑰kr = −𝐷 [(∇̃ℎ̂) − 𝑔̂r(∇̃ℎ̂)𝑔̂a]. (2.56)

Only ̂𝑰ks depends on the phase gradients of the propagators, and only
̂𝑰kr depends on the chemical potential and temperature gradients of
the distribution function. This allows us to interpret the former as
condensate-driven supercurrents, and the latter as quasiparticle-driven
resistive currents, which can be useful to distinguish these effects.

Finally, we note that the parametrization of the propagators used
in this section can also be useful analytically. For example, if the
superconducting correlations in a proximitized material are weak, one
can use the approximations |𝑔r𝑠 | ≈ 1 and |𝑓 r

𝑠 |, |𝒇 r
𝑡 |, |𝒈r𝑡 | ≪ 1 to linearize

the Usadel equation. The result can be written in the simple form [ii]:

(𝑖𝐷/2) ∇2𝑓 r
𝑠 = 𝜀𝑓 r

𝑠 + 𝒎⋅𝒇 r
𝑡 , (2.57)

(𝑖𝐷/2) ∇2𝒇 r
𝑡 = 𝜀𝒇 r

𝑡 + 𝒎𝑓 r
𝑠 + 2𝑖𝐷𝛀𝒇t, (2.58)

where 𝒎 is the magnetic exchange field in a material, and 𝛀 is a 3 × 3
matrix that describes the spin–orbit coupling of a material [ii–iv].

2.7 Parametrization

The retarded propagator 𝑔̂r has a normalization condition (𝑔̂r)2 = 1 and
electron–hole symmetry 𝑔̂r(𝜀) = − ̂𝜏1𝑔̂r∗(−𝜀) ̂𝜏1. This implies that it has
some redundant degrees of freedom that can be eliminated by a suitable
parametrization, thus simplifying the task of solving the Usadel equa-
tion. For analytical calculations, many different parametrizations are
in use depending on the problem at hand. For instance, one might use
equation (2.30) directly; set 𝑔r𝑠 = 𝜀/Ω, 𝑓 r

𝑠 = 𝜃𝑒𝑖𝜒/Ω where Ω = √𝜀2 − 𝜃2
[xii, 130, 131]; set 𝑔r𝑠 = cosh 𝜃, 𝑓 r

𝑠 = 𝑒𝑖𝜒 sinh 𝜃 [80, 81, 132]; or use
spin-dependent generalizations of these [i, 112]. In these examples,
𝜃 and 𝜒 are complex functions of position and energy, and parametrize
the size and phase of a superconducting condensate, respectively.

In this thesis, wemostly focus on numerical calculations in structures
with inhomogeneous magnetism or spin–orbit coupling. A practical
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way to treat such problems is the Riccati parametrization [ii, 133, 134],¹⁰

𝑔̂r ≔ (
+𝑁 0
0 − ̃𝑁

)(
1 + 𝛾 ̃𝛾 2𝛾
2 ̃𝛾 1 + ̃𝛾𝛾

) , (2.59)

where the normalization matrix is defined as 𝑁 ≔ (1 − 𝛾 ̃𝛾)−1. We
note that in contrast to the alternatives mentioned above, the Riccati
parametrization is completely general, single-valued, and bounded [i].
Some useful identities when working with this parametrization are
𝑁𝛾 = 𝛾 ̃𝑁, 𝑁(1 + 𝛾 ̃𝛾) = 2𝑁 − 1, and ∇𝑁 = 𝑁[(∇𝛾) ̃𝛾 + 𝛾 (∇ ̃𝛾)]𝑁.

Starting from the retarded part of the Usadel equation ∇ ⋅ ̂𝑰 r = 𝑈̂ r,
where ̂𝑰 r = −𝐷 𝑔̂r∇𝑔̂r and 𝑈̂ r ≔ 𝑖[Σ̂r, 𝑔̂r], we have derived the follow-
ing identities for the derivatives of the Riccati parameter 𝛾 [viii]:

∇2𝛾 = −(2𝐷𝑁)−1(𝑈 r
12 − 𝑈 r

11𝛾) − 2(∇𝛾) ̃𝑁 ̃𝛾(∇𝛾), (2.60)
∇𝛾 = −(2𝐷𝑁)−1(𝑰 r12 − 𝑰 r11𝛾), (2.61)

where 𝑈 r
12 refers to the top-right 2 × 2 block of 𝑈̂ r, and so on. These

equations can be used to numerically implement the Usadel equation
and its boundary conditions, respectively. In the presence of a gauge
field 𝑨, these equations have to be adjusted as shown in paper ii.

In equilibrium, it is sufficient to solve the Riccati-parametrized equa-
tions for 𝑔̂r to calculate all observables, since the distribution function
is simply the Fermi–Dirac one: ℎ̂ = tanh(𝜀/2𝑇 ) ̂𝜏0. Out of equilibrium,
one also has to solve a kinetic equation for the distribution function ℎ̂.
In the supplemental of paper xiii, we derived a new form for this
equation. The approach is not entirely new [80, 81, 99, 106, 137, 138];
however, our equations are both simpler and more general than previ-
ous ones, and resulted in a very efficient numerical implementation.

First, it is convenient to introduce a set of basis matrices ̂𝜌𝑛 that
span the block-diagonal Nambu⊗spin space:

̂𝜌0 ≔ ̂𝜏0𝜎̂0, ̂𝜌1 ≔ ̂𝜏0𝜎̂1, ̂𝜌2 ≔ ̂𝜏0𝜎̂2, ̂𝜌3 ≔ ̂𝜏0𝜎̂3;
̂𝜌4 ≔ ̂𝜏3𝜎̂0, ̂𝜌5 ≔ ̂𝜏3𝜎̂1, ̂𝜌6 ≔ ̂𝜏3𝜎̂2, ̂𝜌7 ≔ ̂𝜏3𝜎̂3.

(2.62)

10. It is named this way because the parametrization transforms the Eilenberger
equation into a Riccati matrix differential equation. This allows one to use special
theorems to simplify the numerical solution of the equation; in particular, one
can calculate the changes to the solution 𝛾(𝒓, 𝜀) as the boundary conditions 𝛾0(𝜀)
change without having to solve the differential equation itself again [135, 136].
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As discussed in section 2.3, the distribution function ℎ̂ can be taken to
be a block-diagonal matrix. This means that it can be parametrized as

ℎ̂ = ℎ𝑛 ̂𝜌𝑛, (2.63)

where we use the summation convention on the right-hand side, and
the coefficients can be found from the traces ℎ𝑛 = (1/4)Tr[ ̂𝜌𝑛ℎ̂]. The
distribution is in other words parametrized as an 8-element vector ℎ,
which describes all charge, spin, energy, and spin-energy degrees of
freedom. The equation for the distribution function takes a particu-
larly simple form when expressed in terms of these coefficients [xiii]:

𝑀𝑛𝑚∇2ℎ𝑚 = −(∇𝑀𝑛𝑚+𝑸𝑛𝑚)⋅∇ℎ𝑚 −(∇⋅𝑸𝑛𝑚+𝑉𝑛𝑚+𝑊𝑛𝑚)ℎ𝑚 . (2.64)

Similarly, the boundary conditions can be written in the form

𝑀𝑛𝑚∂ℎ𝑚 = 𝑇 ′
𝑛𝑚ℎ′𝑚 − (𝑄𝑛𝑚 + 𝑇𝑛𝑚 + 𝑅𝑛𝑚)ℎ𝑚 , (2.65)

where the directions of ∂ ≔ 𝒏 ⋅ ∇ and 𝑄𝑛𝑚 ≔ 𝒏 ⋅ 𝑸𝑛𝑚 are determined
by the interface normal 𝒏. The primed quantity ℎ′ refers to the dis-
tribution function on the other side. The summations over 𝑚 can be
identified as matrix–vector multiplications, where 𝑸,𝑀, 𝑉 ,𝑊 , 𝑇 , 𝑅,
are 8 × 8 matrices that operate on the vector ℎ. We note that all these
coefficients are independent of ℎ, making this an explicit linear second-
order differential equation for the distribution function. This makes it
very efficient numerically; in fact, it typically takes less time to solve
this kinetic equation than the Riccati-parametrized equation for 𝑔̂𝑅.

We now discuss the calculation of the coefficients in equations (2.64)
and (2.65). For a material described by a general second-order energy
matrix Σ̌ = ̂𝑣 + 𝑤̂ ̌𝑔𝑤̂, the coefficients of equation (2.64) are:

𝑸𝑛𝑚 = 𝐷
4 Tr [ ̂𝜌𝑚 ̂𝜌𝑛(𝑔̂r∇𝑔̂r) − ̂𝜌𝑛 ̂𝜌𝑚(𝑔̂a∇𝑔̂a)]], (2.66)

𝑀𝑛𝑚 = 𝐷
4 Tr [ ̂𝜌𝑛 ̂𝜌𝑚 − ̂𝜌𝑛𝑔̂r ̂𝜌𝑚𝑔̂a], (2.67)

𝑉𝑛𝑚 = 𝑖
4 Tr {[ ̂𝜌𝑛, ̂𝑣](𝑔̂r ̂𝜌𝑚 − ̂𝜌𝑚 𝑔̂a)}, (2.68)

𝑊𝑛𝑚 = 𝑖
4 Tr {[ ̂𝜌𝑛,𝑤̂](𝑔̂r𝑤̂ 𝑔̂r ̂𝜌𝑚 − ̂𝜌𝑚 𝑔̂a𝑤̂ 𝑔̂a + 𝑔̂r[ ̂𝜌𝑚, 𝑤̂]𝑔̂a)}. (2.69)

Every energy matrix contribution considered in this thesis is either a
first-order or second-order matrix as described above (see section 2.4).
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The main physical phenomena considered in this thesis that are not
captured by this form of the kinetic equation would be a gauge field 𝑨,
which requires that a number of new terms be added to the kinetic
equation [139]. As for the boundary coefficients, these are

𝑇𝑛𝑚 = 𝐷
8𝐿

𝐺t
𝐺n

Tr {[𝐹 (𝑔̂a′) ̂𝜌𝑛 − ̂𝜌𝑛𝐹(𝑔̂r′)](𝑔̂r ̂𝜌𝑚 − ̂𝜌𝑚𝑔̂a)}, (2.70)

𝑇 ′
𝑛𝑚 = 𝐷

8𝐿
𝐺t
𝐺n

Tr {(𝑔̂a ̂𝜌𝑛 − ̂𝜌𝑛𝑔̂r)[𝐹 (𝑔̂r′ ̂𝜌𝑚 − ̂𝜌𝑚𝑔̂a′)]}, (2.71)

𝑅𝑛𝑚 = 𝐷
8𝐿

𝐺𝜑
𝐺n

Tr {[−𝑖 ̂𝑟 , ̂𝜌𝑛](𝑔̂r ̂𝜌𝑚 − ̂𝜌𝑚𝑔̂a)}. (2.72)

This equation is directly derived from equation (2.29), and has the
same notation and regime of validity as that equation. We have not
derived higher-order boundary conditions for the kinetic equation
herein. For more details about this parametrization and derivations of
the coefficients listed above, see appendices b and c of paper xiii.

2.8 Reservoirs

It is often useful to include reservoirs in the model of a physical system.
By this, we mean bulk materials with known macroscopic properties;
e.g. a semi-infinite superconductor with a fixed condensate phase, or
a semi-infinite normal metal at a fixed voltage bias. In equilibrium,
treating a superconductor as a reservoir can significantly expedite cal-
culations, since its order parameter does not have to be self-consistently
determined. Out of equilibrium, having at least one reservoir in the
model is a prerequisite, as the chemical potential and temperature of a
material does not naturally emerge from the kinetic equation itself. In
this section, we describe how we model these reservoirs in practice.

Let us consider a superconductor with a known macroscopic order
parameter Δ = Δ0𝑒𝑖𝜒. When approximated as a reservoir, the super-
conducting state should be homogeneous (∇𝑔̂r = 0), and the Usadel
equation reduces to [Σ̂0+Σ̂sc, 𝑔̂r] = 0. One can verify that this equation
is solved by equation (2.59) for the Riccati parameters

𝛾s = +𝑒+𝑖𝜒 tanh(𝜃/2) 𝑖𝜎2, (2.73)
̃𝛾s = −𝑒−𝑖𝜒 tanh(𝜃/2) 𝑖𝜎2, (2.74)

where 𝜃 ≔ acoth[(𝜀 + 𝑖𝜂)/Δ0]. This also demonstrates how the Riccati
parameters are bounded: even though the elements of 𝑔̂r diverge as
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𝜀 → ±Δ0, we see that ‖𝛾s‖ = ‖ ̃𝛾s‖ = |tanh(𝜃/2)| ∈ [0, 1].¹¹ The solution
for a normal-metal reservoir follows from the limit Δ0 → 0,

𝛾n = ̃𝛾n = 0, (2.75)

demonstrating that 𝛾 and ̃𝛾 parametrize superconducting correlations.
The distribution function of a quite general nonequilibrium reservoir

can be described by the diagonal matrix [xiii]

ℎ̂ = diag(ℎ+↑ , ℎ+↓ , ℎ−↑ , ℎ−↓), (2.76)

where ℎ±𝜎 ≔ tanh[(𝜀 ± 𝑒𝑉𝜎)/2𝑇𝜎] are the distribution functions of each
kind of quasiparticle. More precisely, ℎ+↑ describes spin-up electrons,
ℎ−↓ spin-down holes, and so on. It is worth noting that one should not
include a Dynes parameter 𝜀 → 𝜀 + 𝑖𝜂 in the distribution functions;
these describe the occupation numbers 𝑛±𝜎(𝜀) = [1 − ℎ±𝜎(𝜀)]/2 of the
quasiparticle states, which are always real quantities. Compared to
equation (2.63), we see that the coefficients ℎ𝑛 are given by the sums and
differences of these quasiparticle-resolved distribution functions ℎ±𝜎:

ℎ0 = (ℎ+↑ + ℎ+↓ + ℎ−↑ + ℎ−↓)/4,
ℎ3 = (ℎ+↑ − ℎ+↓ + ℎ−↑ − ℎ−↓)/4,
ℎ4 = (ℎ+↑ + ℎ+↓ − ℎ−↑ − ℎ−↓)/4,
ℎ7 = (ℎ+↑ − ℎ+↓ − ℎ−↑ + ℎ−↓)/4.

(2.77)

In this case, we have taken the spin-quantization axis to be the 𝑧-axis,
so the remaining coefficients ℎ1 = ℎ2 = ℎ5 = ℎ6 = 0. The gener-
alization to an arbitrary spin axis is found by applying an appropri-
ate 3d rotation matrix to the vectors (ℎ1, ℎ2, ℎ3) and (ℎ5, ℎ6, ℎ7). The
model above allows the spin-up and spin-down bands to have different
chemical potentials 𝑉𝜎 and temperatures 𝑇𝜎; these are parametrized
by a voltage 𝑉 ≔ (𝑉↑ + 𝑉↓)/2, temperature 𝑇 ≔ (𝑇↑ + 𝑇↓)/2, spin-voltage
𝑉s ≔ (𝑉↑ − 𝑉↓)/2, and spin-temperature 𝑇s ≔ (𝑇↑ − 𝑇↓)/2 [xiii, 99, 140].

The first two parameters are well-known. An increasing temper-
ature 𝑇 means that the total excitation energy available increases,
resulting in larger populations of both electrons and holes. An in-
creasing voltage 𝑉 shifts the chemical potentials of electrons and holes
oppositely, resulting in an electron surplus and hole deficiency.

11. Here, ‖Λ‖ ≔ √Tr(ΛBΛ)/𝑛 is the normalized Frobenius norm of a matrix Λ ∈ ℂ𝑛×𝑛.
This is a natural choice when using Pauli matrices as unit vectors since ‖ ̂𝜏𝑛𝜎̂𝑚‖ = 1.

36



The other two parameters can be realized in several ways. For
instance, in a half-metallic ferromagnet, the spin-splitting is so strong
that e.g. the spin-up band is conducting while the spin-down band is
insulating. If such a material is connected to a normal metal, spin-
up quasiparticles diffuse across the interface, while the spin-down
quasiparticles are trapped inside the normal metal. Thus, by controlling
the voltage and temperature of the ferromagnet, one can influence the
voltage and temperature of only one spin band in the normal metal,
which translates to a spin-voltage and spin-temperature [141]. The
same principle applies to other polarized ferromagnets [142, 143].

Another possibility is to use microwaves to excite a nonequilibrium
spin population via the ferromagnetic resonance (fmr), a technique
called spin-pumping. This technique was recently employed to in-
vestigate spin supercurrents [75], causing a renewed interest in spin
injection into superconductors [xv, 76]. In the limit of weak supercon-
ductivity, an expression for the distribution function of a spin-pumped
ferromagnet was derived in reference 51. When the precession fre-
quency Ω and cone angle 𝛼 are sufficiently small, the result is just a
spin-voltage 𝑒𝑉s = Ω/2 along the magnetization of the ferromagnet.¹²
This is e.g. the relevant limit for the experiment in reference 75: the
superconducting correlations inside Ni80Fe20 should be weak, and the
precession frequency Ω ≈ 0.5meV and cone angle 𝛼 ≈ 1° are small.

Finally, we note that one should be careful about including super-
conductors with finite voltages in a model. This includes both voltages
that are explicitly applied to superconductors, and charge accumula-
tions that might arise via thermoelectric or spin-galvanic effects. This
is because a finite voltage causes an ac Josephson response [4, 43],
which in a bulk superconductor leads to a time-dependent order pa-
rameter Δ(𝑡) = Δ(0)𝑒𝑖𝜔𝑡, where the frequency 𝜔 = 2𝑒𝑉. However, we
only consider the time-independent Usadel equation here, which does
not capture these oscillations. When we do consider voltage-biased
superconductors, we therefore make sure to connect the superconduc-
tors to reservoirs at voltages ±𝑉 /2 via tunneling contacts. Since an
antisymmetric voltage configuration results in zero voltage near the
center of the superconductor, and a high interface resistance minimizes
the charge accumulation at the edges of the superconductor, any ac
effects should be small compared to the dc effects in this limit.

12. By small, we mean that Ω should be much smaller than the exchange field 𝑚,
and 𝛼 should be small enough for the approximations sin 𝛼 ≈ 𝛼 and cos 𝛼 ≈ 1.
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3Numerical algorithms
In chapter 2, we summarized how tomodel dirty superconducting struc-
tures. We now explain in more detail how these models can be handled
numerically. First, we discuss some implementation details, and how to
calculate the steady-state properties of 1d junctions. We then consider
some higher-level techniques: skipping self-consistency iterations via
convergence acceleration algorithms, critical temperature calculations
via binary search algorithms, and mapping out phase diagrams via flow
analysis of the order parameter. We conclude the chapter by briefly
describing the numerical code itself, which is available for free under
an mit open-source licence from github.com/jabirali/geneus.

3.1 Discretization strategy

Most projects presented herein only require 1d numerical calculations.¹
Different classes of physical systems can be treated in this manner.
One possibility is a true 1d system, where the structure is composed
of nanowires. This was the case for paper vi. Another possibility is an
effective 1d system, such as a thin-filmmaterial stack that is translation-
invariant in the film plane. In that case, the physical observables only
depend on the position along the direction perpendicular to the film
plane, and can be described using 1d equations of motion. Most papers
in this thesis belong to that category. Finally, in some cases, we consider
2d or 3d geometries where the behavior along some directions can be
treated via analytical approximations. The distribution function was
treated in this manner in papers xiii–xv. More complex geometries can
also be realized within a 1d model using periodic boundary conditions
or multiterminal boundary conditions [vi, 53].

As described in section 2.7, a complete description of each material
is provided by their Riccati parameter 𝛾 ∈ ℂ2×2 and vector of distribu-
tion traces ℎ ∈ ℝ8. Numerically, these are described in terms of two
16-element state vectors 𝑢 ≔ vec(𝛾 , ̃𝛾 , ∂𝑥𝛾 , ∂𝑥 ̃𝛾) and 𝑣 ≔ vec(ℎ, ∂𝑥ℎ),²
where ∂𝑥 ≔ ∂/∂𝑥 refers to the derivative along the junction direction 𝑥.

1. The exceptions are papers xi and xii, where M. Amundsen performed 2d and 3d
numerical calculations using a fem approach described in reference 144.

2. In linear algebra, vec refers to vectorization or flattening. For instance, vec(𝛾 , ̃𝛾) ≔
(𝛾↑↑, 𝛾↑↓, 𝛾↓↑, 𝛾↓↓, ̃𝛾↑↑, ̃𝛾↑↓, ̃𝛾↓↑, ̃𝛾↓↓) maps two matrices in ℂ2×2 to a vector in ℂ8.
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The reason we include ̃𝛾 in the state vector 𝑢 is that equation (2.60)
couples the equations for 𝛾 and ̃𝛾 via 2(∂𝑥𝛾) ̃𝑁 ̃𝛾(∂𝑥𝛾), which makes it
prudent to solve the equations for 𝛾 and ̃𝛾 simultaneously. Including
first-order derivatives in the state vectors is a standard technique for
reducing the order of a differential equation [145]. For instance, equa-
tions (2.60) and (2.64) are reduced from ∂2𝑥𝛾 = Γ(𝛾 , ̃𝛾 , ∂𝑥𝛾 , ∂𝑥 ̃𝛾 , 𝑥, 𝜀) and
∂2𝑥ℎ = 𝐻(ℎ, ∂𝑥ℎ, 𝑥, 𝜀) to the forms ∂𝑥𝑢 = Γ(𝑢, 𝑥, 𝜀) and ∂𝑥𝑣 = 𝐻(𝑣, 𝑥, 𝜀).
These are both explicit first-order ordinary differential equations; a
number of numerical solvers exist for this class of equations, and we
employed the Fortran open-source library bvp_solver [146–148].³ The
results 𝑢 = 𝑢(𝑥, 𝜀) and 𝑣 = 𝑣(𝑥, 𝜀) are functions of position 𝑥 and
energy 𝜀, where the latter only enters as a parameter in the equations.

Before discussing the equations for 𝑢 and 𝑣 in more detail, we briefly
review how the differential-equation solver itself works. The algo-
rithm presented here is conceptually consistent with the one used by
bvp_solver; we have however simplified it a bit, resulting in a less
efficient version that is easier to understand. For a rigorous discussion
of the actual algorithm behind bvp_solver, see reference 148. Both
equations above have been phrased as ∂𝑥𝜓 = 𝑓 (𝜓 , 𝑥), where 𝜓 is a
state vector and 𝑓 a function that defines the differential equation.
Integrating this differential equation between any two points 𝑥 = 𝑎
and 𝑥 = 𝑏, we find that 𝜑[𝜓(𝑥), 𝑎, 𝑏] = 0, where the residual functional

𝜑[𝜓(𝑥), 𝑎, 𝑏] ≔ 𝜓(𝑏) − 𝜓(𝑎) − ∫
𝑏

𝑎
d𝑥 𝑓 (𝜓(𝑥), 𝑥). (3.1)

We now discretize the problem by introducing a mesh 𝑋 ≔ (𝑥1, … , 𝑥𝑁)
and the corresponding solution values Ψ ≔ (𝜓1, … , 𝜓𝑁). Furthermore,
let us use the Euler approximation (𝑏 − 𝑎)𝑓 (𝜓(𝑎), 𝑎) for the integral
above. The discretized residuals 𝜑𝑛 ≔ 𝜑[𝜓(𝑥), 𝑥𝑛, 𝑥𝑛+1] are then:

𝜑𝑛 ≈ 𝜓𝑛+1 − 𝜓𝑛 − (𝑥𝑛+1 − 𝑥𝑛) 𝑓 (𝜓𝑛, 𝑥𝑛). (3.2)

Collecting these residuals into a vector Φ ≔ (𝜑1, … , 𝜑𝑁−1), the dis-
cretized differential equation reduces to a simple root-finding problem:

Φ(Ψ) = 0. (3.3)

3. The matlab solver bvp4c has a similar interface to bvp_solver, and was de-
veloped by one of the same authors. The Python library sci_kits.bvp_solver is
directly based on bvp_solver itself. All these libraries have in common that
they do not require an explicit expression for the Jacobian of the differential
equation, thus significantly simplifying the numerical implementation.
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It is also straight-forward to account for general nonlinear boundary
conditions 𝑔𝑎(𝜓) = 0 and 𝑔𝑏(𝜓) = 0 within this formalism. We can
simply include 𝜑0 ≔ 𝑔𝑎(𝜓1) and 𝜑𝑁 ≔ 𝑔𝑏(𝜓𝑁) in the residual vector Φ,
and the solution to Φ(Ψ) = 0 will satisfy these boundary conditions.
In practice, bvp_solver uses a Runge–Kutta approximation for the
integral in equation (3.1), but the procedure is otherwise the same [148].

The simplest way to approach a root-finding problem is Newton’s
method [145]. In this case, we wish to determine the solution Ψ that
minimizes the residual Φ. This is achieved via the iteration formula

Ψ ← Ψ − (
∂Φ
∂Ψ)

−1
Φ, (3.4)

where the quantity in parentheses is known as the Jacobian matrix.⁴ In
our implementation, this Jacobian was calculated analytically for the
kinetic equation, while bvp_solver estimated it numerically via finite-
difference approximations for the Riccati-parametrized equations. This
iteration process is then continued until the net residual ‖Φ‖ drops
below some tolerance, which we in our simulations set to 10−10.⁵

This brief review provides some insight into the problems that can
arise numerically. Newton’s method relies on iteratively improving
an initial guess for Ψ to find a nearby root. Even for simple algebraic
problems, it is well-known that a good initial guess is crucial for proper
convergence. One reason is that some functions have multiple roots.
For instance, even the trivial 𝑓 (𝑥) = 𝑥2 − 4 has two roots 𝑥 = ±2, and
Newton’s method converges to the root closest to its initial guess. In a
physical problem, some of these roots may correspond to unphysical
solutions, such as a distribution function or Riccati parameter with an
anomalous norm.⁶ In other cases, the systemmay exhibitmultistability,

4. When discussing algorithms, we use the symbol ← to denote assignment.
5. In our work, we wished to determine physical observables to a precision of

about 10−8. These observables are usually found by summing up contributions
from the Riccati parameters 𝛾(𝜀𝑛) calculated at 1000 energies 𝜀𝑛. Assuming for
simplicity that the errors in each 𝛾(𝜀𝑛) are uncorrelated and equally important,
such a summation can be expected to amplify the numerical error from 10−10 to
about √1000 × 10−10 ≈ 0.3 × 10−8. This square-root formula follows from the fact
that accumulation of random errors can be viewed as a 1d random walk.

6. The norm of a distribution function is constrained by its interpretation as an
occupation number. One way to justify that we need ‖𝛾 ‖ < 1 is the following. The
density of states can be written 𝑁(𝜀) = (𝑁F/2)ReTr[(1 − 𝛾 ̃𝛾)−1(1 + 𝛾 ̃𝛾)]. If we for
simplicity evaluate this at 𝜀 = 0, it is easy to check that 𝑁(0) < 0 for ‖𝛾 ‖ > 1; and
a negative density of states clearly has to correspond to an unphysical solution.
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which means that these solutions describe different physical states.
This phenomenon is discussed in e.g. paper xiii and references 149–151.
Another problem is that if the initial guess is too far away from any root,
the calculation can diverge. For instance, the function 𝑓 (𝑥) = 𝑥/(𝑥 − 1)
has a root at 𝑥 = 0, but Newton’s method still diverges if the initial
guess |𝑥| ≥ 1. This is a common problem with the Usadel equation
too: if the initial guess is unreasonable, the Newton iterations diverge.
To summarize, the same problems that affect Newton iterations in 1d
algebraic problems are relevant for the numerical solution of nonlinear
differential equations. The remedy is also the same: we require an
initial guess that is sufficiently close to the correct solution.

From here on, we refer to 𝛾 and ℎ instead of explicitly bringing up
their state-vector representations 𝑢 and 𝑣. When we first initialize
the system, we typically set the Riccati parameters in each material
to the bulk solutions 𝛾s and 𝛾n presented in section 2.8. These are
used to evaluate any boundary conditions. However, when we begin
to solve the differential equations, we instead use 𝛾(𝜀max) ← 0 and
𝛾(𝜀𝑛) ← 𝛾(𝜀𝑛+1) as guesses, where (𝜀1, … , 𝜀max) are the discretized
energies. The fact that 𝛾 → 0 as 𝜀 → ∞ can be shown from the
Usadel equation. The second equation is based on the observation
that 𝛾 is usually continuous, so solutions at nearby energies should
be similar. This eliminates some convergence issues during the first
few self-consistency iterations compared to using a bulk solution as
a guess. After a few iterations, a much better guess is however given
by 𝛾𝑘(𝜀𝑛) ← 𝛾𝑘−1(𝜀𝑛), where 𝑘 is the self-consistency iteration. This
is because as the system converges, the previous result for 𝛾 should
be increasingly accurate, thus requiring fewer Newton iterations. We
therefore went for a hybrid approach: we used the first strategy for
the first few iterations to prevent convergence problems, and switched
to the second one when ‖𝛾𝑘 − 𝛾𝑘−1‖ < 0.05 to speed up the numerics.

In practice, we usually calculate 𝛾 and ℎ at 100 uniformly spaced
positions in eachmaterial, whichwewill refer to as control points. How-
ever, the differential-equation solver often has to generate much denser
meshes than this internally for the Newton iterations to converge. This
causes a problem: if we only know e.g. the superconducting order pa-
rameter Δ(𝑥) at the control points, but the numerical solver requires its
values at arbitrary points, we need an efficient interpolant. A similar
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situation arises for the kinetic equations for ℎ: it is straight-forward to
derive an explicit Jacobian for equation (2.64), which can significantly
speed up the numerics. However, the Jacobian is a function of 𝛾, which
we only know at the control points, while the differential-equation
solver has to be able to evaluate it at any point. We found Catmull–Rom
splines to work very well as an interpolant for this purpose [152].

As an optimization trick, we note that it is also possible to chain
multiple interpolation algorithms. For instance, we found that the
most efficient alternative for the order parameter Δ was to interpolate
cubically from the coarse-grained 100-point mesh to a fine-grained
400,000-point mesh before solving any differential equations, and then
let the numerical solver interpolate linearly within the fine mesh. The
optimal mesh size was simply determined empirically: a too large mesh
is obviously a waste of space, but a too small mesh causes convergence
problems in systems with e.g. large phase gradients. The reason such
chaining of interpolation algorithms can be beneficial, is that linear
interpolation on a uniformmesh can be implemented in a very efficient
manner.⁷ Moreover, since the interpolant is typically evaluated every
time a new solution for 𝛾 is evaluated, at each internal mesh point,
even small optimizations here can lead to large net speed-ups.

As for the energy 𝜀, this only appears in the equations for 𝛾 and ℎ via
the energy matrix Σ̌ (see section 2.4). When performing self-consistent
calculations, the energy resolution required is constrained by having
to get reliable results for the order parameter Δ. When performing
nonequilibrium calculations, the energy resolution directly affects e.g.
the system’s sensitivity to an applied voltage at low temperatures.
However, in some cases—such as when calculating the density of states
non-self-consistently—one can choose a lower range and density of
energies without loss of accuracy. In practice, we typically solve each
differential equation for 800 uniformly spaced energies in (0, 4Δ0), and
another 200 energies in the range (4Δ0, 30Δ0). Finally, when calculat-
ing physical observables by integrating 𝛾 and ℎ over energies, we note
that the simple trapezoid method is far from optimal; we found e.g.
interpolation and integration via pchip to be far more accurate.

7. In particular: the nearest mesh point 𝑥𝑛 below an arbitrary point 𝑥 is given by
the index 𝑛 = ⌊(𝑁 − 1) (𝑥/𝐿) + 1⌋, where 𝐿 is the total length and 𝑁 the number
of mesh points. Once the nearest neighbor is known, the linear interpolation
can be summarized as Δ(𝑥) ≈ Δ(𝑥𝑛−1) + [Δ(𝑥𝑛) − Δ(𝑥𝑛−1)] [(𝑁 − 1) (𝑥/𝐿) − (𝑛 − 2)].
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3.2 Steady-state calculations

In the previous section, we summarized how one can parametrize,
discretize, and numerically solve the equations introduced in chapter 2.
We will now discuss the larger picture: which equations should we
solve, and in what order? For simplicity, we begin by considering a
simple superconductor/ferromagnet (s/f) bilayer, and then discuss the
generalization to arbitrary 1d models afterwards. We will also assume
that we are interested in the steady-state properties, such as the density
of states, charge current, or spin current. More specialized algorithms
for calculating other properties are deferred to later sections.

Describing an s/f bilayer requires that we determine the Riccati
parameters 𝛾s and 𝛾f in each layer, the distribution functions ℎs and
ℎf in each layer, and the order parameter Δ in the superconductor.⁸ To
determine these quantities, we have to solve the equations in table 3.1.
However, these equations are interdependent. For instance, the distri-
bution functions are found by solving equations (2.64) and (2.65); but
all coefficient matrices in those equations are expressed in terms of
the propagators 𝑔̂r and 𝑔̂a, which are in turn functions of the Riccati
parameters. Similarly, the order parameter Δ is a function of both the
Riccati parameters and distribution function via 𝑔̂k, and the parameters
inside the two materials are coupled via the boundary conditions.

Table 3.1: Equations required to describe simple s/f bilayers.

Name Symbol Equations

Riccati parameter 𝛾 2.60–2.61
Distribution function ℎ 2.64–2.72
Energy matrix Σ̌ 2.18–2.20
Boundary condition ̌𝐼 2.28
Superconducting order parameter Δ 2.38
Magnetic order parameter 𝒎 n/a

8. In general, one would also have to determine the magnetic order parameter 𝒎
self-consistently. For instance, a spin current between two ferromagnets de-
scribes an effective exchange interaction mediated by conduction electrons [153].
Thus, electronically controlling these spin currents can change the ground-state
magnetic configuration of a junction [xiv]. Another example is that some mate-
rials may exhibit proximity-induced magnetic properties [76]. Throughout this
thesis, we will however assume any magnetic order parameters to be fixed.
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We can visualize these interdependencies via a data dependency
graph as shown in figure 3.1. This shows that there are two obvious
calculation orders that optimize the information flow per iteration:

𝛾f → ℎf → 𝛾s → ℎs → Δ; (3.5)
𝛾f → 𝛾s → ℎf → ℎs → Δ. (3.6)

In other words, one should always calculate the 𝛾’s before the ℎ’s and
save the order parameter for last—but whether this is done in one
material at a time or not is not that important. All these calculations
should then be repeated until convergence. In practice, we define
convergence as each 𝛾 and ℎ satisfying ‖𝛿𝛾 ‖ < 10−8 and ‖𝛿ℎ‖ < 10−8,
where 𝛿 denotes the change between successive iterations.⁹

The problem can be simplified via approximations. Except for pa-
per xiii, we have consistently assumed that the distribution func-
tions ℎs and ℎf are known. This simplifies the calculation loop above
to 𝛾f → 𝛾s → Δ. Usually, this entails an assumption of equilibrium
conditions; but in papers xiv–xv, we used similar approximations
out of equilibrium as well. It is also common to approximate the
superconductor as a reservoir; in that case, both Δ and 𝛾s are fixed,
and the problem is reduced to determining 𝛾f. This can be done for
1000 energies in 30 seconds using our numerical implementation.
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Superconductor
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Ferromagnet

Figure 3.1: Data dependency graph for an s/f bilayer. This graph
was composed from the equations listed in table 3.1.

9. The parameters 𝛾 and ℎ are functions of position and energy; in practice, these
inequalities should be interpreted as holding at every position and energy.
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This scheme is easily generalized to an arbitrary number of materials:
for each material, one calculates the Riccati parameters via the Usadel
equation, then the distribution function via the kinetic equation, then
any order parameters. This is then repeated inside one material at a
time until all parameters have converged to a satisfactory degree. The
optimal order for iterating over these materials follow from a similar
logic as above. For instance, consider an s1/f1/n/f2/s2 structure, where
the outer superconductors are reservoirs. The Riccati parameter 𝛾n
in the normal metal depends on two unknowns via the boundary
conditions, namely the values of 𝛾f1 and 𝛾f2 in the two ferromagnets.
On the other hand, 𝛾f1 and 𝛾f2 both depend on only one unknown
parameter 𝛾n, since the Riccati parameters 𝛾s1 and 𝛾s2 are fixed. Thus,
it makes sense to iterate over the materials in the order f1 → f2 → n.
Since the optimal iteration order tends to differ from system to system,
we numerically implemented it as a general foreach-function, which
allows the exact iteration order to be specified at runtime.

We note that in some cases, the equations might not converge well
if one immediately attempts to solve them all at once. In that case,
it makes sense to first solve the equations for the Riccati parameters,
while keeping the distribution function and order parameter fixed
to their initial guesses. After this non-self-consistent equilibrium
calculation has converged to some degree, the complete set of equations
typically converges in amore stablemanner. Including such a bootstrap
procedure, we summarize the solution strategy in algorithm 3.1.

Algorithm 3.1: Steady-state calculation procedure.

for each material 𝑚:
Initialize 𝛾𝑚, ℎ𝑚, Δ𝑚 to bulk values

do until all ‖𝛿𝛾𝑚‖ < 10−2:
for each material 𝑚:

𝛾𝑚 ← UsadelEquation(Δ𝑚, 𝛾𝑚−1, 𝛾𝑚+1)

do until all ‖𝛿𝛾𝑚‖ < 10−8 and ‖𝛿ℎ𝑚‖ < 10−8:
for each material 𝑚:

𝛾𝑚 ← UsadelEquation(Δ𝑚, 𝛾𝑚−1, 𝛾𝑚+1)
ℎ𝑚 ← KineticEquation(Δ𝑚, 𝛾𝑚, ℎ𝑚−1, ℎ𝑚+1)
Δ𝑚 ← SelfconsistencyEquation(𝛾𝑚, ℎ𝑚)
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As mentioned earlier, numerical solvers rely on initial guesses when
solving differential equations—and the calculations converge faster
the better these guesses are. This effect is amplified in self-consistent
calculations, since the order parameter Δ exhibits a kind of numeri-
cal inertia, requiring a large number of self-consistency iterations to
change significantly. One guiding principle to speed up the numerics is
therefore to consider the symmetries of the physical system, and make
sure that the initial guess satisfies those symmetries when applicable.

For instance, consider a simple s/i/s/i/s structure, where the insula-
tors are treated as tunneling interfaces between the superconductors.
We treat the outer superconductors as reservoirs with order parameters
Δ = Δ0𝑒𝑖𝜒, where the phase 𝜒l = 0 for the left reservoir and 𝜒r = 𝜋/2
for the right one. In equilibrium, there are then only two unknown pa-
rameters that have to be determined: the Riccati parameter 𝛾 and order
parameter Δ of the central superconductor. In figure 3.2, we show the
striking difference betweeen choosing an initial guess with the phase
𝜒 = 𝜒l = 0 (asymmetric) and 𝜒 = (𝜒l + 𝜒r)/2 = 𝜋/4 (symmetric) for the
central superconductor. The curves can be described as having error
half-lives of 2.2 and 8.6 iterations, respectively, resulting in a factor 4
difference in computation time. With our numerical implementation,
this is the difference between a 25 min and 90 min calculation. It is
worth noting that using a normal-state solution Δ = 0 as an initial
guess is far more efficient than an initial guess with the wrong phase.
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Figure 3.2: Convergence rates for a phase-biased s/i/s/i/s junction.
The curves correspond to different initial order parameters |Δ|𝑒𝑖𝜒.
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3.3 Convergence acceleration

It is not unusual for self-consistent calculations to be painstakingly
slow. For instance, in an s/f bilayer, it typically takes only 30 sec to
solve the equations if the superconductor is approximated as a reservoir.
If we solve the equations inside the superconductor self-consistently,
on the other hand, the time requirement increases to about 90 min. In
complex multilayer junctions, or in junctions with high-transparency
interfaces, the time requirements can be even worse.

One way to address this problem is Steffensen’s method [154, 155].¹⁰
The starting point for our discussion is that a self-consistency iteration
can be viewed as a kind of fixpoint iteration. More precisely, we are
trying to solve an equation of the kind Δ = 𝑓 (Δ), where the function 𝑓
abstracts away the solution of the Usadel equation and kinetic equation
throughout the system. We see that algorithm 3.1 then corresponds to
the naïve implementation of this fixpoint iteration scheme,

Δ𝑛+1 = 𝑓 (Δ𝑛), (3.7)

where the subscript 𝑛 refers to the iteration number. A more efficient
approach would be to reformulate Δ = 𝑓 (Δ) as a root-finding problem,

𝜑(Δ) ≔ 𝑓 (Δ) − Δ = 0, (3.8)

and attack it via a root-finding algorithm such as Newton’s method,

Δ𝑛+1 = Δ𝑛 −
𝜑(Δ𝑛)
𝜑′(Δ𝑛)

. (3.9)

We can estimate the derivative above via a difference approximation
𝜑′(Δ𝑛) ≈ [𝜑(Δ𝑛+1) − 𝜑(Δ𝑛)]/[Δ𝑛+1 − Δ𝑛]. Furthermore, substitution of
equation (3.7) into (3.8) shows that we can set 𝜑(Δ𝑛) = Δ𝑛+1 − Δ𝑛 if
we used fixpoint iteration before we invoked Newton’s method. This
leads us to Steffensen’s convergence acceleration equation:

Δ𝑛+3 = Δ𝑛 −
(Δ𝑛+1 − Δ𝑛)2

Δ𝑛+2 − 2Δ𝑛+1 + Δ𝑛
. (3.10)

10. I wish to thank M. Amundsen for pointing out that self-consistency iteration
can be viewed as a fixpoint problem where Steffensen’s method is applicable.
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Equation (3.10) was derived under the assumption thatΔ𝑛, Δ𝑛+1, Δ𝑛+2
were calculated via fixpoint iteration. In practice, this means that we
have to solve equation (3.7) at least three consecutive times between
each time we can invoke equation (3.10). Empirically, we found that
we in general had to perform 8 regular fixpoint iterations in-between
each convergence boost to avoid numerical stability problems. We
also note that to reap the full benefits of the convergence acceleration
algorithm, one should solve the equations for 𝛾 and ℎ in the supercon-
ductor immediately after each convergence boost, so that the updated
order parameter Δ is reflected in the boundary conditions when we
subsequently solve the equations for 𝛾 and ℎ in neighboring materials.
Finally, the order parameter Δ = Δ(𝒓) is in general a function of po-
sition; Steffensen’s method should simply be applied individually at
each position 𝒓. An updated version of algorithm 3.1 that includes this
convergence acceleration method is presented in algorithm 3.2 below.

Algorithm 3.2: Revised steady-state calculation procedure with
convergence acceleration. For brevity, we use Δ′

𝑚 and Δ″
𝑚 for the

values of Δ𝑚 calculated one and two iterations earlier, respectively.

for each material 𝑚:
Initialize 𝛾𝑚, ℎ𝑚, Δ𝑚 to bulk values

do until all ‖𝛿𝛾𝑚‖ < 10−2:
for each material 𝑚:

𝛾𝑚 ← UsadelEquation(Δ𝑚, 𝛾𝑚−1, 𝛾𝑚+1)

do until all ‖𝛿𝛾𝑚‖ < 10−8 and ‖𝛿ℎ𝑚‖ < 10−8:
for each material 𝑚:

𝛾𝑚 ← UsadelEquation(Δ𝑚, 𝛾𝑚−1, 𝛾𝑚+1)
ℎ𝑚 ← KineticEquation(Δ𝑚, 𝛾𝑚, ℎ𝑚−1, ℎ𝑚+1)

Δ″
𝑚 ← Δ′

𝑚

Δ′
𝑚 ← Δ𝑚

Δ𝑚 ← SelfconsistencyEquation(𝛾𝑚, ℎ𝑚)

every 8th iteration:
Δ𝑚 ← Δ″

𝑚 − (Δ′
𝑚 − Δ″

𝑚)2/(Δ𝑚 − 2Δ′
𝑚 + Δ″

𝑚)
𝛾𝑚 ← UsadelEquation(Δ𝑚, 𝛾𝑚−1, 𝛾𝑚+1)
ℎ𝑚 ← KineticEquation(Δ𝑚, 𝛾𝑚, ℎ𝑚−1, ℎ𝑚+1)
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We show benchmarks for two different systems in figures 3.3 and 3.4.
In figure 3.3, Steffensen’s method reduces the calculation from 90
iterations to 30 iterations, corresponding to a reduction in computation
time from 100 min to 40 min. In figure 3.4, there is a striking reduction
is from 235 to 42 iterations, reducing the computation time from almost
12 hours to 2 hours 40 min. These examples are representative of
the typical speed-ups we achieved for simple and complex junctions,
respectively. There are however some edge cases with much more
ridiculous speed-ups. For instance, a bulk superconductor exactly at
its critical temperature converges extremely slowly if we use Δ = Δ0
as our initial guess. Without convergence acceleration, this requires
almost 5000 iterations to converge to |Δ| < 10−8. Steffensen’s method
reaches the same precision in 56 iterations with algorithm 3.2, and in
21 iterations if the boost frequency is increased to every 3rd iteration.

Figures 3.3 and 3.4 also illustrate how the convergence acceleration
works: every time Steffensen’s method is invoked, there is one iteration
with a larger change than usual, which reduces the numerical error
by 1–2 orders of magnitude.¹¹ In-between these boosts, we perform
regular fixpoint iterations, so the system usually converges at the same
rate as without Steffensen’s method. We note that some numerical
solvers like bvp_solver allow the solution algorithm to be specified at
run-time. In general, we found a 4th-order Runge–Kutta method to be
up to twice as fast as a 6th-order method, but right after a convergence
boost, the 6th-order method is both faster and more likely to converge.

Steffensen’s method for convergence acceleration is excellent when
only the magnitude of the order parameter changes between iterations.
However, in systems with phase-biased or voltage-biased supercon-
ducting elements, the phase winding of the order parameter changes as
well. In this case, Steffensen’s method typically diverges, and we have
to revert to slow fixpoint iterations. For future reference, a possible
solution to this problem could be to implement a more general quasi-
Newton acceleration method [156], which could explicitly account for
the position-dependence of the order parameter during boosts.

11. Given the success we had with Steffensen’s method, we also tried to implement
a number of higher-order algorithms [155]. However, on average, we found that
these performed worse than Steffensen’s method, as they required more fixpoint
iterations between each boost for the numerical procedure to remain stable.
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Figure 3.3: Comparison of iteration methods for an s/f bilayer with
Rashba and Dresselhaus spin–orbit coupling (inspired by paper ii).
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Figure 3.4: Comparison of iteration methods for a complex multi-
layer junction (parameters taken from paper ix). The junction has
the structure s/f/f’/s’/f’/f/s, where the s layers are reservoirs, the
f layers have a conical magnetic texture, the f’ layers have high
exchange fields and spin-filtering boundary conditions, and the s’
layer has spin-flip and spin–orbit scattering. The order parameter
is determined self-consistently in the central superconductor.
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3.4 Homotopy continuation

As emphasized in previous sections, good initial guesses are essential
for proper numerical convergence. Usually, a good strategy is to start
with the corresponding bulk solutions in equilibrium. However, one
example where this strategy failed is a superconductor connected to a
very strongly polarized ferromagnetic insulator, which was considered
in paper viii. More precisely, we implemented boundary conditions to
all orders in the spin-mixing angles 𝜑𝑛 at the interface [viii, 115],

̂𝐼 ∼ ∑
𝑛
[1 −

𝑖
4 sin(𝜑𝑛) 𝑎̂ +

1
2 sin

2(𝜑𝑛/2) 𝑎̂𝑚̂]
−1

×[ − 𝑖 sin(𝜑𝑛) 𝑔̂𝑎̂ + sin2(𝜑𝑛/2) [𝑚̂, 𝑎̂] ]

×[1 −
𝑖
4 sin(𝜑𝑛) 𝑎̂ +

1
2 sin

2(𝜑𝑛/2) 𝑚̂𝑎̂]
−1
,

(3.11)

where 𝑔̂ = 𝑔̂r depends on 𝛾, 𝑎̂ ≔ 𝑔̂𝑚̂𝑔̂ − 𝑚̂, 𝑚̂ ≔ 𝒎 ⋅ 𝝈̂, and 𝒎 is
the interface magnetization. Physically, the correct solution is quite
different from a bulk superconductor, e.g. having a strong suppression
of Δ at the interface [viii]. This is also a highly nonlinear boundary
condition due to the matrix inversion, making it a nontrivial task to
solve. Long story short, the Newton iterations diverged for large 𝜑𝑛.

The solution strategywe developed for this problemwas to introduce
a new boundary condition ̂𝐼 ′ ≔ 𝜆 ̂𝐼, where 𝜆 = 0 corresponds to a
vacuum boundary condition, and 𝜆 = 1 restores the boundary condition
we were interested in. For 𝜆 = 0, an exact solution to the problem is
given by the bcs bulk solution 𝛾s discussed in the previous chapter, so
it is legitimate to initialize the Riccati parameter 𝛾 ← 𝛾s. If we now
gently increase 𝜆 between iterations, and self-consistently solve the
equations for 𝛾 and Δ for each value of 𝜆, we can gradually determine a
family of physically reasonable solutions 𝛾(𝜆). Eventually, we reach the
value 𝜆 = 1 that we were interested in, without the divergent behavior
that appears if we try to solve the equations for 𝜆 = 1 right away. The
above is a solution strategy which is easily generalized, and which can
can be useful for a variety of numerically challenging problems. We
can e.g. slowly change the magnitude of any contribution in the energy
matrix Σ̌, the voltage or phase bias across a junction, the value of a
gauge field, or even the physical dimensions of a material. A suggestion
for how to implement this procedure is given in algorithm 3.3.

52



This solution was inspired by adiabatic processes in physics [157]. In
that case, the Schrödinger equation for the eigenstates can be written
𝐻(𝜆)Ψ𝑛(𝜆) = 𝐸𝑛(𝜆) Ψ𝑛(𝜆), where 𝜆 is a parameter that changes slowly
over time. If we start in a given eigenstate at 𝜆 = 0, for instance Ψ1(0),
we end up in “the same” eigenstate after adiabatically deforming the
Hamiltonian to 𝜆 = 1, in this case Ψ1(1). In the numerical case, the
solution of the differential equation was phrased as a root-finding
problem Φ(Ψ) = 0 in equation (3.3). Nonlinear differential equations
can have multiple solutions, so we can express this as Φ(Ψ𝑛) = 0, where
𝑛 is some index that enumerates these roots. We then generalize this
to an equation Φ[Ψ𝑛(𝜆), 𝜆] = 0, where we know the solution Ψ𝑛(0)
that satisfies the equation for 𝜆 = 0. By “adiabatically” increasing 𝜆
between self-consistency iterations in the numerical simulations, we
can track the same root from 𝜆 = 0 to 𝜆 = 1. This ensures that the
differential-equation solver always has an initial guess that is close
to a root, which increases the chance that its Newton iterations are
successful. Since we know that the 𝑛’th root was physically reasonable
for 𝜆 = 0, this solution branch is also likely to be of interest for 𝜆 = 1.
We arrived at this method based on an intuition from physics, but we
note that the same method is known in optimization theory as a ho-
motopy continuation method, based on an intuition from topology [145].

Algorithm 3.3: Homotopy continuation for divergent problems.

Initialize 𝛾 , ℎ, Δ to bulk values

𝜆 ← 10−6

do until ‖𝛿𝛾 ‖ < 10−8 and ‖𝛿ℎ‖ < 10−8:
𝛾 ← UsadelEquation(Δ, 𝛾 , 𝜆)
ℎ ← KineticEquation(Δ, 𝛾 , ℎ, 𝜆)

for 𝜆 ← 0.01, 0.02, … , 0.99:
do until ‖𝛿𝛾 ‖ < 10−4 and ‖𝛿ℎ‖ < 10−4:

𝛾 ← UsadelEquation(Δ, 𝛾 , 𝜆)
ℎ ← KineticEquation(Δ, 𝛾 , ℎ, 𝜆)
Δ ← SelfconsistencyEquation(𝛾 , ℎ)

𝜆 ← 1
do until ‖𝛿𝛾 ‖ < 10−8 and ‖𝛿ℎ‖ < 10−8:

𝛾 ← UsadelEquation(Δ, 𝛾 , 𝜆)
ℎ ← KineticEquation(Δ, 𝛾 , ℎ, 𝜆)
Δ ← SelfconsistencyEquation(𝛾 , ℎ)
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For simplicity, we do not explicitly iterate over materials in algo-
rithm 3.3. Rather, when we write e.g. 𝛾 ← UsadelEquation(Δ, 𝛾 , 𝜆),
an iteration over materials in the same way as in algorithm 3.1 is
implied. The central feature of algorithm 3.3 is the iteration over 𝜆.
Both the Usadel equation and kinetic equation can vary with 𝜆; this
is usually the case if 𝜆 parametrizes the system’s energy matrix or
boundary condition. In this example, we have chosen a fixed step
length 𝛿𝜆 = 0.01; in practice, 𝛿𝜆 has to be empirically determined for
each physical problem. A more sophisticated solution would be to use
an adaptive stepping algorithm, which could adjust 𝛿𝜆(𝜆) based on
e.g. the number of self-consistency iterations required for the previous
value of 𝜆. The calculations at each 𝜆 can usually be performed with a
more relaxed convergence criterion than the final calculations. This is
because the goal is just to obtain a good enough result for each 𝛾(𝜆)
to be able to solve the equations for 𝛾(𝜆 + 𝛿𝜆). In this example, we
use a convergence criterion of 10−4 for these intermediate values of 𝜆,
and increase the precision to 10−8 when we finally get to 𝜆 = 1. We
note that the first iteration is not performed using 𝜆 = 0.00 or 𝜆 = 0.01;
rather, we perform a precise calculation for 𝜆 = 0.000001. Basically,
we found that the iteration where we move from 𝜆 = 0 to 𝜆 > 0 can
be quite tough for the numerical solver; starting with an infinitesimal
increment of 𝜆 ensures convergence of the first iteration, while the
successive iterations can be performed using a much larger 𝛿𝜆.

3.5 Phase diagrams

In the previous sections, we have focused on how to calculate the
steady-state properties of a superconducting structure. In general,
this requires that one solve the Usadel equation, kinetic equation, and
self-consistency equation repeatedly until convergence. However, not
all observables of interest are of this kind. It can sometimes be equally
interesting to map out phase diagrams, which visualize for what com-
bination of system parameters a structure is superconducting and not.
This was e.g. highly relevant for paper xiii, where we calculated phase
diagrams as function of magnetic field, applied voltage, and temper-
ature. Critical temperature calculations are a special case of phase
diagrams, which were relevant for papers ii–iv and paper viii. For
calculating such phase diagrams, we discovered that full convergence
is rarely required, and a far more efficient algorithm exists.
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To motivate our approach, let us first consider a bulk superconduc-
tor at some temperature 𝑇. The naïve way to determine whether it is
superconducting would be to use a variant of algorithm 3.1 or 3.2. We
initialize its state to Δ = Δ0, and self-consistently solve all relevant
equations to update Δ. If the order parameter decreases beneath some
threshold Δ < 0.01Δ0, we conclude that it is not superconducting. If
the order parameter converges without this happening, we conclude
that it is superconducting. To generate a phase diagram as function of
temperature, we can repeat this calculation at different temperatures.
By definition, the critical temperature 𝑇 = 𝑇c is the lowest tempera-
ture for which Δ → 0. Using the algorithm above, it takes roughly
900 iterations to go from Δ = Δ0 to Δ < 0.01Δ0 at 𝑇 = 𝑇c without
convergence acceleration. With Steffensen’s method, the situation is
drastically improved, and the process requires only 40 iterations. How-
ever, in both cases, most of these iterations are simply spent getting
from Δ = Δ0 to Δ = 0.01Δ0. Whether the material is classified as being
superconducting or not is then decided by a single iteration, which can
either push Δ below 0.01Δ0 or not. This is the key insight behind the
more optimized algorithm: if we simply use Δ = 0.01Δ0 as the initial
guess, we can determine in a single iteration whether the material is su-
perconducting or not. The order parameter Δ spontaneously increases
in that iteration for 𝑇 < 𝑇c and decreases for 𝑇 ≥ 𝑇c (see figure 3.5).
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Figure 3.5: Comparison of the phase-diagram algorithms discussed
above. The arrows illustrate how Δ changes during the procedures.
The initial statesΔ = Δ0 (blue) andΔ = 0.01Δ0 (red) are exaggerated.
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To elucidate how a single iteration per temperature can be sufficient,
we now discuss the calculations in some more detail. We can describe
the self-consistency iteration scheme for a bulk superconductor as

Δ𝑛+1 = Δ𝑛 + 𝜑(Δ𝑛, 𝑇 ), (3.12)

where 𝑛 is the iteration number, and the flow 𝜑 of the order parameter
between self-consistency iterations is defined as

𝜑(Δ, 𝑇 ) ≔ 𝑓 (Δ, 𝑇 ) − Δ. (3.13)

This notation was introduced in section 3.3. The function 𝑓 (Δ, 𝑇 ) can
in turn be written in closed form by combining the Usadel equation
for a bulk superconductor, the self-consistency equation for the order
parameter, and the equilibrium distribution function. If we take the
order parameter to be real, the result can be written as:

𝑓 (Δ, 𝑇 ) = 1
log(2𝜔c/Δ0)

𝜔c

∫
0

d𝜀 tanh(𝜀/2𝑇 ) Re(
Δ

√(𝜀 + 𝑖𝜂)2 − Δ2
) .

Sincewe have assumed that we areworkingwith a bulk superconductor
here, all these quantities are position-independent. Numerically, we
usually set 𝜂 = 0.01Δ0 and 𝜔c = 30Δ0, but that is not important here.

The flow 𝜑(Δ, 𝑇 ) is a memoryless function that only depends on the
value of Δ, and does not care whether that value was taken as an initial
guess or reached via 900 fixpoint iterations. Thus, if 𝜑(0.01Δ0, 𝑇 ) > 0,
we know that Δ can never drop below 0.01Δ0 via fixpoint iteration
from any initial value Δ ≥ 0.01Δ0. It is therefore sufficient to calculate
sgn[𝜑(0.01Δ0, 𝑇 )] just once per temperature 𝑇, since this information
can be used to short-circuit the naïve phase-diagram calculation.

It is important to use an infinitesimal initial guessΔ = 0.01Δ0 instead
of setting Δ = 0. This is because Δ = 0 technically always solves the
equations. When Τ > 𝑇c, the normal state corresponds to a minimum
in the system’s free energy, and is a stable solution. When 𝑇 < 𝑇c, the
normal state corresponds to a maximum in the free energy, and is an
unstable solution. By performing a small perturbation from Δ = 0 to
Δ = 0.01Δ0, and checking whether the system converges back towards
or diverges away from Δ = 0, we can determine whether the normal-
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state solution is stable or unstable.¹² Whether the system is converging
towards or away from Δ = 0 after a small perturbation is of course
precisely what the sign of the flow function 𝜑(0.01Δ0, 𝑇 ) measures.
This provides another interpretation of our algorithm: we are essen-
tially checking whether Δ = 0 describes a minimum or maximum in
the free energy. Since the free energy is difficult to evaluate explicitly
within the Usadel formalism, investigating the flow function 𝜑 is a
useful alternative. The situation becomes a bit more complicated in
multistable systems, which can exhibit a superconducting hysteresis
effect with a multivalued order parameter. For a discussion of phase-
diagram calculations in bistable systems, see appendix a of paper xiii.

With minor adjustments, the same algorithm can be used for ar-
bitrary proximity structures as well. Firstly, we have to use more
than 1 self-consistency iteration at each temperature, but e.g. 10 is
still sufficient for most purposes. One reason is that in a proximitized
superconductor, the change in the order parameter might be ambigu-
ous during the first few iterations. For instance, in an s/f bilayer, the
order parameter will likely decrease near the interface during the first
iteration, even though it increases deeper inside the superconductor.
It may take a couple of iterations to determine which of these effects
win. Another reason is that we need to iterate over all materials in the
junction a few times for information to flow back and forth. The last
consideration can be alleviated via a high-precision bootstrap process,
so that as much information as possible about the rest of the system
reaches the superconductor before the first self-consistency iteration.

Algorithm 3.4 presents a solution procedure with these adjustments.
We assume that there is only one superconductor in the system, so
that it is unambiguous what we mean by the superconducting and
normal-state phase, and refer to its order parameter as Δ. This Δ is of
course a function of position; when used in comparison operations, we
implicitly refer to its mean. We assume that the system has a known
distribution function ℎ, but the generalization to a general nonequi-
librium situation is straight-forward. The algorithm is formulated in

12. We note that an analogous situation arises for a simple gravity pendulum. The
equations of motion predict that the pendulum will be in equilibrium if it is
either hanging straight down or straight up (i.e. it has two fixpoints). However,
the latter is clearly an unstable solution, since an infinitesimal perturbation in
any direction pushes the pendulum completely out of equilibrium.

57



terms of an abstract configuration Ω, which should include any system
parameters that we wish to vary. For example, in paper xiii, we set
the distribution function ℎ to the form given in equation (2.76), and
varied the temperature 𝑇 and voltage 𝑉 to create a phase diagram.
Another example from the same paper is that we set the energy matrix
to Σ̌ = 𝜀 ̂𝜏3+Δ ̂𝜏1𝑖𝜎2+𝑚𝜎3 and varied the spin-splitting𝑚. Both cases are
incorporated into the parameter Ω = {Σ̌, ℎ} referred to in the algorithm.
In practice, the calculations for each Ω were performed in parallel.

Algorithm 3.4: Optimized procedure for mapping out supercon-
ducting phase diagrams. This algorithm is trivially parallelizable.

for each configuration Ω:
Initialize Δ in the superconductor to 0.01Δ0

Initialize 𝛾 in each material to bulk states
do until ‖𝛿𝛾 ‖ < 10−8:

𝛾 ← UsadelEquation(Δ, 𝛾 , Ω)
for 𝑚 ← 1,… , 10:

Δ← SelfconsistencyEquation(𝛾 , Ω)
𝛾 ← UsadelEquation(Δ, 𝛾 , Ω)

if |Δ| > 0.01Δ0:
∴ Ω corresponds to a superconducting phase

else:
∴ Ω corresponds to a normal-state phase

3.6 Critical temperature

One common task in our research projects has been to determine the
superconducting critical temperature of a junction. In general, we
know that if a bulk superconductor in equilibrium has the critical tem-
perature 𝑇cs, any proximity system should have a critical temperature
𝑇c ∈ [0, 𝑇cs]. We will assume that there is no reentrant superconduc-
tivity, so that the critical temperature 𝑇c is unambiguously defined:
|Δ| > 0 iff 𝑇 < 𝑇c. One straight-forward way to determine 𝑇c to a pre-
cision of e.g. 0.01𝑇cs would then be to employ algorithm 3.4 for each
of the 100 temperatures 𝑇 /𝑇cs ∈ {0.00, 0.01, … , 0.99}. By checking at
which temperatures the material was superconducting and not, we can
infer which temperature corresponds to the critical temperature 𝑇c.
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However, there exists a much more efficient way to obtain the same
result: a standard bisection algorithm. Since we know that 𝑇c ∈ [0, 𝑇cs],
we start by investigating the midpoint 𝑇 = 𝑇c/2. We initialize the sys-
tem to a superconducting state with order parameter Δ = 0.01Δ0, and
perform a few self-consistency iterations to check whether 𝑇 < 𝑇c.
If the order parameter increases, then 𝑇 < 𝑇c, so we conclude that
𝑇c ∈ [𝑇cs/2, 𝑇cs]. If the order parameter decreases, then 𝑇 > 𝑇c, which
means that 𝑇c ∈ [0, 𝑇cs/2]. In either case, we have eliminated half
the temperature range [0, 𝑇cs] via calculations at a single temperature.
We then evaluate the midpoint of the revised search space, i.e. either
𝑇 = 3𝑇cs/4 or 𝑇 = 𝑇cs/4, in order to eliminate half the remaining search
space, etc. The resulting procedure is summarized in algorithm 3.5.
This method determines 𝑇c to an accuracy of 𝑇cs/2𝑛+1 after 𝑛 bisections.
In practice, we usually perform 20 bisections, yielding an accuracy be-
low 10−6. For comparison, wewould need calculations at over 1,000,000
temperatures to achieve the same accuracy via the naïve method.

Algorithm 3.5: Optimized critical temperature algorithm. This is
based on the bisection method and the ideas behind algorithm 3.4.

Initialize Δ in the superconductor to 0.01Δ0

Initialize 𝛾 in each material to bulk states
do until ‖𝛿𝛾 ‖ < 10−8:

𝛾 ← UsadelEquation(Δ, 𝛾)

𝑇1 ← 0;
𝑇2 ← 𝑇cs

𝛾0 ← 𝛾
for 𝑛 ← 1,… , 20:

𝛾 ← 𝛾0
𝑇 ← (𝑇1 + 𝑇2)/2
for 𝑚 ← 1,… , 10:

Δ ← SelfconsistencyEquation(𝛾 , 𝑇 )
𝛾 ← UsadelEquation(Δ, 𝛾 )

if |Δ| > 0.01Δ0:
𝑇1 ← 𝑇

else:
𝑇2 ← 𝑇

∴ 𝑇c = (𝑇1 + 𝑇2)/2 to a precision below 0.000001𝑇𝑐𝑠.
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Wehave expressed algorithm 3.5 in terms of a temperature-dependent
self-consistency equation. This should be interpreted as reinitializing
the distribution functions at temperature 𝑇 via equation (2.76), and
then calculating the order parameter using these distribution func-
tions. For the same reasons as in algorithm 3.4, we have include a
high-precision bootstrap procedure before the actual bisections. Since
we require a state with Δ = 0.01Δ0 for the calculations at each temper-
ature, we perform this bootstrap procedure once, save the resulting
state to a variable 𝛾0, and then restore this state every time we restart
calculations at a new temperature. To calculate the critical temperature
as a function of any other system parameter, we can of course just run
this procedure in parallel for different configurations. The behavior of
this critical temperature algorithm is illustrated in figure 3.6.
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Figure 3.6: Illustration of how the critical temperature algorithm
works, in this case for an example system with 𝑇c = 0.8𝑇cs. The line
shows the current temperature, while the shaded areas correspond
to the range of possible values for the critical temperature.
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3.7 Numerical code

A very large part of the doctoral work has been to develop a general
numerical solver for the Usadel equation. The code was structured in a
modular and object-oriented fashion, and was implemented in modern
Fortran (2008+) for speed. The code itself is available on Github:

https://github.com/jabirali/geneus
It is released under an mit open-source license, which essentially
means that you are free to use it for any purpose as long as you give
appropriate credit. For a description of how to compile and install the
code, and a tutorial describing how to use it, see the documentation at:

https://jabirali.github.io/geneus/
The code can describe systems that contain superconductors, weak
ferromagnets, strong ferromagnets, spin–orbit coupling, spin-flip and
spin–orbit scattering, orbital depairing, strongly polarized magnetic
interfaces, charge and spin accumulation, energy and spin-energy
accumulation, and so on. It supports calculations that are both self-
consistent and out of equilibrium. Basically, we have implemented all
the equations, energy matrices, and boundary conditions discussed in
the previous chapter, using all the algorithms presented in this chapter.

The material structure one wants to simulate is configured using
simple ini-style configuration files. These are quite flexible, and can
be combined with mathematical expressions and command-line argu-
ments. For instance, let us say that we wish to perform a self-consistent
equilibrium calculation for an s/f bilayer. We assume that the ferro-
magnet has a rotating exchange field, which we describe using an
analytical function of position 𝑧. We also assume that the interface is
strongly polarized. This is described by configuration 3.1. If this file
is fed to the steady-state calculation program, it takes about 30 min
to calculate the equilibrium state to a precision of 10−8. The same file
can alternatively be fed to the phase-diagram or critical-temperature
calculation programs. All results are saved as tab-separated-value
files (dat files), which are easily visualized in e.g. Gnuplot. For more
information about the simulation suite, see the online documentation.
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Configuration 3.1: Sample configuration file for an s/f bilayer.

[superconductor]
# Interior properties
length: 2.50
temperature: 0.10

# Right interface
conductance_b: 0.30
spinmixing_b: 1.25
polarization_b: 0.50
magnetization_b: [1,0,0]

[ferromagnet]
# Interior properties
length: 0.25
temperature: 0.10
magnetization: [cos(pi*z/2), sin(pi*z/2), 0]

# Left interface
conductance_a: 0.30
spinmixing_a: 1.25
polarization_a: 0.50
magnetization_a: [1,0,0]
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4Research highlights
In this chapter, we summarize some of the research results obtained in
the enclosed papers. Clearly, reviewing every paperwould be excessive,
and going into full detail on each paper would be redundant. This is
therefore no substitute for the papers themselves, but is rather meant
as a brief introduction to some of the more interesting findings.

4.1 Current-induced vortices

It is well-known that applying a magnetic field to a thick type-ii su-
perconductor leads to the formation of Abrikosov vortices [3, 4, 158].¹
The field induces screening currents in the superconductor, which are
associated with a phase gradient ∇𝜒 in the order parameter Δ = |Δ|𝑒𝑖𝜒.
However, the order parameter is continuous and single-valued, which
has some important ramifications. One is that the net phase winding
around any point has to be quantized in units of 2𝜋. In other words,
we can define a winding number or topological quantum number

𝑛 ≔ 1
2𝜋 ∮

Ω
d𝒓 ⋅∇𝜒 ∈ ℕ, (4.1)

where 𝑛 counts the number of vortices enclosed by the path Ω. Fur-
thermore, since the phase 𝜒 varies around a vortex, the only way to
keep |Δ|𝑒𝑖𝜒 single-valued is to let |Δ| → 0 at the core. Thus, vortices
have normal cores, and onemagnetic flux quantum Φ0 ≈ 2 × 10−15 Tm2

manages to traverse the superconductor through each vortex core.
Vortices also appear in thin films of proximitized normalmetals [159].²

In these systems, the magnetic field penetrates the film homogeneously,
and is neither quantized nor confined to vortex cores. Nevertheless,
the field induces phase gradients in the superconducting condensate,
which nucleate into vortices with quantized phase winding. Another
interesting possibility was recently pointed out in reference 160. By
injecting a charge current into a superconducting wire, one can force
a phase gradient to appear there. If one then contacts a normal metal

1. Here, thick means that it is large compared to the magnetic penetration depth 𝜆.
2. Technically, the superconducting order parameter Δ = 0 in normal metals.

However, there is still a superconducting condensate there that can harbor
vortices, and this can be described via the anomalous propagator 𝑓𝑠 = |𝑓𝑠|𝑒𝑖𝜒.
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to such wires, the phase gradients of the wires spread into the normal
metal via the proximity effect, which in turn creates vortices. In other
words, it is possible to induce vortex excitations purely electrically, in
materials that do not have to be intrinsically superconducting.

In paper xii, we build on the ideas of reference 160. We consider a
normal metal that is completely enveloped by a current-biased super-
conducting wire as shown in figure 4.1. We can then calculate a total
winding number 𝑁 for the proximitized normal metal by applying
equation (4.1) to a path Ω along the superconducting wire. Interest-
ingly, we find that this total vorticity nucleates into a set of vortices
inside the normal metal in a pattern that satisfies three constraints.
Firstly, the vortices have individual winding numbers 𝑛𝑖 that sum up to
the total winding number 𝑁 = ∑𝑖 𝑛𝑖. Secondly, the vortices nucleate in
a pattern that respects the geometric symmetries of the sample. Finally,
the vortices try to minimize the quantity 𝐸 = ∑𝑖 𝑛

2
𝑖 , which we show in

the paper is related to the total kinetic energy of the condensate.
In figure 4.1, we show some numerical results for this system. When

a total winding 𝑁 = 1 is applied, we get a single conventional vortex
with winding 𝑛 = 1, as one would expect. If a total winding 𝑁 = 2
is applied, we instead get a giant vortex with winding 𝑛 = 2. Since
this has the same kinetic energy cost as 4 conventional vortices, these
excitations are usually suppressed, but for this particular geometry the
symmetry constraint stabilizes it. If we increase the total winding to
𝑁 = 3, we actually get four conventional vortices around an antivortex,
which is spinning in the opposite direction of the applied current. This
is again an excited state since annihilating a vortex and antivortex
would lower the kinetic energy of the system, but in this case the
symmetry constraint prevents that. Another possibility would have
been to have a single 𝑛 = 3 giant vortex; but this has a kinetic energy of
𝐸 = 32 = 9, compared to 𝐸 = 4⋅(+1)2+1⋅(−1)2 = 5 for the configuration
above, so the creation of an antivortex results in a lower-energy state.
Interestingly, further increasing the total winding to 𝑁 = 4 lowers the
kinetic energy, since the system can simply get rid of the antivortex.
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Figure 4.1: The model shows a superconducting wire (s) wrapped
around a normal-metal square (n), where the superconductor is
current-biased to induce a phase winding in the system. The plots
below show the proximity-induced superconducting condensate,
which vanishes at vortex cores (blue), and is enhanced near the
surrounding superconductors (red). The labels show the winding
numbers 𝑛 of each individual vortex. The subplots correspond to
total winding numbers of (a) 𝑁 = 1, (b) 𝑁 = 2, (c) 𝑁 = 3, (d) 𝑁 = 4.
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4.2 Single-magnet spin valves

In a traditional superconducting spin valve, one requires at least two
ferromagnetic layers. The simplest incarnation is an f/s/f trilayer. If
the two ferromagnets have parallel magnetizations, they collaborate
to induce an effective magnetic field inside the superconductor, thus
suppressing superconductivity. On the other hand, if the ferromagnets
have antiparallel magnetizations, their fields partially cancel inside
the superconductor, thus restoring superconductivity. However, one
challenge with this design is that it requires precise control over the
individual magnetizations of the two ferromagnets, usually via an ex-
ternally applied field. Manipulating one magnetic layer independently
of the other both requires some fine-tuning of the sample parameters
and restricts the magnetic field strengths at which the device can be
operated. It would therefore be of interest if a similar effect could be
realized in a structure with only a single homogeneous ferromagnet.

In papers ii–iv, we theoretically predict and experimentally verify
that this is indeed possible. More precisely, we focus on s/f bilayers
with spin–orbit coupling on the ferromagnetic side of the interface.
Such a ferromagnet can be described by the magnetic field vector

𝒎 = 𝑚(cos 𝜑 cos 𝜃 𝒆𝑥 + sin 𝜑 cos 𝜃 𝒆𝑦 + sin 𝜃 𝒆𝑧), (4.2)

while its spin–orbit coupling is given by the effective gauge field³

𝑨 = (𝛼/𝜉 )(𝜎1𝒆𝑦 − 𝜎2𝒆𝑥) + (𝛽/𝜉 )(𝜎1𝒆𝑥 − 𝜎2𝒆𝑦). (4.3)

Here, we have assumed that the bilayer is grown in the 𝑧-direction.
For the magnetization, this implies that 𝜑 parametrizes its in-plane
projection and 𝜃 its out-of-plane component. As for the spin–orbit
coupling, the field above describes a Rashba–Dresselhaus coupling in
a film that is thin in the 𝑧-direction.⁴ The Rashba coupling 𝛼 can e.g.
be realized by inserting a thin layer of a metal with a strong atomic
spin–orbit coupling in-between the superconductor and ferromagnet.⁵

3. Here, 𝛼 and 𝛽 are dimensionless numbers, and correspond to spin splittings in
the natural unit ℏ2/𝑚𝜉, where𝑚 is the electron mass. If we e.g. let 𝜉 = 30 nm and
take 𝑚 to be the bare electron mass, this unit would correspond to 2.5meV⋅nm.

4. In papers ii–iii, we use the polar representation 𝛼 ≕ −𝐴 sin 𝜒 and 𝛽 ≕ +𝐴 cos 𝜒.
Here, we focus on the special cases 𝛽 = 0 and 𝛽 = 𝛼, where this is less useful.

5. An English translation of the 1959 paper by Rashba and Sheka is available as a
supplemental to reference 161. That paper focuses on bulk spin–orbit coupling
in wurtzite, and attributes the Hamiltonian 𝐻 ∼ (∇𝑉 × 𝒑) ⋅ 𝝈 to a 1933 book by
Pauli, where it is derived from the low-velocity limit of the Dirac equation.
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The ideal material choice would be a heavy metal with a high ad-
mixture of 𝑑-orbital electrons in its conductance band, such as Pt or
Au [162]. The Dresselhaus coupling 𝛽 originates from the intrinsic
inversion asymmetry of zincblende crystals [163].⁶ This includes many
semiconductors like GaAs, InSb, and CdTe. Other ways to control the
spin–orbit coupling include strain [164–166] and curvature [167, 168].

We now give a brief outline of how the novel spin-valve effect works.
The defining feature of a conventional superconductor is that it has a
condensate of singlet pairs |↑↓⟩ − |↓↑⟩. When placed into contact with
a homogeneous ferromagnet, some of these singlet pairs leak into the
ferromagnet. Some of these are in turn converted into opposite-spin
triplet pairs |↑↓⟩ + |↓↑⟩, where we take the spin-quantization axis to be
the magnetization direction of the ferromagnet. The more efficiently
the ferromagnet converts singlets into triplets, the more singlets leak
into the ferromagnet, thus draining the superconductor of singlets.
However, the order parameter Δ in the superconductor is directly
related to the singlet density, so Δ is suppressed when the triplet
generation is efficient. This explains why the critical temperature 𝑇c
decreases if the triplet production increases, and vice versa.

When spin–orbit coupling is added to the problem, two new mecha-
nisms factor into the equation. The first is that the spin–orbit coupling
can convert opposite-spin triplets into equal-spin triplets |↑↑⟩ and |↓↓⟩.
These consist of two electrons in the same spin band, and are thus
immune to the pair-breaking effects of the magnetic field, making
them much more stable than singlets and opposite-spin triplets in-
side ferromagnets [49, 50]. Generating triplets that can diffuse deep
into the ferromagnet would enhance the net drainage of singlets, and
therefore suppress the critical temperature of the system. This has no
effect on the critical temperature for systems with only Rashba or only
Dresselhaus coupling,⁷ and remains unimportant when both exist.⁸

6. The spin–orbit coupling derived by Dresselhaus is a actually a cubic function
of momentum. This is in contrast to equation (4.3), which is derived from a
linear-in-momentum spin–orbit Hamiltonian 𝐻 ∼ 𝑨 ⋅ 𝒑. The link is that we in
thin films can use the approximations ⟨𝑝𝑧⟩ ≈ 0 and ⟨𝑝2𝑧⟩ ≈ const. to linearize it.

7. For a justification of this claim, see equations (31–33) in paper ii. Note that the
linearized Usadel equation is exact in the relevant limit 𝑇 → 𝑇c.

8. This can be seen by comparing equations (31–33) and figures 20–21 in paper ii.
Equal-spin-triplet generation is governed by cos(2𝜑) and opposite-spin-triplet
suppression by 1 − sin(2𝜑). The latter explains our numerical results for 𝑇c(𝜑).
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The second mechanism is that spin–orbit coupling modifies the effec-
tive energies of triplet pairs. This is an anisotropic energy penalty, and
selectively suppresses triplets with certain spin projections. Which
triplets are suppressed is determined by the spin–orbit coupling, which
follows directly from the crystal structure and sample geometry. How-
ever, which triplets are generated is determined by the magnetization
of the ferromagnet. This leads us to our novel spin–orbit-valve effect :
we can tune to what extent the generated triplets are suppressed by
rotating the magnetization of one homogeneous ferromagnet. This
enhances the critical temperature when the triplet suppression is maxi-
mized, since this configuration closes the triplet proximity channel.

The characteristic energy scale for spin–orbit-induced energy shifts
is 𝐸so ≔ 4Δ0(𝛼2 + 𝛽2). In paper ii, we showed that the effective triplet
energy for systems with equal Rashba and Dresselhaus couplings is

𝐸𝑡(𝜑) = 𝜀 + 𝑖𝐸so(1 − sin 2𝜑)/4, (4.4)

where 𝜀 is the quasiparticle energy, and we assume a purely in-plane
rotation of the magnetic field. On the other hand, systems that only
have Rashba coupling are in general invariant under in-plane rotations.
However, we found in paper iv that an out-of-plane effect still exists,

𝐸𝑡(𝜃) = 𝜀 + 𝑖𝐸so(3 − cos 2𝜃)/4. (4.5)

In figure 4.2, we demonstrate how the triplet penalties above fit to-
gether with the numerical results for the critical temperature. As
anticipated in the discussion above, maxima in the triplet penalty
correspond to maxima in the critical temperature, since suppressing
triplets reduces the drainage of singlets from the superconductor.

Experimentally, it is difficult to engineer a structure with equally
strong Rashba and Dresselhaus coupling, especially since the latter
requires very specific material choices. However, figure 4.2 shows
that this endeavour may well be worth the effort: it maximizes the
relative change in triplet penalty as function of the magnetization
direction, thus enabling quite dramatic 𝑇c control. For these parame-
ters, the resulting difference in spin-valve effect is nearly an order of
magnitude. Other benefits include that in-plane rotations require less
consideration of magnetic anisotropy, and that the spin-valve effect is
easier to separate from any orbital-depairing effects that occur when
out-of-plane magnetic fields are applied to superconducting structures.
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Figure 4.2: Visualization of the sample geometry, magnetization
orientations, analytical results for the triplet energy penalty (a–b),
and numerical results for the critical temperature (c–d). In all
cases, we set the Rashba coupling 𝛼 = 5, magnetic field 𝑚 = 20Δ0,
superconductor length 𝐿S = 𝜉 /2, and ferromagnet length 𝐿F = 𝜉 /4.
In panels (a,c), we set 𝛽 = 0, and consider out-of-plane rotations 𝜃.
In panels (b,d), we set 𝛽 = 𝛼, and consider in-plane rotations 𝜑.
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Spin–orbit valves with both Rashba and Dresselhaus coupling have
yet to be experimentally realized. One possibility was proposed in
paper iii, where we considered coupling a GaAs/AlGaAs-based 2deg to
a superconductor via a thin ferromagnetic insulator. Such a structure
has the additional benefit that the spin–orbit coupling can be tuned via
an electric gate voltage, enabling a device where superconductivity can
be simultaneously controlled via magnetic and electric input signals.

Rotating from in-plane to out-of-plane magnetization in a system
with only Rashba coupling was experimentally investigated in paper iv.
The experiment used Nb/Pt/Co stacks to realize effective s/f bilayers
with spin–orbit coupling.⁹ We found a qualitative agreement between
theoretical predictions and experimental results, and concluded that
the experimental observations could not be explained as either conven-
tional s/f proximity effects or orbital-depairing effects. As discussed
in the paper, the out-of-plane magnetization angle 𝜃 in this structure
is finite in the absence of external magnetic fields. The maximal spin-
valve effect is estimated to be around 200mK, and corresponds to a
Nb(18)/Pt(2.0)/Co(1.5) sample in a 120mT out-of-plane field. The num-
bers in parentheses are thicknesses in nanometers. Stronger spin-valve
effects can be expected if the superconductor is made shorter or the
interface conductance enhanced. The Rashba coupling is less trivial: if
it is too low, the triplet penalty is negligible for all orientations; if is too
high, triplets are completely suppressed for all orientations. Thus, the
spin-valve effect is a nonmonotonic function of the Rashba coupling.

The perhaps most convincing piece of evidence for our spin–orbit-
valve interpretation is the inset of figure 2c in paper iv. This shows the
critical temperature modulation when the sample above is subjected to
an in-plane magnetic field. The result is a suppression of about 90mK
when a 120mT field is applied. In contrast, the Nb/Pt control sample
does not show such a behavior, suggesting that the result is not caused
by an orbital effect from the external field. Moreover, applying an
in-plane field to Nb/Pt/Co should reduce the amount of Co flux that is
injected into Nb, which would have increased not decreased the critical
temperature of the system. In this case, the experimental results are
consistent with the theoretical predictions, but behave oppositely from
what one would have expected if orbital depairing was the culprit.

9. Technically, the stacks used in the experiment were Nb/Pt/Co/Pt. However, it
was assumed that the Cooper pairs primarily “see” the spin–orbit coupling from
the Pt layer between Nb and Co, since they decay rapidly with position in Co.
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4.3 Half-metallic spin valves

In a half-metallic ferromagnet, the spin splitting of the density of states
is so extreme that one spin band becomes insulating while the other
remains metallic. Recently, several experiments have been performed
by interfacing such magnets with conventional superconductors, and
we investigated some of these numerically in paper viii. In this section,
we describe one of the experiments that could not be modelled by our
theory, and propose some alternative explanations for their results.

In reference 71, the stacksMoGe(25)/Ni(1.5)/Cu(5.0)/CrO2(100) and
MoGe(50)/Ni(1.5)/Cu(5.0)/CrO2(100)were grown on a TiO2 substrate,
with material thicknesses in nanometers given in parentheses. The
amorphous MoGe is a conventional superconductor with an atomically
short mean free path and a coherence length 𝜉 ≈ 5 nm. This places
their experiment in the diffusive regime where the Usadel formalism
is valid.¹⁰ Ni is a regular ferromagnet and CrO2 a half-metallic ferro-
magnet. Cu is a normal metal that magnetically decouples the Ni and
CrO2 layers. This design was intended as a triplet spin valve: singlet
pairs leak from the MoGe superconductor and into the Ni ferromagnet,
where they are converted to opposite-spin triplets. If the CrO2 layer is
magnetized in the same direction as the Ni layer, these triplets cannot
enter the CrO2 layer, since it only has one spin band. On the other
hand, if the CrO2 layer is magnetized perpendicularly to the Ni layer,
the opposite-spin triplets from the Ni layer correspond to equal-spin
triplets in the CrO2 layer. The net result is then that the thick CrO2
layer drains superconductivity out of the MoGe layer, and this lowers
the critical temperature of the system. Thus, by using an externally
applied magnetic field to rotate the Ni magnetization relative to the
CrO2 magnetization, one can tune the critical temperature 𝑇c.

The truly remarkable details in these experiments were the sizes of
the superconductors employed and spin-valve effects obtained. Using
a 25 nm = 5𝜉 long superconductor, they broke the previous world
record for superconducting spin-valve effects by nearly an order of
magnitude, and found a critical temperature modulation 𝛿𝑇c ≈ 1.8 K.
Even for a 50 nm = 10𝜉 long superconductor, they attributed an 800mK
modulation of the critical temperature to the triplet-spin-valve effect.

10. Strictly speaking, such a short mean free path is incompatible with the quasi-
classical approximation underlying the Eilenberger and Usadel equations, where
one assumes that all length scales are much longer than the Fermi wavelength.
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This setup was subsequently modelled by Mironov and Buzdin [169]
and by Halterman and Alidoust [170]. Both papers concluded that
the triplet-spin-valve explanation seemed plausible. However, both
made assumptions that were inconsistent with the actual experimental
setup. Most importantly, they focused on superconductors of length
0.5–2.0𝜉, which clearly cannot explain how a spin-valve effect occurs
in a 10𝜉 long superconductor. Furthermore, Mironov and Buzdin fo-
cused on completely transparent interfaces, which can amplify the
spin-valve effect in a complex multilayer junction by up to several or-
ders of magnitude. Halterman and Alidoust used a ballistic model for
the superconductor, which is inconsistent with the extremely diffusive
nature of the amorphous MoGe used in the experiment. Thus, these
previous papers cannot address the most interesting aspect of the ex-
periment: what is the mechanism behind the colossal spin-valve effect,
and how can it persist even for a 10𝜉 long diffusive superconductor?

In paper viii, we attempted to rigorously model the experiment.
The superconductor was described using the Usadel equation, as is
appropriate for a diffusive material. To accurately describe the half-
metallic ferromagnet, we derived and Riccati-parametrized a model
for strongly polarized ferromagnets. The interfaces were treated using
the newly derived general spin-dependent boundary conditions for
low-transparency interfaces [115]. We then tried to match all known
material parameters in accordance with the experimental description.
However, we found that we could not reproduce any spin-valve effect at
all for that setup. The problem persisted even if we decreased the super-
conductor length by an order of magnitude, or varied the length and
exchange field of the Ni layer. In fact, using realistic parameters, we
found no critical temperature change if we removed the half-metallic
layer entirely! Even if we completely suppress superconductivity at the
MoGe/Ni interface, we found that the superconducting order parame-
ter Δ recovers completely within a distance of 2–3𝜉 from the interface.
Thus, it seems impossible to explain a significant critical temperature
modulation in a 10𝜉 long superconductor via local drainage of Cooper
pairs near the interface. Our theoretical results therefore suggest that
the experiment by Singh et al. cannot be fully understood as a triplet-
spin-valve phenomenon, but requires a different physical mechanism.
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If the results cannot be explained as being due to a local suppression
of superconductivity near the interface, the obvious alternative would
be some kind of nonlocal electromagnetic effect. Amorphous MoGe
is actually an extreme type-ii superconductor, which according to
reference 171 has a bulk magnetic penetration depth 𝜆 ≈ 580 nm. The
same reference points out that in films with a thickness 𝑑 < 𝜆, this is
increased to the effective penetration depth Λ ≈ 2𝜆2/𝑑. For 𝑑 = 25 nm
and 𝑑 = 50 nm, this gives a ratio 𝑑/Λ = 𝑑2/2𝜆2 of about 0.1% and 0.4%,
respectively. It seems more reasonable that a significant orbital effect
spread over a small fraction of the magnetic penetration depth, than
that a significant proximity effect spread over ten coherence lengths.

One such alternative explanation would be related to vortex physics.
First of all, the experiment uses an applied out-of-plane magnetic field
to reorient the magnetic configuration. Their record-breaking 1.8 K
spin-valve effect was obtained at an applied magnetic field of 0.5 T. For
comparison, reference 172 reported a fully developed vortex lattice for
an amorphous MoGe superconductor at 0.5 T. Moreover, Singh et al.
mention that the critical temperature shift continues to increase well
above the fields where full collinearity has been achieved. The authors
attributed this effect to surface pinning of the CrO2 magnetization, but
another explanation could be that increasing the flux injected into the
superconductor continues to increase the vortex density. However, this
explanation does not completely resolve the issue: Singh et al. made
MoGe/Ni/Cu, MoGe/Cu/CrO2, and MoGe control samples, and these
displayed a significantly lower 𝛿𝑇c compared to MoGe/Ni/Cu/CrO2.

Recently, Mironov et al. [74] showed that long-ranged electromag-
netic phenomena can occur in proximity structures even for in-plane
magnetizations. Furthermore, they showed that one in s/f/f’ junctions
can get a different electromagnetic response in the superconductor
when the two ferromagnets are rotated relative to each other. Pre-
sumably, this could lead to an orbital-valve effect as a function of the
magnetization misalignment, which would suppress superconductivity
over a length scale given by Λ rather than 𝜉. We believe that this is
a promising explanation for the experimental findings by Singh et al.
Pursuing this explanation requires a self-consistent solution of the
Usadel and Maxwell equations. Given the record-breaking efficiency
of the device in reference 71, understanding its possibly novel physical
mechanism ought to be a worthwhile goal for future research.
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4.4 Spin-switch Josephson junctions

Spin valves (f/s/f) and Josephson junctions (s/f/s) are bothwell-studied
superconducting spintronics devices. In paper x we pose the question:
what happens if we combine them into a single device (s/f/s/f/s)?

To answer this question, let us review the difference between single-
barrier and double-barrier junctions. A single-barrier junction s1/x/s2
consists of two superconductors s1 and s2 with a non-superconducting
interlayer x. In the tunneling limit, the current flowing between s1
and s2 is given by the well-known current-phase relation [42, 43]

𝐽e = 𝐽c sin(𝛿𝜑), (4.6)

where 𝛿𝜑 ≔ 𝜑2−𝜑1 is the phase difference between the superconductors,
and 𝐽c depends on interface transparencies and so on. As we show in
paper x, a double-barrier junction s1/x/s2/x/s3 is instead described by

𝐽e = 𝐽 ′c sin(𝛿𝜑/2) sgn[cos(𝛿𝜑/2)], (4.7)

where 𝛿𝜑 ≔ 𝜑3 −𝜑1 is the phase difference between the outer supercon-
ductors. This is qualitatively different than for a single-barrier junction:
it behaves as if it had a 4𝜋-periodic current-phase relation, but has
abrupt transitions at 𝛿𝜑 = ±𝜋 which ensures that the current-phase
relation stays 2𝜋-periodic. These transitions are smoothed out by any
asymmetries in the system, as we explore in detail in paper x.

This leads us back to our s/f/s/f/s system. If the ferromagnetic layers
are parallel, superconductivity is suppressed in the central supercon-
ductor, which means that it behaves as an effective s/f/n/f/s = s/x/s
single-barrier junction. On the other hand, if the ferromagnetic layers
are antiparallel, superconductivity is restored in the central supercon-
ductor. We then get an s/x/s/x/s double-barrier junction. Thus, we can
in situ tune the system from a sin(𝛿𝜑)- to sin(𝛿𝜑/2)-shaped current-
phase relation by changing the orientation of one magnetic layer, as
shown in figure 4.3. As we discuss in the paper, this argument can
also be generalized to more complex 𝑛-barrier junctions, where one in
principle can realize a more general sin(𝛿𝜑/𝑚)-shaped current-phase
relation with a magnetically tunable integer 𝑚 ∈ [1, 𝑛].
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Figure 4.3: Spin-switch Josephson junction. The models illustrate
how superconductivity can be turned on and off in the central layer
by switching between parallel and antiparallel magnetic configura-
tions. The numerical results below show how this switches between
sin(𝛿𝜑)- and sin(𝛿𝜑/2)-shaped current-phase relations. The current-
phase relation for the antiparallel configuration has been zoomed
out 50×, since turning superconductivity on in the central layer
obviously increases the maximal supercurrent. The material param-
eters used for the numerical calculations are provided in paper x.

75



This shows how a magnetic input signal can control the shape of the
current-phase relation of a Josephson junction. In addition, the antipar-
allel configuration enhances the supercurrent compared to the parallel
configuration, since suppressing superconductivity in the central layer
creates a tighter bottleneck for tunneling supercurrents. Thus, by op-
timizing the junction parameters in a different way, the same device
can be used as a Josephson junction with a magnetic on–off switch.

This research project falls into the category of Josephson junctions,
which is is a recurring topic in the enclosed papers. In paper xi, which
is an experimental project published in Nature communications, a
magnetic vortex was used as the interlayer of a Josephson junction.
The intrinsic inhomogeneity of the vortex created long-ranged super-
currents, which could be modulated via an external magnetic field.
In paper ix, we used a double-barrier Josephson junction to show
that spin supercurrents are conserved in superconductors, even in
the presence of spin-flip and spin–orbit impurities. This was shown
both analytically and numerically for a system with both polarization
and exchange contributions to the spin supercurrent. Josephson junc-
tions also played a role in papers ii and v, where we among other
things investigated how spin–orbit coupling and microwaves affected
Josephson junctions. Papers vi and xii can be viewed as topological
generalizations of non-magnetic Josephson junctions. Finally, in pa-
per xiv, we focus on how pushing magnetic Josephson junctions out of
equilibrium via transverse voltages can lead to novel physical effects.

4.5 Voltage-induced superconductivity

It is a well-known fact that magnetism is harmful to superconductivity.
The absolute upper limit for the magnetic spin splitting that can coexist
with conventional superconductivity was derived by Chandrasekhar
and Clogston in 1962: 𝑚 = Δ0/√2. In paper xiii, we demonstrate
a surprising loophole in the Chandrasekhar–Clogston limit: we can
stabilize superconductivity in much stronger magnetic fields𝑚 ≫ Δ0 if
we simply voltage bias the superconductor. Although we find that this
is a low-temperature effect, it is not an extremely-low-temperature
effect. For instance, taking the superconductor to be Nb, it can be
realized for 𝑚 > 2Δ0 up to a temperature 𝑇 ≈ 1 K, and for 𝑚 > Δ0 up
to 𝑇 ≈ 2 K, compared to its field-free critical temperature 𝑇c ≈ 9.2 K.
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This research project was motivated by a simple analytical argument.
Consider a bulk superconductor without voltage bias or magnetism.
The self-consistency equation for its order parameter can be written

Δ ∼ Re∫ d𝜀 𝑓 (𝜀) ℎ(𝜀). (4.8)

The first factor 𝑓 (𝜀) = Δ/√(𝜀 + 𝑖𝜂)2 − Δ2 is the singlet pair amplitude,
which acts as a density of states for singlet correlations. The second
factor ℎ(𝜀) = tanh(𝜀/2𝑇 ) is the energymode of the distribution function
in equilibrium. The integral of their product describes the number of
occupied singlet states in a bulk superconductor in equilibrium. The
prefactor and integration limits are not important for this argument.

When a magnetic spin splitting 𝑚 is introduced, we have to replace
𝑓 (𝜀) by [𝑓 (𝜀 + 𝑚) + 𝑓 (𝜀 − 𝑚)]/2. Rigorously, this can be shown by
explicitly solving the Usadel equation. Intuitively, the spin-splitting
field increases the effective energies of spin-up quasiparticles by 𝑚,
and decreases the energies of spin-down quasiparticles by 𝑚, thus
explaining the shifts 𝜀 → 𝜀 ± 𝑚. The self-consistency relation for a
superconductor in a magnetic field is therefore modified to:

Δ ∼ 1
2 Re∫ d𝜀 [𝑓 (𝜀 + 𝑚) + 𝑓 (𝜀 − 𝑚)] ℎ(𝜀). (4.9)

On the other hand, if a voltage bias 𝑉 is applied via normal-metal
contacts, we essentially shift the chemical potentials of the contacts by
±𝑒𝑉 /2 compared to equilibrium. Thus, the distribution function inside
the contacts are effectively shifted to ℎ(𝜀 ± 𝑒𝑉 /2). Assuming that the
superconductor is short compared to the inelastic scattering length,
the distribution function deep inside the superconductor is the average
[ℎ(𝜀 + 𝑒𝑉 /2) +ℎ(𝜀 − 𝑒𝑉 /2)]/2. This yields the self-consistency relation:

Δ ∼ 1
2 Re∫ d𝜀 𝑓 (𝜀) [ℎ(𝜀 + 𝑒𝑉 /2) + ℎ(𝜀 − 𝑒𝑉 /2)]. (4.10)

Interestingly, if one calculates the Δ(𝑚, 𝑇 ) and Δ(𝑒𝑉 /2, 𝑇 ) using these
two equations, the results are identical! This equivalence between
magnetism and voltage bias was clarified in an elegant way by Moor,
Volkov, and Efetov [173]. If we introduce the integral substitutions
𝜀′ ≔ 𝜀 ± 𝑒𝑉 /2 in equation (4.10), the equation takes the exact same
form as equation (4.9), just with an effective magnetic field 𝑚 = 𝑒𝑉 /2.
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This shows manifestly that there is a symmetry between subjecting
a conventional superconductor to a magnetic field or a voltage bias. A
natural question that then arises is: what happens when we have both
a magnetic field and a voltage bias? This was investigated in paper xiii,
which is possibly the most important paper enclosed in this thesis. Our
main result is that there is a partial cancellation between the effects
of the magnetic field and voltage when |𝑚| ≈ |𝑒𝑉 /2|, which leads to
a stabilization of superconductivity in high magnetic fields when an
appropriate voltage is applied. Our main result is shown in figure 4.4.

In addition to being interesting for fundamental physics reasons,
this result has a number of wider implications for the field as a whole.
Firstly, experiments in superconducting spintronics routinely rely on
superconductor/ferromagnet hybrid structures, where stabilizing su-
perconductivity in the presence of ferromagnetic elements is paramount.
Secondly, we find that the physical properties of the superconductor for
𝑚 > Δ0 are quite exotic compared to 𝑚 < Δ0, and likely warrants fur-
ther research of its own. For instance, there are two non-overlapping
gaps in the density of states, while the density of states is not gapped at
the Fermi level. This results in some curious effects, such as permitting
a coexistence of supercurrents and resistive currents deep inside the
superconductor. Thirdly, since superconductivity vanishes for 𝑚 > Δ0
in the absence of the voltage bias, the voltage can effectively be used
to turn superconductivity on and off, thus creating a bridge between
conventional and superconducting electronics devices.

In figure 4.4, we show a sketch of how to experimentally realize
the effect, and a phase diagram at zero temperature as function of
voltage and magnetic field. Note that we have also indicated a bistable
regime, where both a superconducting and normal-state solution exists.
Depending on the dynamics of the system, this can manifest experi-
mentally as either a superconducting hysteresis effect or first-order
phase transition. For more discussion about bistability, more phase
diagrams, rigorous numerical results for junctions of finite length
with finite interface transparency, a discussion of relevant physical
observables, and references to relevant literature, see paper xiii.
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Figure 4.4: The model illustrates a possible experimental setup. A
superconductor is connected to a ferromagnetic insulator, which
induces a spin splitting 𝑚0 in the superconductor. An external field
𝐻ext shifts it to 𝑚 = 𝑚0 + 𝜇b𝐻ext via the Zeeman effect, resulting
in a tunable spin splitting 𝑚. The superconductor is connected to
voltage-biased normal-metal contacts, which are used to stabilize
the superconducting state. The phase diagram shows how super-
conductivity depends on voltage bias and magnetic field at 𝑇 = 0,
demonstrating the cancellation of their effects for |𝑒𝑉 /2| ≈ |𝑚|.

79



We note that the Chandrasekhar–Clogston limit can be explained
using a simple energy argument. When a normal metal is subjected to
a spin splitting, the electrons near the Fermi surface can lower their
energies by flipping their spins. However, a superconductor has a gap
in the density of states near the Fermi surface, thus preventing such a
paramagnetic effect. When the paramagnetic energy gain obtainable
by a normal metal exceeds the condensation energy associated with
superconductivity, a first-order phase transition from the supercon-
ducting state to the normal state occurs. Unfortunately, while we can
easily explain that superconductivity is stabilized when a voltage is
applied, it is harder to demonstrate precisely why, since it is difficult
to explicitly obtain the free energy of the system within the Usadel
formalism. An interesting prospect for future research would be to
investigate our proposed system within e.g. Bogoliubov–deGennes
formalism, where the free energy of the system is more accessible. This
may provide a better understanding of the underlying mechanism.

This research on voltage-induced superconductivity in magnetic
fields falls into the category of nonequilibrium superconductivity. Two
other papers in this thesis also belong to this category. In paper xiv, we
discover two interesting physical effects. The first is that in an s/f/n/f/s
junction, one can apply a transverse voltage bias to the normal metal in
order to change the magnetic ground state of the ferromagnetic layers
from antiparallel to parallel. The second is that in an s/f/f’/f/s junction,
one can apply a transverse voltage bias to the central ferromagnet in
order to modulate the spontaneous charge current flowing between
the superconductors. In paper xv, we show that nonequilibrium spin
injection can be used to manipulate spin supercurrents in an f/s/f
junction. We explain how this mechanism can be understood as the
injected spins exerting a torque on the equilibrium spin current flowing
in the junction, and discuss how it might be realized experimentally.
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5Outlook
In this thesis, we have investigated superconducting phenomena in
nanostructures, with a focus on how to control superconductivity in
low-temperature devices. The previous chapters have summarized how
to theoretically describe such structures, how to numerically solve the
relevant equations, and a brief description of some research highlights.
The main body of research is however not contained in the thesis itself,
but rather in the enclosed papers. In this chapter, we conclude the
thesis by discussing some possibilities for future research.

One research topic that has proven to be fruitful is voltage-biased
superconducting structures, where an energy mode of the distribution
function ℎ(𝜀) = [tanh[(𝜀 + 𝑒𝑉 /2)/2𝑇 ]+ tanh[(𝜀 − 𝑒𝑉 /2)/2𝑇 ]/2 is excited
purely electrically. Roughly two decades ago, it was demonstrated
theoretically and experimentally that this technique could be used to
create a “supercurrent transistor” [81, 174–176]. In this thesis, we have
shown that the same technique can be used to stabilize superconduc-
tivity in high magnetic fields, toggle the magnetic ground-state of a
system, or tune the spontaneous charge current flowing in a Josephson
junction [xiii, xiv]. Given the rich plethora of phenomena discovered
in this area, this seems like a promising avenue for further research.

As discussed in section 4.3, a promising explanation for the record-
setting spin-valve effect found by Singh et al. [71] is an orbital-valve
effect, where changing the orientation of two ferromagnets might af-
fect the critical temperature of a superconductor due to a long-ranged
electromagnetic effect [74]. This can be explicitly checked via a self-
consistent solution of the Maxwell and Usadel equations. Numerically,
this involves adding a self-consistency equation for the gauge field 𝑨,
which can probably be accelerated using Steffensen’s method in the
same way as the order parameter Δ. In light of the findings in refer-
ence [74], it might also beworth revisitingmany other physical systems
and checking whether the observations can be explained via orbital
effects. Another related research direction would be to investigate
whether novel device functionality can be implemented using these
long-ranged electromagnetic effects alone, such as e.g. 𝜑0 junctions.

Superconducting spintronics is influenced by non-superconducting
spintronics. Two successful ideas from spintronics that have yet to
be experimentally realized for superconducting structures are (i) spin-
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current-induced magnetization switching and (ii) antiferromagnets as
spintronic building blocks. Both avenues have been explored theoreti-
cally. For instance, it has been shown that the magnetic moment can
in principle be modulated via superconductivity in 𝜑0 junctions [177]
and heterostructures involving intrinsic triplet superconductors [178],
and that the boundary conditions to anti- and ferromagnetic insulators
are similar [124]. Recent experiments on superconductivity-mediated
exchange interaction and nonequilibrium spin injection can also be
expected to influence the near-future research focus [69, 75].

Another idea that could be interesting to pursue further is the one
reported in reference 179. There, it was found that if a nanowire is used
to bridge two superconductors with a phase difference of 𝜋, a pure odd-
frequency triplet state appears in the center of the nanowire. This could
e.g. be interesting to use as a building block of its own, since it provides
the possibility of probing the properties of a pure odd-frequency state
directly. For instance, consider two such 𝜋-biased nanowires that are
bridged by another nanowire, resulting in a h-shaped geometry with
superconductors at all ends. In this case, the central nanowire will
act as if it was the weak link of a Josephson junction where both
superconductors have purely odd-frequency states. Other scenarios
like this of fundamental interest might also be worth exploring.

Finally, given the success with coupling superconductors to ferro-
magnets, it might be interesting to consider coupling superconductors
to e.g. ferroelectrics too. Some very interesting experimental results
have already been obtained for such systems, e.g. demonstrating that
one can “print” Josephson junctions onto superconductor/ferroelec-
tric bilayers via its domain structure [180]. However, there are some
remaining fundamental questions that might be worth investigating.
For instance, superconductivity can be suppressed using a ferroelec-
tric domain as described in the paper above, and this results in a loss
of its condensation energy. Is there an inverse effect, where a su-
perconductor can control the spontaneous polarization direction of a
weak ferroelectric? Another example is that odd-frequency triplets are
known to be generated by ferromagnets. If a clean superconductor is
coupled to a ferroelectric, are any new kinds of superconducting corre-
lations induced? How about a Josephson junction where the interlayer
is a thin ferroelectric—how is tunneling between the superconduc-
tors affected by the surface charge? In other words, there are many
interesting questions related to superconductors and ferroelectrics.

82



Bibliography
1. J.A. Ouassou.

Full proximity effect in spin-textured
superconductor/ferromagnet bilayers.
Specialization project (ntnu, Trondheim, Norway, 2014).
url: http://pvv.org/~jabirali/academic/master/project.pdf

2. J.A. Ouassou.
Density of states and critical temperature in supercon-
ductor/ferromagnet structures with spin–orbit coupling.
Master thesis (ntnu, Trondheim, Norway, 2015).
url: http://hdl.handle.net/11250/2352094

3. K. Fossheim, A. Sudbø.
Superconductivity (2004).
isbn: 978-0-470-84452-6

4. M. Tinkham.
Introduction to superconductivity (2004).
isbn: 978-0-486-43503-9

5. L.N. Cooper.
Bound electron pairs in a degenerate Fermi gas.
Physical review 104, 1189 (1956).
doi: 10/b6wdwt

6. J. Bardeen, L.N. Cooper, J.R. Schrieffer.
Theory of superconductivity.
Physical review 108, 1175 (1957).
doi: 10/fw8k5d

7. J.G. Bednorz, K.A. Müller.
Possible high-𝑇c superconductivity in the Ba−La−Cu−O system.
Zeitschrift für physik b 64, 189 (1986).
doi: 10/cj434s

8. A. Schilling, M. Cantoni, J.D. Guo, H.R. Ott.
Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system.
Nature 363, 56 (1993).
doi: 10/dzzkpf

83

http://pvv.org/~jabirali/academic/master/project.pdf
http://hdl.handle.net/11250/2352094
https://isbnsearch.org/isbn/978-0-470-84452-6
https://isbnsearch.org/isbn/978-0-486-43503-9
https://dx.doi.org/10/b6wdwt
https://dx.doi.org/10/fw8k5d
https://dx.doi.org/10/cj434s
https://dx.doi.org/10/dzzkpf


9. L.P. Gorkov, V.Z. Kresin.
Colloquium: High pressure and road
to room temperature superconductivity.
Reviews of modern physics 90, 011001 (2018).
doi: 10/gcrnxf

10. J. Zaanen, S. Chakravarty, T. Senthil, et al.
Towards a complete theory of high 𝑇c.
Nature physics 2, 138 (2006).
doi: 10/fv98cd

11. Y. Cao, V. Fatemi, S. Fang, et al.
Unconventional superconductivity in
magic-angle graphene superlattices.
Nature 556, 43 (2018).
doi: 10/gc4pc9

12. A.P. Drozdov, M.I. Eremets, I.A. Troyan, et al.
Conventional superconductivity at 203 K at
high pressures in the sulfur hydride system.
Nature 525, 73 (2015).
doi: 10/6vj

13. A.P. Drozdov, P.P. Kong, V.S. Minkov, et al.
Superconductivity at 250 K in lanthanum hydride under high pressures.
arxiv: 1812.01561

14. R.M. Scanlan, A.P. Malozemoff, D.C. Larbalestier.
Superconducting materials for large scale applications.
Proceedings of the ieee 92, 1639 (2004).
doi: 10/c7mm53

15. K. Coyne.
New world-record magnet fulfills superconducting promise.
News report (maglab, 2017).
url: https://nationalmaglab.org/news-events/news/new-world-
record-magnet-fulfills-superconducting-promise

16. M.V. Berry, A.K. Geim.
Of flying frogs and levitrons.
European journal of physics 18, 307 (1997).
doi: 10/dr9xcd

84

https://dx.doi.org/10/gcrnxf
https://dx.doi.org/10/fv98cd
https://dx.doi.org/10/gc4pc9
https://dx.doi.org/10/6vj
http://arxiv.org/abs/1812.01561
https://dx.doi.org/10/c7mm53
https://nationalmaglab.org/news-events/news/new-world-record-magnet-fulfills-superconducting-promise
https://nationalmaglab.org/news-events/news/new-world-record-magnet-fulfills-superconducting-promise
https://dx.doi.org/10/dr9xcd


17. A. Geim.
Everyone’s magnetism.
Physics today 51, 36 (2008).
doi: 10/bzwhgc

18. S.K. Range.
Gravity probe b.
Educator’s guide (nasa, 2004).
url: http://einstein.stanford.edu/content/education/GP-B T-
Guide4-2008.pdf

19. D. Vasyukov, Y. Anahory, L. Embon, et al.
A scanning superconducting quantum interference
device with single electron spin sensitivity.
Nature nanotechnology 8, 639 (2013).
doi: 10/gfm54w

20. M.J. Martínez-Pérez, D. Koelle.
Nanosquids.
Physical sciences reviews 2, 5001 (2017).
doi: 10/gfmhjx

21. D.D.E. Martin, P. Verhoeve, A. Peacock, et al.
A 12 × 10 pixels superconducting tunnel junction array
based spectro-photometer for optical astronomy.
Nuclear instruments and methods in
physics research a 520, 512 (2004).
doi: 10/bts6rw

22. P. Verhoeve, D.D.E. Martin, R.A. Hijmering, et al.
s-cam 3: Optical astronomy with a
stj-based imaging spectrophotometer.
Nuclear instruments and methods in
physics research a 559, 598 (2006).
doi: 10/ctz54h

23. M. Zgirski, M. Foltyn, A. Savin, et al.
Nanosecond thermometry with Josephson junctions.
Physical review applied 10, 044068 (2018).
doi: 10/gfmcgr

85

https://dx.doi.org/10/bzwhgc
http://einstein.stanford.edu/content/education/GP-B_T-Guide4-2008.pdf
http://einstein.stanford.edu/content/education/GP-B_T-Guide4-2008.pdf
https://dx.doi.org/10/gfm54w
https://dx.doi.org/10/gfmhjx
https://dx.doi.org/10/bts6rw
https://dx.doi.org/10/ctz54h
https://dx.doi.org/10/gfmcgr


24. J. Koomey, S. Berard, M. Sanchez, H.Wong.
Implications of historical trends in the electrical efficiency of computing.
ieee annals of the history of computing 33, 46 (2011).
doi: 10/crxbp5

25. T. Bawden.
Global warming: Data centres to consume three times
as much energy in next decade, experts warn.
News report (The Independent, 2016).
url: http : //www.independent .co .uk/environment/global-
warming-data-centres-to-consume-three-times-as-much-energy-
in-next-decade-experts-warn-a6830086.html

26. S.K. Moore.
Computing’s power limit demonstrated.
ieee spectrum 49, 14 (2012).
doi: 10/gfn7bv

27. M. Dorojevets, P. Bunyk, D. Zinoviev.
flux chip: Design of a 20GHz 16 bit ultrapipelined rsfq
processor prototype based on 1.75 μm lts technology.
ieee transactions on applied super-
conductivity 11, 326 (2001).
doi: 10/fwbfxb

28. D.S. Holmes, A.L. Ripple, M.A. Manheimer.
Energy-efficient superconducting computing.
ieee transactions on applied super-
conductivity 23, 1701610 (2013).
doi: 10/gfn7b6

29. F. Bedard, N.K.Welker, G.R. Cotter, M.A. Escavage, J.T. Pinkston.
Superconducting technology assessment.
Technical report (nsa, 2005).
url: https://www.nitrd.gov/pubs/nsa/sta.pdf

30. M. Feldman.
China aims to be global leader in superconducting computers.
News report (top500, 2018).
url: https://www.top500.org/news/china-aims-to-be-global-
leader-in-superconducting-computers/

86

https://dx.doi.org/10/crxbp5
http://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
http://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
http://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
https://dx.doi.org/10/gfn7bv
https://dx.doi.org/10/fwbfxb
https://dx.doi.org/10/gfn7b6
https://www.nitrd.gov/pubs/nsa/sta.pdf
https://www.top500.org/news/china-aims-to-be-global-leader-in-superconducting-computers/
https://www.top500.org/news/china-aims-to-be-global-leader-in-superconducting-computers/


31. J. Linder, J.W.A. Robinson.
Superconducting spintronics.
Nature physics 11, 307 (2015).
doi: 10/gc4jjv

32. M. Eschrig.
Spin-polarized supercurrents for spintronics.
Physics today 64, 43 (2010).
doi: 10/d8cj2w

33. M. Eschrig.
Spin-polarized supercurrents for spintronics.
Reports on progress in physics 78, 104501 (2015).
doi: 10/cwvc

34. M.G. Blamire, J.W.A. Robinson.
The interface between superconductivity and magnetism.
Journal of physics: Condensed matter 26, 453201 (2014).
doi: 10/gfc8kz

35. A.I. Buzdin.
Proximity effects in superconductor–ferromagnet heterostructures.
Reviews of modern physics 77, 935 (2005).
doi: 10/c3w2rr

36. F.S. Bergeret, A.F. Volkov, K.B. Efetov.
Odd triplet superconductivity and related
phenomena in superconductor–ferromagnet structures.
Reviews of modern physics 77, 1321 (2005).
doi: 10/bqc4vn

37. A.K. Feofanov, V.A. Oboznov, V.V. Bol’ginov, et al.
Implementation of superconductor/ferromagnet/superconductor
π-shifters in superconducting digital and quantum circuits.
Nature physics 6, 593 (2010).
doi: 10/d728gf

38. I. Giaever.
Energy gap in superconductors measured by electron tunneling.
Physical review letters 5, 147 (1960).
doi: 10/fk234g

87

https://dx.doi.org/10/gc4jjv
https://dx.doi.org/10/d8cj2w
https://dx.doi.org/10/cwvc
https://dx.doi.org/10/gfc8kz
https://dx.doi.org/10/c3w2rr
https://dx.doi.org/10/bqc4vn
https://dx.doi.org/10/d728gf
https://dx.doi.org/10/fk234g


39. V.F.Weisskopf.
The formation of Cooper pairs and the
nature of superconducting currents.
Contemporary physics 22, 375 (1981).
doi: 10/brjr5z

40. P.-G. de Gennes.
Superconductivity of metals and alloys (1999).
isbn: 978-0-7382-0101-6

41. A.F. Andreev.
Thermal conductivity of the intermediate state of superconductors.
Soviet physics jetp 20, 1490 (1965).

42. A.A. Golubov, M.Y. Kupriyanov, E. Il’ichev.
The current–phase relation in Josephson junctions.
Reviews of modern physics 76, 411 (2004).
doi: 10/bs7wmz

43. B.D. Josephson.
Possible new effects in superconductive tunnelling.
Physics letters 1, 251 (1962).
doi: 10/fbfm9m

44. A. Di Bernardo, S. Diesch, Y. Gu, et al.
Signature of magnetic-dependent gapless odd frequency
states at superconductor/ferromagnet interfaces.
Nature communications 6, 8053 (2015).
doi: 10/f726r6

45. H. le Sueur, P. Joyez, H. Pothier, C. Urbina, D. Esteve.
Phase controlled superconducting proximity
effect probed by tunneling spectroscopy.
Physical review letters 100, 197002 (2008).
doi: 10/d6zdsz

46. N. Moussy, H. Courtois, B. Pannetier.
Local spectroscopy of a proximity super-
conductor at very low temperature.
Europhysics letters 55, 861 (2001).
doi: 10/dx8jdk

88

https://dx.doi.org/10/brjr5z
https://isbnsearch.org/isbn/978-0-7382-0101-6
https://dx.doi.org/10/bs7wmz
https://dx.doi.org/10/fbfm9m
https://dx.doi.org/10/f726r6
https://dx.doi.org/10/d6zdsz
https://dx.doi.org/10/dx8jdk


47. F.S. Bergeret, A.F. Volkov, K.B. Efetov.
Long-range proximity effects in super-
conductor–ferromagnet structures.
Physical review letters 86, 4096 (2001).
doi: 10/bg59wr

48. M. Houzet, A.I. Buzdin.
Long range triplet Josephson effect
through a ferromagnetic trilayer.
Physical review b 76, 060504 (2007).
doi: 10/b2vp9c

49. F. Bergeret, I. Tokatly.
Singlet–triplet conversion and the long-range
proximity effect in superconductor–ferromagnet
structures with generic spin dependent fields.
Physical review letters 110, 117003 (2013).
doi: 10/gc5phk

50. F. Bergeret, I. Tokatly.
Spin–orbit coupling as a source of long-range triplet proximity
effect in superconductor–ferromagnet hybrid structures.
Physical review b 89, 134517 (2014).
doi: 10/gc5phg

51. M. Houzet.
Ferromagnetic Josephson junction with precessing magnetization.
Physical review letters 101, 057009 (2008).
doi: 10/d95svv

52. K.K. Likharev, V.K. Semenov.
rsfq logic/memory family.
ieee transactions on applied super-
conductivity 1, 3 (1991).
doi: 10/d7bnv5

53. Y.V. Nazarov, Y.M. Blanter.
Quantum transport (2009).
isbn: 978-0-521-83246-5

89

https://dx.doi.org/10/bg59wr
https://dx.doi.org/10/b2vp9c
https://dx.doi.org/10/gc5phk
https://dx.doi.org/10/gc5phg
https://dx.doi.org/10/d95svv
https://dx.doi.org/10/d7bnv5
https://isbnsearch.org/isbn/978-0-521-83246-5


54. H. Sickinger, A. Lipman, M.Weides, et al.
Experimental evidence of a 𝜑 Josephson junction.
Physical review letters 109, 107002 (2012).
doi: 10/gfphpk

55. E. Goldobin, D. Koelle, R. Kleiner, R.G. Mints.
Josephson junction with a magnetic-field tunable ground state.
Physical review letters 107, 227001 (2011).
doi: 10/bsdqmp

56. N.G. Pugach, E. Goldobin, R. Kleiner, D. Koelle.
Method for reliable realization of a 𝜑 Josephson junction.
Physical review b 81, 104513 (2010).
doi: 10/c2pg4m

57. A. Buzdin, A.E. Koshelev.
Periodic alternating 0- and 𝜋-junction structures
as realization of 𝜑-Josephson junctions.
Physical review b 67, 220504 (2003).
doi: 10/d827wq

58. R.G. Mints.
Self-generated flux in Josephson junctions
with alternating critical current density.
Physical review b 57, r3221 (1998).
doi: 10/dfjctj

59. D.B. Szombati, S. Nadj-Perge, D. Car, et al.
Josephson φ₀-junction in nanowire quantum dots.
Nature physics 12, 568 (2016).
doi: 10/f8p7r7

60. M.A. Silaev, I.V. Tokatly, F.S. Bergeret.
Anomalous current in diffusive ferromagnetic Josephson junctions.
Physical review b 95, 184508 (2017).
doi: 10/gfphrc

61. F. Konschelle, I.V. Tokatly, F.S. Bergeret.
Theory of the spin-galvanic effect and the anomalous
phase shift 𝜑0 in superconductors and Josephson
junctions with intrinsic spin–orbit coupling.
Physical review b 92, 125443 (2015).
doi: 10/gfb35s

90

https://dx.doi.org/10/gfphpk
https://dx.doi.org/10/bsdqmp
https://dx.doi.org/10/c2pg4m
https://dx.doi.org/10/d827wq
https://dx.doi.org/10/dfjctj
https://dx.doi.org/10/f8p7r7
https://dx.doi.org/10/gfphrc
https://dx.doi.org/10/gfb35s


62. F. Dolcini, M. Houzet, J.S. Meyer.
Topological Josephson 𝜑0 junctions.
Physical review b 92, 035428 (2015).
doi: 10/gfrdwp

63. A. Zazunov, R. Egger, T. Jonckheere, T. Martin.
Anomalous Josephson current through a
spin–orbit coupled quantum dot.
Physical review letters 103, 147004 (2009).
doi: 10/d5q9fn

64. Y. Tanaka, T. Yokoyama, N. Nagaosa.
Manipulation of the Majorana fermion, Andreev reflection,
and Josephson current on topological insulators.
Physical review letters 103, 107002 (2009).
doi: 10/b6cn3g

65. A. Buzdin.
Direct coupling between magnetism and
superconducting current in the Josephson 𝜑0 junction.
Physical review letters 101, 107005 (2008).
doi: 10/bq5gsm

66. M.A. Silaev.
𝜃0 thermal Josephson junction.
Physical review b 96, 064519 (2017).
doi: 10/gfphnz

67. R.-P. Riwar, M. Houzet, J.S. Meyer, Y.V. Nazarov.
Multi-terminal Josephson junctions as topological matter.
Nature communications 7, 11167 (2016).
doi: 10/gfj35j

68. E. Strambini, S. D’Ambrosio, F. Vischi, et al.
The ω-squipt as a tool to phase-engineer Josephson topological materials.
Nature nanotechnology 11, 1055 (2016).
doi: 10/gfphqs

69. Y. Zhu, A. Pal, M.G. Blamire, Z.H. Barber.
Superconducting exchange coupling between ferromagnets.
Nature materials 16, 195 (2017).
doi: 10/f9grvx

91

https://dx.doi.org/10/gfrdwp
https://dx.doi.org/10/d5q9fn
https://dx.doi.org/10/b6cn3g
https://dx.doi.org/10/bq5gsm
https://dx.doi.org/10/gfphnz
https://dx.doi.org/10/gfj35j
https://dx.doi.org/10/gfphqs
https://dx.doi.org/10/f9grvx


70. R.S. Keizer, S.T.B. Goennenwein, T.M. Klapwijk, et al.
A spin triplet supercurrent through the half-metallic ferromagnet CrO2.
Nature 439, 825–827 (Feb. 2006).
doi: 10/bxgrgd

71. A. Singh, S. Voltan, K. Lahabi, J. Aarts.
Colossal proximity effect in a superconducting triplet
spin valve based on the half-metallic ferromagnet CrO2.
Physical review x 5, 021019 (2015).
doi: 10/gfkppz

72. Y. Kalcheim, O. Millo, A. Di Bernardo, A. Pal, J.W.A. Robinson.
Inverse proximity effect at superconductor–ferromagnet interfaces.
Physical review b 92, 060501 (2015).
doi: 10/gfpmxd

73. A. Di Bernardo, Z. Salman, X.L.Wang, et al.
Intrinsic paramagnetic Meissner effect due to
𝑠-wave odd-frequency superconductivity.
Physical review x 5, 041021 (2015).
doi: 10/gfpmzj

74. S. Mironov, A.S. Mel’nikov, A. Buzdin.
Electromagnetic proximity effect in planar
superconductor–ferromagnet structures.
Applied physics letters 113, 022601 (2018).
doi: 10/gdskx4

75. K.-R. Jeon, C. Ciccarelli, A.J. Ferguson, et al.
Enhanced spin pumping into superconductors provides
evidence for superconducting pure spin currents.
Nature materials 17, 499 (2018).
doi: 10/gc95g3

76. X. Montiel, M. Eschrig.
Generation of pure superconducting spin current in
magnetic heterostructures via nonlocally induced
magnetism due to Landau Fermi liquid effects.
Physical review b 98, 104513 (2018).
doi: 10/gd83sv

92

https://dx.doi.org/10/bxgrgd
https://dx.doi.org/10/gfkppz
https://dx.doi.org/10/gfpmxd
https://dx.doi.org/10/gfpmzj
https://dx.doi.org/10/gdskx4
https://dx.doi.org/10/gc95g3
https://dx.doi.org/10/gd83sv


77. L.P. Gorkov.
On the energy spectrum of superconductors.
Soviet physics jetp 34, 505 (1958).

78. K. Maki.
Gapless superconductivity.
Superconductivity, ch. 18 (1969).
isbn: 978-0-8247-1521-2

79. C. Huang, I.V. Tokatly, F.S. Bergeret.
Extrinsic spin–charge coupling in
diffusive superconducting systems.
Physical review b 98, 144515 (2018).
doi: 10/gfgvpz

80. V. Chandrasekhar.
Proximity-coupled systems.
Superconductivity, ch. 8 (2008).
doi: 10/fgt3pq

81. W. Belzig, F.K.Wilhelm, C. Bruder, G. Schön, A.D. Zaikin.
Quasiclassical Green’s function approach
to mesoscopic superconductivity.
Superlattices and microstructures 25, 1251 (1999).
doi: 10/cn3tt8

82. J. Rammer, H. Smith.
Quantum field-theoretical methods
in transport theory of metals.
Reviews of modern physics 58, 323 (1986).
doi: 10/b8qgwh

83. N.B. Kopnin.
Theory of nonequilibrium superconductivity (2009).
isbn: 978-0-19-956642-6

84. T. Kita.
Introduction to nonequilibrium statistical
mechanics with quantum field theory.
Progress of theoretical physics 123, 581 (2010).
doi: 10/bs3b5d

93

https://isbnsearch.org/isbn/978-0-8247-1521-2
https://dx.doi.org/10/gfgvpz
https://dx.doi.org/10/fgt3pq
https://dx.doi.org/10/cn3tt8
https://dx.doi.org/10/b8qgwh
https://isbnsearch.org/isbn/978-0-19-956642-6
https://dx.doi.org/10/bs3b5d


85. L.V. Keldysh.
Diagram technique for nonequilibrium processes.
Soviet physics jetp 20, 1018 (1965).

86. T. Matsubara.
A new approach to quantum statistical mechanics.
Progress of theoretical physics 14, 351 (1955).
doi: 10/cxn7h9

87. J.E. Han, R.J. Heary.
Imaginary-time formulation of steady-state nonequilibrium.
Physical review letters 99, 236808 (2007).
doi: 10/fnc7nw

88. J.E. Han, A. Dirks, T. Pruschke.
Imaginary-time quantum many-body theory out of equilibrium.
Physical review b 86, 155130 (2012).
doi: 10/gfgrrh

89. A. Cottet, D. Huertas-Hernando,W. Belzig, Y.V. Nazarov.
Erratum: Spin-dependent boundary conditions for
isotropic superconducting Green’s functions.
Physical review b 83, 139901 (2011).
doi: 10/dq7mjd

90. E.Wigner.
On the quantum correction for thermodynamic equilibrium.
Physical review 40, 749 (1932).
doi: 10/bmw7jh

91. G. Eilenberger.
Transformation of Gorkov’s equation for type ii
superconductors into transport-like equations.
Zeitschrift für physik a 214, 195 (1968).
doi: 10/bhjkhr

92. W.L. McMillan.
Transition temperature of strong-coupled superconductors.
Physical review 167, 331 (1968).
doi: 10/chbmdq

94

https://dx.doi.org/10/cxn7h9
https://dx.doi.org/10/fnc7nw
https://dx.doi.org/10/gfgrrh
https://dx.doi.org/10/dq7mjd
https://dx.doi.org/10/bmw7jh
https://dx.doi.org/10/bhjkhr
https://dx.doi.org/10/chbmdq


93. T.S. Khaire,W.P. Pratt, N.O. Birge.
Critical current behavior in Josephson
junctions with the weak ferromagnet PdNi.
Physical review b 79, 094523 (2009).
doi: 10/bcm2sw

94. H.G. Hugdal, J. Linder, S.H. Jacobsen.
Quasiclassical theory for the superconducting
proximity effect in Dirac materials.
Physical review b 95, 235403 (2017).
doi: 10/gfgr49

95. Y.V. Nazarov.
Novel circuit theory of Andreev reflection.
Superlattices and microstructures 25, 1221 (1999).
doi: 10/fmh3zh

96. I.V. Tokatly.
Usadel equation in the presence of intrinsic spin–orbit coupling.
Physical review b 96, 060502 (2017).
doi: 10/gc5phj

97. R. Raimondi, P. Schwab, C. Gorini, G. Vignale.
Spin–orbit interaction in a two-dimensional electron gas.
Annalen der physik 524, 153 (2012).
doi: 10/c5dvnn

98. K.D. Usadel.
Generalized diffusion equation for superconducting alloys.
Physical review letters 25, 507 (1970).
doi: 10/dw7ktt

99. F.S. Bergeret, M. Silaev, P. Virtanen, T.T. Heikkilä.
Colloquium: Nonequilibrium effects in
superconductors with a spin-splitting field.
Reviews of modern physics 90, 041001 (2018).
doi: 10/gfc3zq

100. A. Schmid, G. Schön.
Linearized kinetic equations and relaxation
processes of a superconductor near 𝑇c.
Journal of low temperature physics 20, 207 (1975).
doi: 10/dr6mpq

95

https://dx.doi.org/10/bcm2sw
https://dx.doi.org/10/gfgr49
https://dx.doi.org/10/fmh3zh
https://dx.doi.org/10/gc5phj
https://dx.doi.org/10/c5dvnn
https://dx.doi.org/10/dw7ktt
https://dx.doi.org/10/gfc3zq
https://dx.doi.org/10/dr6mpq


101. J.P. Morten.
Spin and charge transport in dirty superconductors.
Master thesis (ntnu, Trondheim, Norway, 2003).

102. A. Altland, B.D. Simons, D.T. Semchuk.
Field theory of mesoscopic fluctuations
in superconductor–normal-metal systems.
Advances in physics 49, 321 (2000).
doi: 10/c68p59

103. F. Herman, R. Hlubina.
Thermodynamic properties of Dynes superconductors.
Physical review b 97, 014517 (2018).
doi: 10/gc4m2m

104. R.C. Dynes, V. Narayanamurti, J.P. Garno.
Direct measurement of quasiparticle-lifetime
broadening in a strong-coupled superconductor.
Physical review letters 41, 1509 (1978).
doi: 10/ddkbd6

105. L.N. Bulaevskii, A.I. Buzdin, M.L. Kulić, S.V. Panjukov.
Coexistence of superconductivity and magnetism.
Advances in physics 34, 175 (1985).
doi: 10/cdpwpv

106. M. Silaev, P. Virtanen, F.S. Bergeret, T.T. Heikkilä.
Long-range spin accumulation from heat injection in
mesoscopic superconductors with Zeeman splitting.
Physical review letters 114, 167002 (2015).
doi: 10/f3td6b

107. R. Meservey, P.M. Tedrow.
Spin-polarized electron tunneling.
Physics reports 238, 173 (1994).
doi: 10/cbtzbm

108. L. Yu.
Bound state in superconductors with paramagnetic impurities.
Acta physica sinica 21 (1965).

96

https://dx.doi.org/10/c68p59
https://dx.doi.org/10/gc4m2m
https://dx.doi.org/10/ddkbd6
https://dx.doi.org/10/cdpwpv
https://dx.doi.org/10/f3td6b
https://dx.doi.org/10/cbtzbm


109. A.I. Rusinov.
Superconductivity near a paramagnetic impurity.
Soviet physics jetp letters 9, 85 (1969).

110. H. Shiba.
Classical spins in superconductors.
Progress of theoretical physics 40, 435 (1968).
doi: 10/c9jk3k

111. M.S. Kalenkov, A.D. Zaikin, L.S. Kuzmin.
Theory of a large thermoelectric effect in
superconductors doped with magnetic impurities.
Physical review letters 109, 147004 (2012).
doi: 10/f24w2p

112. J. Linder, T. Yokoyama, A. Sudbø.
Role of interface transparency and spin-dependent scattering in
diffusive ferromagnet/superconductor heterostructures.
Physical review b 77, 174514 (2008).
doi: 10/cwr5gp

113. C. Espedal, P. Lange, S. Sadjina, A.G. Mal’shukov, A. Brataas.
Spin Hall effect and spin swapping in diffusive superconductors.
Physical review b 95, 054509 (2017).
doi: 10/gd4vdj

114. I. Gomperud, J. Linder.
Spin supercurrent and phase-tunable triplet
Cooper pairs via magnetic insulators.
Physical review b 92, 035416 (2015).
doi: 10/gd84gr

115. M. Eschrig, A. Cottet,W. Belzig, J. Linder.
General boundary conditions for quasiclassical
theory of superconductivity in the diffusive limit.
New journal of physics 17, 083037 (2015).
doi: 10/gc4m5f

97

https://dx.doi.org/10/c9jk3k
https://dx.doi.org/10/f24w2p
https://dx.doi.org/10/cwr5gp
https://dx.doi.org/10/gd4vdj
https://dx.doi.org/10/gd84gr
https://dx.doi.org/10/gc4m5f


116. P. Machon, M. Eschrig,W. Belzig.
Nonlocal thermoelectric effects and nonlocal
Onsager relations in a three-terminal proximity-
coupled superconductor–ferromagnet device.
Physical review letters 110, 047002 (2013).
doi: 10/gc5pg5

117. F.S. Bergeret, A. Verso, A.F. Volkov.
Electronic transport through ferromagnetic and super-
conducting junctions with spin-filter tunneling barriers.
Physical review b 86, 214516 (2012).
doi: 10/gc5pg6

118. F.S. Bergeret, A. Verso, A.F. Volkov.
Spin-polarized Josephson and quasiparticle currents
in superconducting spin-filter tunnel junctions.
Physical review b 86, 060506 (2012).
doi: 10/gfgtbj

119. A. Cottet, D. Huertas-Hernando,W. Belzig, Y.V. Nazarov.
Spin-dependent boundary conditions for isotropic
superconducting Green’s functions.
Physical review b 80, 184511 (2009).
doi: 10/fhjmc8

120. A. Cottet.
Spectroscopy and critical temperature of diffusive superconduct-
ing/ferromagnetic hybrid structures with spin-active interfaces.
Physical review b 76, 224505 (2007).
doi: 10/fbv93c

121. D. Huertas-Hernando, Y.V. Nazarov,W. Belzig.
Absolute spin-valve effect with superconducting proximity structures.
Physical review letters 88, 047003 (2002).
doi: 10/c6737b

122. D. Huertas-Hernando, Y.V. Nazarov,W. Belzig.
Generalized boundary conditions for the circuit
theory of mesoscopic transport.
arxiv: cond-mat/0204116

98

https://dx.doi.org/10/gc5pg5
https://dx.doi.org/10/gc5pg6
https://dx.doi.org/10/gfgtbj
https://dx.doi.org/10/fhjmc8
https://dx.doi.org/10/fbv93c
https://dx.doi.org/10/c6737b
http://arxiv.org/abs/cond-mat/0204116


123. M.Y. Kuprianov, V.F. Lukichev.
Influence of boundary transparency on the
critical current of dirty ss’s structures.
Soviet physics jetp 67, 1163 (1988).

124. A. Kamra, A. Rezaei,W. Belzig.
Spin-splitting induced in a superconductor
by an antiferromagnetic insulator.
doi: 10/gfq97s

125. A.J. Leggett.
A theoretical description of the new phases of liquid ³He.
Reviews of modern physics 47, 331 (1975).
doi: 10/dxsc69

126. R. Balian, N.R.Werthamer.
Superconductivity with pairs in a relative p-wave.
Physical review 131, 1553 (1963).
doi: 10/cjx5mh

127. A. Larkin, A.A. Varlamov.
Theory of fluctuations in superconductors (2005).
isbn: 978-0-19-852815-9

128. R. Raimondi, G. Savona, P. Schwab, T. Lück.
Electronic thermal conductivity of disordered metals.
Physical review b 70, 155109 (2004).
doi: 10/dn2frx

129. L.D. Landau, E.M. Lifshitz.
The classical theory of fields (2009).
isbn: 978-0-7506-2768-9

130. S.V. Bakurskiy, N.V. Klenov, I.I. Soloviev, et al.
Theory of supercurrent transport in SIsFS Josephson junctions.
Physical review b 88, 144519 (2013).
doi: 10/gfhwmw

131. J. Romijn, T.M. Klapwijk, M.J. Renne, J.E. Mooij.
Critical pair-breaking current in superconducting
aluminum strips far below 𝑇c.
Physical review b 26, 3648 (1982).
doi: 10/fsvsnk

99

https://dx.doi.org/10/gfq97s
https://dx.doi.org/10/dxsc69
https://dx.doi.org/10/cjx5mh
https://isbnsearch.org/isbn/978-0-19-852815-9
https://dx.doi.org/10/dn2frx
https://isbnsearch.org/isbn/978-0-7506-2768-9
https://dx.doi.org/10/gfhwmw
https://dx.doi.org/10/fsvsnk


132. J.P. Morten, A. Brataas,W. Belzig.
Spin transport in diffusive superconductors.
Physical review b 70, 212508 (2004).
doi: 10/bzmz55

133. N. Schopohl.
Transformation of the Eilenberger equations of
superconductivity to a scalar Riccati equation.
arxiv: cond-mat/9804064

134. M. Eschrig.
Distribution functions in nonequilibrium theory
of superconductivity and Andreev spectroscopy
in unconventional superconductors.
Physical review b 61, 9061 (2000).
doi: 10/dxt85q

135. M. Eschrig.
Scattering problem in nonequilibrium quasiclassical
theory of metals and superconductors.
Physical review b 80, 134511 (2009).
doi: 10/dckzjx

136. W.T. Reid.
Riccati differential equations (2014).
isbn: 978-0-08-095595-7

137. I.V. Bobkova, A.M. Bobkov.
Long-range spin imbalance in mesoscopic
superconductors under Zeeman splitting.
jetp letters 101, 118 (2015).
doi: 10/f67z3q

138. F. Aikebaier, M.A. Silaev, T.T. Heikkilä.
Supercurrent-induced charge–spin
conversion in spin-split superconductors.
Physical review b 98, 024516 (2018).
doi: 10/gfb34v

100

https://dx.doi.org/10/bzmz55
http://arxiv.org/abs/cond-mat/9804064
https://dx.doi.org/10/dxt85q
https://dx.doi.org/10/dckzjx
https://isbnsearch.org/isbn/978-0-08-095595-7
https://dx.doi.org/10/f67z3q
https://dx.doi.org/10/gfb34v


139. S.H. Jacobsen, J. Linder.
Quantum kinetic equations and anomalous
nonequilibrium Cooper-pair spin accumulation
in Rashba wires with Zeeman splitting.
Physical review b 96, 134513 (2017).
doi: 10/gfhwr2

140. G.E.W. Bauer, E. Saitoh, B.J. vanWees.
Spin caloritronics.
Nature materials 11, 391 (2012).
doi: 10/gc4pjj

141. I.V. Bobkova, A.M. Bobkov.
Long-range proximity effect for opposite-spin pairs
in superconductor–ferromagnet heterostructures
under nonequilibrium quasiparticle distribution.
Physical review letters 108, 197002 (2012).
doi: 10/gdqbmf

142. I.V. Bobkova, A.M. Bobkov.
Recovering of superconductivity in s/f bilayers under
spin-dependent nonequilibrium quasiparticle distribution.
jetp letters 101, 407 (2015).
doi: 10/f7fjt7

143. T.Wakamura, N. Hasegawa, K. Ohnishi, Y. Niimi, Y. Otani.
Spin injection into a superconductor with strong spin–orbit coupling.
Physical review letters 112, 036602 (2014).
doi: 10/gd84dp

144. M. Amundsen, J. Linder.
General solution of 2d and 3d superconducting quasiclassical systems.
Scientific reports 6, 22765 (2016).
doi: 10/f8dmpk

145. J. Solomon.
Numerical algorithms (2015).
isbn: 978-1-4822-5188-3

146. L. Shampine, P. Muir, H. Xu.
A user-friendly Fortran bvp solver.
Journal of numerical analysis, industrial
and applied mathematics 1, 201 (2006).

101

https://dx.doi.org/10/gfhwr2
https://dx.doi.org/10/gc4pjj
https://dx.doi.org/10/gdqbmf
https://dx.doi.org/10/f7fjt7
https://dx.doi.org/10/gd84dp
https://dx.doi.org/10/f8dmpk
https://isbnsearch.org/isbn/978-1-4822-5188-3


147. J.J. Boisvert, P.H. Muir, R.J. Spiteri.
A numerical study of global error and defect control schemes for bvodes.
Technical report (smu, Halifax, Canada, 2012).

148. J.J. Boisvert, P.H. Muir, R.J. Spiteri.
A Runge–Kutta bvode solver with global error and defect control.
acm transactions on mathematical software 39, 11 (2013).
doi: 10/gfj36f

149. I. Snyman, Y.V. Nazarov.
Bistability in voltage-biased normal-metal/insulator/super-
conductor/insulator/normal-metal structures.
Physical review b 79, 014510 (2009).
doi: 10/c5x87f

150. I.V. Bobkova, A.M. Bobkov.
Bistable state in superconductor/ferromagnet heterostructures.
Physical review b 89, 224501 (2014).
doi: 10/gc4jj7

151. S.V. Bakurskiy, V.I. Filippov, V.I. Ruzhickiy, et al.
Current–phase relations in SIsFS junctions
in the vicinity of 0–𝜋 transition.
Physical review b 95, 094522 (2017).
doi: 10/gc4pkz

152. C. Yuksel, S. Schaefer, J. Keyser.
Parameterization and applications of Catmull–Rom curves.
Computer-aided design 43, 747 (2011).
doi: 10/fwvzvk

153. J.C. Slonczewski.
Conductance and exchange coupling of two
ferromagnets separated by a tunneling barrier.
Physical review b 39, 6995 (1989).
doi: 10/dwbbn2

154. J.F. Steffensen.
Remarks on iteration.
Scandinavian actuarial journal 1933, 64 (1933).
doi: 10/fx5zbr

102

https://dx.doi.org/10/gfj36f
https://dx.doi.org/10/c5x87f
https://dx.doi.org/10/gc4jj7
https://dx.doi.org/10/gc4pkz
https://dx.doi.org/10/fwvzvk
https://dx.doi.org/10/dwbbn2
https://dx.doi.org/10/fx5zbr


155. M. Petković.
Multipoint methods for solving nonlinear equations (2013).
isbn: 978-0-12-397013-8

156. R. Haelterman, A. Bogaers, J. Degroote.
A comparison of different quasi-Newton acceleration
methods for partitioned multi-physics codes.
Transactions on engineering technologies, ch. 11 (2018).
doi: 10/gfj6ch

157. D.J. Griffiths.
Introduction to quantum mechanics (2005).
isbn: 978-0-13-111892-8

158. A.A. Abrikosov.
The magnetic properties of superconducting alloys.
Journal of physics and chemistry of solids 2, 199 (1957).
doi: 10/d6n6t4

159. J.C. Cuevas, F.S. Bergeret.
Magnetic interference patterns and vortices in diffusive sns junctions.
Physical review letters 99, 217002 (2007).
doi: 10/b54gmr

160. D. Roditchev, C. Brun, L. Serrier-Garcia, et al.
Direct observation of Josephson vortex cores.
Nature physics 11, 332 (2015).
doi: 10/gfkn4c

161. G. Bihlmayer, O. Rader, R.Winkler.
Focus on the Rashba effect.
New journal of physics 17, 050202 (2015).
doi: 10/gfkwzz

162. K.V. Shanavas, Z.S. Popović, S. Satpathy.
Theoretical model for Rashba spin–orbit interaction in 𝑑 electrons.
Physical review b 90, 165108 (2014).
doi: 10/gfkwx9

163. G. Dresselhaus.
Spin–orbit coupling effects in zinc blende structures.
Physical review 100, 580 (1955).
doi: 10/bf2sh3

103

https://isbnsearch.org/isbn/978-0-12-397013-8
https://dx.doi.org/10/gfj6ch
https://isbnsearch.org/isbn/978-0-13-111892-8
https://dx.doi.org/10/d6n6t4
https://dx.doi.org/10/b54gmr
https://dx.doi.org/10/gfkn4c
https://dx.doi.org/10/gfkwzz
https://dx.doi.org/10/gfkwx9
https://dx.doi.org/10/bf2sh3


164. B.A. Bernevig, S.-C. Zhang.
Spin splitting and spin current in strained bulk semiconductors.
Physical review b 72, 115204 (2005).
doi: 10/cw6b4k

165. B.M. Norman, C.J. Trowbridge, J. Stephens, et al.
Mapping spin–orbit splitting in strained (In,Ga)As epilayers.
Physical review b 82, 081304 (2010).
doi: 10/bsr3cb

166. M.D. Studer.
Spin manipulation in two-dimensional electron and hole gases.
Doctoral thesis (eth, Zürich, Switzerland, 2010).
doi: 10/gfkw5r

167. P. Gentile, M. Cuoco, C. Ortix.
Curvature-induced Rashba spin–orbit interaction
in strain-driven nanostructures.
spin 03, 1340002 (2013).
doi: 10/gfrd43

168. Z.-J. Ying, M. Cuoco, C. Ortix, P. Gentile.
Tuning pairing amplitude and spin-triplet texture
by curving superconducting nanostructures.
Physical review b 96, 100506 (2017).
doi: 10/gfrd5b

169. S. Mironov, A. Buzdin.
Triplet proximity effect in superconducting
heterostructures with a half-metallic layer.
Physical review b 92, 184506 (2015).
doi: 10/gfkpqn

170. K. Halterman, M. Alidoust.
Half-metallic superconducting triplet spin valve.
Physical review b 94, 064503 (2016).
doi: 10/gfkpqm

171. N. Kokubo, S. Okayasu, A. Kanda, B. Shinozaki.
Scanning squid microscope study of vortex polygons and shells
in weak-pinning disks of an amorphous superconducting film.
Physical review b 82, 014501 (2010).
doi: 10/fvzngz

104

https://dx.doi.org/10/cw6b4k
https://dx.doi.org/10/bsr3cb
https://dx.doi.org/10/gfkw5r
https://dx.doi.org/10/gfrd43
https://dx.doi.org/10/gfrd5b
https://dx.doi.org/10/gfkpqn
https://dx.doi.org/10/gfkpqm
https://dx.doi.org/10/fvzngz


172. G.J.C. van Baarle, A.M. Troianovski, T. Nishizaki, et al.
Imaging of vortex configurations in thin
films by scanning-tunneling microscopy.
Applied physics letters 82, 1081 (2003).
doi: 10/d7bwhs

173. A. Moor, A.F. Volkov, K.B. Efetov.
Inhomogeneous state in nonequilibrium
superconductor/normal-metal tunnel structures.
Physical review b 80, 054516 (2009).
doi: 10/b5kdr5

174. J.J.A. Baselmans, A.F. Morpurgo, B.J. vanWees, et al.
Reversing the direction of the supercurrent
in a controllable Josephson junction.
Nature 397, 43 (1999).
doi: 10/cwrtdv

175. F.K.Wilhelm, G. Schön, A.D. Zaikin.
Mesoscopic superconducting–normal
metal–superconducting transistor.
Physical review letters 81, 1682 (1998).
doi: 10/fhsk4h

176. A.F. Volkov.
New phenomena in Josephson sinis junctions.
Physical review letters 74, 4730 (1995).
doi: 10/c7v95d

177. F. Konschelle, A. Buzdin.
Magnetic moment manipulation by a Josephson current.
Physical review letters 102, 017001 (2009).
doi: 10/bkknqs

178. A. Romano, P. Gentile, C. Noce, I. Vekhter, M. Cuoco.
Control of magnetism in singlet–triplet superconducting heterostructures.
Physical review b 93, 014510 (2016).
doi: 10/gfrdz2

105

https://dx.doi.org/10/d7bwhs
https://dx.doi.org/10/b5kdr5
https://dx.doi.org/10/cwrtdv
https://dx.doi.org/10/fhsk4h
https://dx.doi.org/10/c7v95d
https://dx.doi.org/10/bkknqs
https://dx.doi.org/10/gfrdz2


179. S.H. Jacobsen, J. Linder.
Giant triplet proximity effect in 𝜋-biased
Josephson junctions with spin-orbit coupling.
Physical review b 92, 024501 (2015).
doi: 10/gfkx5c

180. L. Bégon-Lours, V. Rouco, A. Sander, et al.
High-temperature-superconducting weak link
defined by the ferroelectric field effect.
Physical review applied 7, 064015 (2017).
doi: 10/gbphvg

181. S.H. Jacobsen, I. Kulagina, J. Linder.
Controlling superconducting spin flow with spin-flip
immunity using a single homogeneous ferromagnet.
Scientific reports 6, 23926 (2016).
doi: 10/f8gss4

182. R.C. Dynes, T.A. Fulton.
Supercurrent density distribution in Josephson junctions.
Physical review b 3, 3015 (1971).
doi: 10/bc8vfc

106

https://dx.doi.org/10/gfkx5c
https://dx.doi.org/10/gbphvg
https://dx.doi.org/10/f8gss4
https://dx.doi.org/10/bc8vfc


i



Reference

S.H. Jacobsen, J.A. Ouassou, J. Linder.
Superconducting order in magnetic heterostructures.
Advanced magnetic and optical materials, ch. 1 (2016).
isbn: 978-1-119-24196-6
doi: 10/gfgr9j

Contributions

All authors contributed to the initial discussion and planning behind
the book chapter. shj then wrote most of the initial draft. All authors
contributed to the subsequent revision and proof-reading of the draft.

Comments

This publication appeared as the first chapter of the textbook Advanced
magnetic and optical materials, and was intended as an introduction to
superconducting spintronics for the magnetism community. The book
chapter is reproduced with permission from Scrivener Publishing.

https://dx.doi.org/10/cxzj
https://dx.doi.org/10/gfgr9j


3

Ashutosh Tiwari et al. (eds.) Advanced Magnetic and Optical Materials, (3–46) © 2017  

Scrivener Publishing LLC

1

Superconducting Order 
in Magnetic Heterostructures

Sol H. Jacobsen, Jabir Ali Ouassou and Jacob Linder*

Department of Physics, NTNU, Norwegian University of Science and 

Technology, Trondheim, Norway

Abstract
In the rapidly developing field of spintronics, information is encoded and processed 

in the form of quantum spins. Although phenomena such as the giant magnetore-

sistance effect and spin-transfer torque have already found use in commercialized 

devices, two main challenges remaining in spintronic circuits based on electron 

transport are Joule heating and short decay lengths due to spin-flip scattering. 

The incorporation of superconducting elements into spintronic architectures 

has recently emerged as a potential solution to this problem. Recent advances in 

understanding the underlying physics of the interface between superconductors 

and ferromagnets has revealed a wealth of new features that can be enhanced and 

controlled to create improved spintronic devices. In this chapter, we present an 

introduction to the superconducting proximity effect in magnetic materials that 

opens the tantalizing prospect of combining the dissipationless transport offered 

by superconductors with the spin-polarized order existing in magnetic thin-film 

heterostructures. This includes an outline of theoretical frameworks and conven-

tions in the field, as well as a discussion of some key experimental and theoretical 

advances that may indicate where the field is heading.

Keywords: Superconducting spintronics, proximity effect, ferromagnetism

1.1  Introduction

In the rapidly developing field of spintronics, information is encoded and 
processed in the form of quantum spins – either in place of, or in conjunction 
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with, the traditional charge-based processing schemes. This has high 
potential with respect to computational processing, both in terms of time 
and energy efficiency, as well as significantly increased stability and longer 
coherence times than conventional electronic components. Although sev-
eral spintronic architectures have already been widely adopted, e.g. in hard 
drives and random access memory based on the giant magnetoresistive 
effect (GMR) [1, 2], two main challenges in spintronic circuits based on 
electron transport are Joule heating and short decay lengths due to spin-
flip scattering. The incorporation of superconducting elements into exist-
ing spintronic architectures has recently emerged as a potential solution to 
this problem [3]. Recent advances in understanding the underlying physics 
of the interface between superconductors and ferromagnets has revealed 
a wealth of new features that can be enhanced and controlled to create 
improved spintronic devices. In this chapter, we  present an introduction to 
the superconducting proximity effect that opens the tantalizing prospect of 
combining the dissipationless transport offered by superconductors with 
the spin-polarized order existing in magnetic thin-film heterostructures. 
This includes an outline of theoretical frameworks and conventions in the 
field, as well as a discussion of some key experimental and theoretical 
advances that may indicate where the field is heading.

Spin-polarized currents are typically generated by passing an electric 
current through a ferromagnet, such that the magnetization in the ferro-
magnet acts to align the electron spins. Spintronic nanostructures are 
designed as a series of thin-film layers of normal-metal and ferromagnetic 
elements, which can be incorporated into conventional semiconductor-
based systems. Emergent features of such spintronic devices can then be 
used to harness and control aspects of the device, for which GMR provides 
an exemplary case. GMR manifests as a change in the electrical resistance 
according to the relative magnetization directions of adjacent ferromag-
netic layers: the resistance is low for parallel alignment and high for anti-
parallel alignment. This effect has been implemented in a wide variety of 
experimental structures, an important example being spin valves [4, 5], 
which switch an electric current on or off based on a magnetic input sig-
nal. Experimentally, spin valves consist of two ferromagnetic layers and an 
interstitial normal metal. The coercivity of one ferromagnetic layer can be 
enhanced due to proximity with an antiferromagnetic base layer, meaning 
that the application of an external magnetic field can be used to control the 
magnetization of the other ferromagnet. Albert Fert and Peter Grünberg 
shared the 2007 Nobel Prize in Physics for the discovery of the GMR effect.

In order to utilize the GMR effect, one needs a way to alter the mag-
netization direction of a ferromagnet. Spin-polarized electric currents 
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can induce magnetization dynamics via the so-called spin-transfer torque 
effect [6, 7], but this typically requires very large current densities of order 
106 A/cm2. This causes excessive Joule heating and ultimately destroys the 
properties of the thin-film structure. Recent investigations of the proximity 
effect, where the properties of adjacent materials leak across the interfacial 
barrier, have indicated that it will be possible to harness the dissipationless 
currents offered by superconductors to overcome the problem of excessive 
heating by making these supercurrents spin-polarized [3].

Superconductivity was discovered as early as 1911, when Heike 
Kamerlingh Onnes observed that the electrical resistivtiy of certain mate-
rials vanished abruptly at cryogenic temperatures [8]. Kamerlingh Onnes 
received the Nobel Prize in Physics in 1913 for this discovery. The tem-
perature at which the transition to zero resistivity occurs is called the criti-
cal temperature (T

c
) of the material, and as a material transitions into this 

superconducting state it displays a second characteristic feature: all mag-
netic fields are expelled from the material. This was discovered in 1933 by 
Walther Meissner and Robert Ochsenfeld [9], and subsequently became 
known as the Meissner effect.

Historically, experiments on spin transport in superconductors [10–13] 
predated experiments with non-superconducting materials [14]. Now that the 
advantage of superconducting elements in spintronics is becoming increas-
ingly evident, the field is re-emerging as a highly active avenue of research. 
Recent results have exposed the tremendous potential offered by supercon-
ducting spintronics, with experiments demonstrating not only infinite mag-
netoresistance [15], but also strongly enhanced quasiparticle spin lifetimes 
[16], spin relaxation lengths [17], spin Hall effects [18], and thermoelectric 
currents [19] compared with non-superconducting structures. The enhance-
ment is truly monumental: the magnitude of the superconducting spin Hall 
effect, for example, exceeded its non-superconducting equivalent by a factor 
of more than two thousand, as we will discuss further in Section 1.4.2.

This chapter is intended to provide an introduction to superconductiv-
ity in magnetic thin-film heterostructures for readers who are primarily 
familiar with magnetic materials. We give only a peripheral mention to 
examples of bulk coexistence of magnetic and superconducting order, as 
seen in certain heavy-fermion compounds, focusing instead on induced 
superconductivity via the proximity effect. We will explain the underlying 
physics and introduce the most commonly used approaches, notation and 
conventions, before discussing key experimental and theoretical advances 
and speculating on where the field is heading. The chapter is not intended 
to be a comprehensive review of the field; instead, we refer readers to the 
bibliography to gain a more complete overview.
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In Section 1.2, we provide an introduction to superconductivity and the 
proximity effect in magnetic materials, and discuss the process of singlet- triplet 
conversion and typical experimental signatures of the proximity effect. In 
Section 1.3, we provide a brief introduction to the so-called quasiclassical the-
ory, which is a useful theoretical framework with which one can address a vast 
number of physical phenomena that occur in  superconductor/ ferromagnet 
hybrid structures, and we include explanations of the different parametriza-
tions and conventions that populate the field. In Section 1.4 we consider the 
frontier of current experimental research, providing first an introduction to 
the techniques and materials most readily available in the laboratory setting 
before discussing recent experimental breakthroughs in superconducting 
spintronics. In Section 1.5 we discuss novel predictions and speculate about 
future developments and technological applications before concluding in 
Section 1.6.

1.2  Fundamental Physics

In this section we will present a brief introduction to superconductivity, 
with emphasis on how superconducting correlations can manifest in other 
materials near an interface via the proximity effect. We give particular 
weight to the differences between manifestation in ferromagnetic materi-
als compared with normal metals. We discuss the process of converting 
between different superconductive species, i.e. singlet-triplet conversion, 
and sources thereof, and outline the broadly applicable experimental sig-
natures to provide an intuitive introduction to the interaction before more 
details are provided in the subsequent sections.

1.2.1  The Superconducting Gap

Superconductors are often categorized as conventional or unconventional, 
where conventional superconductors refer to materials that can be described 
fully by the Bardeen–Cooper–Schrieffer (BCS) theory [20], the Bogoliubov 
theory [21] and minor extensions thereof. These have an s-wave pairing 
symmetry, i.e. the order parameter is spherically symmetric in momentum 
space, and typically manifest only at very low temperatures at atmospheric 
pressure.1 There are several common elemental superconductors of this 
kind. For instance, tin (Sn), aluminium (Al), and lead (Pb) all have critical 

1 At higher pressures, it is possible to increase the critical temperature of conventional 

superconductors significantly, e.g. the recent world record of 203 K at 150 GPa [22].
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temperatures T
c
 in the range 0.4–7.2 K. The critical temperature is often 

higher in compounds and alloys compared to their constituent elements. 
For example, elemental titanium (Ti) and niobium (Nb) have critical tem-
peratures of 0.4 K and 9.2 K, respectively, while the niobium-titanium 
alloys have critical temperatures of up to 11 K. At atmospheric pressures, 
the current record for highest critical temperature in a conventional bulk 
superconductor is 39 K for magnesium diboride (MgB

2
) [23].

In the late 1970s, an unconventional superconductor dominated by 
d-wave pairing instead of the conventional s-wave pairing was discov-
ered (see Figure 1.1). This turned out to be a class of materials known as 
high- temperature superconductors, and Johannes G. Bednorz and Karl A. 
Müller shared the 1987 Nobel Prize in Physics for the discovery of the first 
of many high-temperature cuprate superconductors [24]. Although this is 
a highly active research branch, a major restriction in their implementa-
tion is the requirement for extreme sample purity imposed by the d-wave 
pairing. Due to the prevalence and natural abundance of conventional sin-
glet s-wave superconductors which do not suffer this restriction, it is highly 
desirable to use these as superconductive sources in spintronics for imme-
diate application, and for the remainder of the chapter we shall primarily 
consider such sources.

Conventional superconductivity is caused by electron-phonon interac-
tions, i.e. a weak coupling between the conduction electrons and the lattice 
vibrations of the material. This coupling distorts the lattice and causes a 
long-range attraction between electrons. This can therefore lead to a pair 
of electrons having lower energy than the Fermi energy, meaning these 

+–

Orbital symmetry Spin symmetry Time symmetry

s-wave p-wave

d-wave

ky

kx

xx

Singlet Triplet

Even-frequency

Odd-frequency

Figure 1.1 The possible symmetry combinations of a superconducting order parameter 

Δ. The total Cooper pair wave function must in general be antisymmetric at equal times 

in order to satisfy the Pauli principle, while the particular combination of underlying 

symmetries governs the properties and class of superconductor. The axis for the curves 

displaying the two types of time-symmetries (even and odd frequency) is frequency, 

essentially obtained by Fourier-transforming the relative time-coordinate t = t
1
 − t

2
 for 

electrons 1 and 2 in the Cooper pair. 
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two electrons become paired as long as they maintain the lower energy 
state. Since the pairing energy is typically very small, the pairs are easily 
destroyed by thermal lattice vibrations, which is why the materials must 
be cooled far below room temperature to exhibit the effect. The quasipar-
ticle pairing of two fermions is called a Cooper pair, after Leon N. Cooper 
[25], and, since the range of the pairing effect far exceeds the interelectron 
distance, the distortion typically leads to the creation of a high number of 
pairs within the same volume. Individual pairs easily become unpaired due 
to the low pairing energy, but a new pair is just as easily created; it is the 
net number of pairs which is of importance for superconductivtiy, not the 
persistence of individual pairs over time.

The cumulative effect of many Cooper pairs in a material is to open up a 
gap in the continuous energy spectrum of possible electron states. This gap in 
the density of states means that any excitations with energies that fall within 
that gap, e.g. typical electron scattering, are forbidden. Materials in their 
superconducting state exhibit dissipationless charge flow precisely because 
these energy states are forbidden, since electron scattering is the microscopic 
origin of electrical resistance, and because the Cooper pairs are quantum 
mechanically coherent. The gap is by itself not sufficient to create supercon-
ductivity: one also needs phase coherence, as known from studies of the 
pseudogap phase in the high-T

c
 cuprates [26]. The energy threshold that 

delineates the gap is typically denoted by the norm |Δ| = Δ
0
, which is known 

as the bulk superconducting energy gap, i.e. one that has not been modified 
due to for instance the restricted geometry of a sample or a proximity to non-
superconducting materials. Note that it is nevertheless not possible to run an 
arbitrarily large dissipationless current through superconductors – beyond a 
so-called critical current, the current again becomes resistive.

The electron-phonon interaction and appearance of the superconduct-
ing gap are encapsulated in the mean-field Hamiltonian [20]

 H = − d3x Δ(x , t)ψ
†
(x , t)ψ

†
(x , t) + Δ (x , t)ψ (x , t)ψ (x , t) .

↓ ↓

↓↓  (1.1)

Here the operators ψ
†
σ (x , t) and ψσ (x , t) create and annihilate electrons 

with  spin at position x and time t, respectively, and the mean-field is 
defined as

 ( , ) ( , ) ( , ) ( , ) ,,x x xt t e ti x t( ) t xψ ψ  (1.2)

where λ > 0 is the effective coupling constant of the electron-phonon inter-
action. The superconducting phase φ may be removed by a U(1) gauge 
transformation to a gauge where Δ is real. In that case, the superconducting 
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phase only becomes relevant insofar as a material is affected by relative 
phase differences, e.g. due to interference between multiple superconduct-
ing elements. For a more complete introduction to superconductivity, see 
e.g. the textbook by Tinkham [27] or Sudbø and Fossheim [28].

According to Eq. (1.2), we see that the superconducting order param-
eter Δ originates from a finite expectation value of a two-fermion operator. 
As a result, the Pauli principle places restrictions on which symmetries Δ 
can have, as illustrated in Figure 1.1. Conventional superconductors would 
in this scheme be characterized as s-wave (even parity under exchange 
of spatial coordinates), spin-singlet (odd under exchange of spin coordi-
nates), even-frequency (even under exchange of time-coordinates). This 
satisfies the Pauli principle at equal times of electron 1 and 2 in the Cooper 
pair (t

1
 = t

2
). However, as indicated in Figure 1.1 there exist other com-

binations. For instance, it is possible to have a spin-triplet (even under 
exchange of spin-coordinates) and s-wave order parameter if it is antisym-
metric in time, meaning it vanishes when t

1
 = t

2
 [29]. This corresponds to a 

strong retardation effect in the correlation function of the electrons. When 
the order parameter is restricted to having s-wave symmetry in order to 
survive the frequent impurity scattering, which effectively leads to an aver-
aging over the Fermi surface, it is precisely this kind of odd-frequency trip-
let pairing that is realized in diffusive superconductor/ferromagnet (SF) 
structures.

1.2.2  The Proximity Effect

By proximity effect, we refer to the processes by which properties of adja-
cent materials diffuse into one another across their mutual interface, cre-
ating a region with properties derived from both materials. In SF hybrid 
structures, the superconductive proximity effect therefore concerns the 
leakage of superconducting correlations into the ferromagnet. As well as 
inducing superconducting correlations in the ferromagnet, the drainage 
of correlations from the superconductor diminishes its superconduct-
ing properties. Furthermore, the ferromagnet may also induce magnetic 
order in the superconductor close to its interface. The presence of magnetic 
impurities causes spin-flip scattering of the constituent electrons in indi-
vidual Cooper pairs, thus further suppressing the superconducting prop-
erties. The combined effect of drainage and induced magnetic order in the 
superconductor is called the inverse proximity effect, with proximity effect 
typically denoting the effect of the superconductor on the ferromagnet 
only. Conversely, when both effects are considered, one may refer to this as 
the full proximity effect.
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In this chapter we will primarily be examining the superconductive 
proximity effect, but note that the inverse proximity effect typically acts 
to lower the superconducting gap from its bulk value, especially near the 
interface. When considering proximity structures where the superconduc-
tive layer is very large compared to the superconducting correlation length, 
and the temperature is far below the critical temperature of the hybrid 
structure, the inverse proximity effect can usually be neglected. In this 
case, to calculate physical features of the ferromagnet affected by super-
conductivity, such as the modification to the density of states, it is sufficient 
to use the bulk superconducting gap at the interface. However, ignoring 
the inverse proximity effect is only legitimate when it is very weak, and 
that is not the case in e.g. spin valves with thin superconducting regions 
of size similar to the superconducting coherence length. For such systems, 
the inverse proximity effect decreases the superconducting gap throughout 
the entire proximity structure, and therefore needs to be included in a full, 
self-consistent manner.

1.2.2.1  Singlet-triplet Conversion

Singlet superconducting correlations in realistic diffusive ferromag-
nets typically decay over distances of the order of the ferromagnetic 
coherence length F D h/ ,  where D is the diffusion coefficient and 
h is the exchange strength of the ferromagnet [30]. This is because the 
exchange field causes the misaligned spins of the singlet Cooper pair 
to be energetically unequal and therefore destroys the correlation: the 
coherence is lost due to a difference in the phase accumulated by elec-
trons with spin-up (↑) and spin-down (↓) as they propagate into the 
ferromagnet. The Cooper pairs thus acquire a nonzero centre-of-mass 
momentum, resulting in the so-called FFLO-state (after Fulde, Ferell, 
Larkin and Ovchinnikov [31, 32]), which is a mixture of the singlet 
state and the triplet state with zero spin projection along the magneti-
zation. However, for certain configurations the superconducting cor-
relations may instead be carried by triplet spin-pairings with a finite 
spin projection along the exchange field, rendering them immune to 
this pair-breaking effect. In this case physical quantities such as the 
supercurrent will decay over length scales comparable with the much 
longer correlation length in a normal metal N D T/ .  That is, the 
decay length is independent of the exchange field and instead limited 
by the temperature, T. At low temperatures this allows the condensate 
to penetrate deep into the ferromagnet, and the isolation and enhance-
ment of this feature has been the primary focus for research into super-
conducting spintronics [3, 33].
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Heavy-fermion compounds that display intrinsic coexistence of super-
conductivity and ferromagnetism garnered significant attention upon 
their discovery [34, 35], and by now well-established intrinsically triplet-
paired superconductors such as the noncentrosymmetric cerium plati-
num silicon CePt

3
Si [36] and the chiral strontium ruthenate Sr

2
RuO

4
 [37] 

feature regularly in the scientific literature. These materials have proven 
difficult to use in thin-film heterostructures for a variety of reasons to be 
discussed further in Section 1.4.1. They typically suffer from restrictions 
such as a requirement of very high pressures, exceedingly low critical 
temperatures (~1 K), or that they only superconduct at extreme sample 
purity because their pairing symmetry is p-wave rather than s-wave, but 
they are nevertheless interesting candidates for harnessing the long-range 
triplet pairs [38, 39]. However, it is now well known that in the presence 
of magnetic inhomogeneities, i.e. a spatially varying exchange field, singlet 
superconducting correlations may be converted into the long-range triplet 
correlations [40–42]. These magnetic inhomogeneities may arise from e.g. 
spin-polarized interfaces, multiple magnetic layers and conical-field mag-
nets such as holmium (Ho), and enables the generation of triplet supercon-
ductivity from the wide variety of available singlet superconductors.

The conversion from singlet pairing to spin-polarized triplet pairing can 
be understood as a two-step process. In the first step, spin-mixing [42] 
occurs from for instance spin-dependent scattering at interfaces [43]. This 
generates the zero spin triplet projection which then coexists with the sin-
glet component. By changing basis, the triplet component with zero spin 
projection can then be transformed into the triplet components with equal 
spin and this happens precisely in the presence of magnetic inhomogene-
ities. Ref. [33] provides a nice introduction to the topic.

Until recently, magnetic inhomogeneities were believed to be the pri-
mary source of the singlet-to-long-range-triplet conversion, and cor-
respondingly the majority of research on isolating and enhancing the 
long-range component focused on such setups [44–55]. However, in very 
recent developments, it has been shown that intrinsic spin-orbit coupling 
can also convert the singlet pairs to long-range triplets in a ferromagnet 
[56, 57]. This has given rise to several novel phenomena including signifi-
cant effects on the superconducting critical temperature and modification 
of the electronic density of states [58, 59], and this will be discussed further 
in Section 1.5.

1.2.2.2  Experimental Signatures

Before presenting the underlying theory in more detail below, we will first 
reinforce the intuitive picture of the superconductive proximity effect by 
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outlining some typical experimental signatures of the effect and the most 
general physical principles behind this behaviour.

Andreev Reflection. A central feature of the proximity effect is the pro-
cess of Andreev reflection [60], which describes the conversion of normal 
current into supercurrent at a superconducting interface. Incoming elec-
trons with energy є < Δ

0
 cannot be transmitted from the normal metal into 

the superconductor, as there are no quasiparticle states with this energy 
in the superconductor. There are then two possibilities: the electron can 
either be reflected as an electron, or it can be retroreflected as a hole with 
opposite spin, thereby transmitting a Cooper pair of two electrons into 
the superconductor in the process. Since the retroreflected hole is phase 
coherent with the transmitted electrons, the hole will also be phase coher-
ent with the superconducting condensate at large, and can therefore carry 
information about the superconducting correlations into the normal metal, 
i.e. what we call the proximity effect.

Josephson effect. With two or more superconducting layers, such as 
in a Josephson junction [61, 62] where two superconducing layers sand-
wich one or more magnetic or non-magnetic layers, the phase difference  
between the superconductors becomes an important factor. Analogously to 
electron tunneling, the Cooper pairs can tunnel through the interstitial bar-
rier, resulting in a flow of supercurrent between the two superconductors. 
The mechanism of multiple Andreev reflections is an intuitive  candidate 
for explaining this tunneling effect. Consider an electron from the middle 
layer of a superconductor/normal-metal/superconductor structure that 
has an energy є < Δ

0
. If this electron hits the interface shared with the right 

superconductor, a Cooper pair may be transmitted into the superconduc-
tor, while the electron is Andreev retroreflected as a hole. The hole may then 
move through the normal metal to the left interface where it can annihilate 
a Cooper pair in this superconductor as it becomes Andreev reflected as an 
electron again. Through the mechanism of multiple Andreev reflections, 
we see that a Cooper pair can be effectively phase-coherently transmitted 
through a non-superconducting region from the left to right superconduc-
tor. Since the Andreev processes at both interfaces are phase-coherent pro-
cesses, this tunneling phenomenon is highly sensitive to the relative phases 
of the two superconducting condensates. The phase difference between the 
superconductors therefore governs the magnitude of supercurrent that can 
flow in the junction via the expression I = I

c
 sin , where I

c
 is the critical 

supercurrent above which a feedback resistance enters into the  system, 
reducing the supercurrent to conventional resistive current. Note that 
while I

c
 > 0 for typical superconductor/normal-metal/superconductor 

(SNS) structures, and I
c
 < 0 often occurs for superconductor/ferromagnet/
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superconductor (SFS) structures, the current-phase relations for Josephson 
junctions with more involved interstitial regions can take entirely differ-
ent forms. A review of the current-phase relations for a range of different 
Josephson junctions was given by Golubov et al. [63].

Oscillating superconducting order. In the presence of a large magnetic 
field, the FFLO state should in certain cases manifest as spatially oscillating 
superconducting order, but the originally proposed state has never been 
unambiguously observed experimentally in a superconductor due to its 
extreme sensitivity to impurity scattering. However, oscillation of both the 
order parameter and the critical temperature with the thickness of a proxi-
mized ferromagnet has been predicted and observed [64] in diffusive SF 
systems. From this one can infer the existence of a spatially modulated 
superconducting FFLO state which is also naturally manifested in other 
physical observables of SF systems, such as the supercurrent, as will be 
discussed further in Section 1.4.2.

Density of states. The density of states is a measure of the number of 
available microstates that a system might occupy in a particular energy 
range and, as discussed above, superconductors display a gap in this con-
tinuous spectrum below their critical temperature (see Figure 1.2). The 
normal state density of states at the Fermi level can be taken to be of the 
order N

0
 ~ 1022/eV cm3 (see e.g. [65]). Compared to a normal metal, the 

presence of singlet superconductivity will lower the density of states at 
the Fermi level, while triplet superconductivity will increase the den-
sity of states, an effect which can be traced back to the symmetry of the 
superconducting order parameter [66]. The experimentally measured 
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Figure 1.2 Left panel: Typical density of states D( ) vs. quasiparticle energy  measured 

on the non-superconducting side of an SF bilayer setup when the singlet proximity effect 

dominates. Middle panel: Typical density of states measured on the non-superconducting 

side of an SF bilayer setup when the triplet proximity effect dominates. Right panel: Spin-

split density of states in a thin-film superconductor exposed to an in-plane magnetic 

field. Here shown for a externally induced Zeeman field of h = 0.3Δ
0
. In all cases the 

background density of states of a normal metal is here normalized as D( ) = 1.
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enhancement of the density of states in an SF bilayer without spin-orbit 
coupling in the first experiments probing this effect was about 1% from 
the normal-state [64, 67]. On the other hand, a large effect on the density 
of states can be seen for a thin-film superconductor in the presence of a 
weak in-plane magnetic field. Meservey, Tedrow and Fulde observed a 
spin splitting in the electronic density of states of a superconductor with 
two maxima near Δ ± 

B
H, where 

B
 is the Bohr magneton and H the mag-

netic field [10] and showed this can be used to determine the polarization 
of the electron spin in a ferromagnet [13]. Such systems were recently 
shown to feature strong odd-frequency correlations despite the absence 
of a zero-energy peak [68].

In the case of a Josephson junction with an interstitial normal metal 
(N) or even a simpler superconductor/normal metal bilayer, the proximity 
effect in N manifests as a minigap, i.e. the N displays a gap Δ

N
 < Δ

0
 [69]. This 

minigap extends throughout the N, even featuring on the superconducting 
side of the contact with the same value, and along with its dependence on 
phase difference this was recently measured in experiment with great accu-
racy [70]. When the superconductor phase difference  is increased from 
0 to π, the magnitude of the gap decreases. In agreement with theoretical 
prediction, it closes entirely at  = π [71].

When the material is magnetic, the oscillating order parameter leads to 
a corresponding oscillation in the density of states as a function of the pen-
etration distance into the ferromagnet due to the alternating dominance of 
singlet and triplet pairing [64, 72]. The density of states in the ferromagnet 
is inverted compared with SN structures when the superconducting order 
parameter is negative (called the -phase) and triplet pairings dominate. 
Whenever the Thouless energy is much greater than the exchange field 
strength one expects to see a spectroscopic minigap, which closes when 
the resonant condition h ~ E

g
 is fulfilled, where E

g
 is the zero-field minigap 

[73, 74]. Beyond this a zero-energy peak emerges until the field strength 
overcomes all correlations and the density of states becomes essentially 
featureless [75]. In contrast to SNS junctions where the phase- difference 

  closes the gap, triplet-dominated SFS junctions can now exhibit a 
giant proximity effect at  = , manifesting as a uniform zero-energy peak 
throughout the magnetic material [59].

Critical temperature. The critical temperature T
c
 of a superconduc-

tor is the temperature at which the superconducting correlations vanish. 
Mathematically, this means that the superconducting gap Δ drops to zero 
above the critical temperature. One of the main aspects of the inverse prox-
imity effect is that it reduces the gap in a superconductor at all tempera-
tures, and this in turn causes the gap to drop to zero at lower temperatures 
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than for a bulk superconductor. Because of this, the critical temperature 
of a superconductor can be directly manipulated if the inverse proximity 
effect can be controlled. One prime example of this is the so-called absolute 
spin-valve, which consists of a singlet superconductor sandwiched between 
two individually controlled ferromagnetic layers. If the ferromagnetic layers 
are parallel, their magnetic exchange fields add up constructively inside the 
superconductor. This causes strong pair-breaking and drastically lowers the 
critical temperature to some value T

c,1
. On the other hand, if the ferromag-

netic layers are antiparallel, then their magnetic fields instead partially can-
cel each other inside the superconductor. The superconducting condensate 
is thus less disturbed by the presence of magnetic order, resulting in a higher 
critical temperature T

c,2
. Thus, by keeping the structure at a temperature T

c,1
 

< T < T
c,2

, whether the structure is above or below its critical temperature 
will depend on the relative magnetizations of the two ferromagnets. In other 
words, by rotating the magnetization of one (soft) ferromagnet while keep-
ing the magnetization of the other (hard) ferromagnet fixed, superconduc-
tivity can be toggled on and off in the structure, which corresponds to an 
infinite GMR effect. This has been experimentally demonstrated in Ref. [15].

1.3  Theoretical Framework

One theoretical approach to examining heterostructures that combine 
superconducting and ferromagnetic materials is the Bogoliubov–de 
Gennes formalism [76]. The Bogliubov–de Gennes equations take the form

 
H x

x H

x

x
E

x

x

e

h

e

h

0

0

( )

( )

( )

( )

( )

( )
,  (1.3)

where H
0
 is the Hamiltonian of a single electron, including both kinetic 

energy and all non-superconducting interactions; 
e
 and 

h
 are complex 

wave functions that describe electron-like and hole-like excitations respec-
tively; E is the energy of the excitations;  denotes complex conjugation; 
and Δ(x) is a complex field that describes superconductivity. We note 
that this bears a lot of resemblance to the Schrödinger equation H

0 e
(x) 

= E
e
(x) for an electron. The obvious difference is that the correspond-

ing Bogoliubov–de Gennes equation H
0 e

(x) + Δ(x)
h
(x) = E

e
(x) couples 

electron-like and hole-like excitations. However, in the non-superconduct-
ing limit Δ → 0, we see that the Bogoliubov–de Gennes equations reduce 
to the Schrödinger equations.
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In the ballistic limit, there is negligible resistivity due to the lack of 
scattering. Although seemingly a severe restriction, this can be a suitable 
limit when the mean free path of the conduction particles, i.e. the elec-
trons and holes, is longer than the transporting medium, as can be the case 
for very pure metal nanowires, for example. The fewer defects there are in 
the medium, and the lower the temperature at which it is held, the longer 
the mean free path. However, the introduction of interfaces introduces an 
inevitable source of scattering due to the mismatch between the crystal 
structures of the two materials on either side of the interface. Therefore, we 
will focus primarily on the more widely applicable diffusive regime for the 
remainder of the chapter.

The Bogoliubov-de Gennes framework can be substantially simplified 
by making a quasiclassical approximation which in the ballistic limit pro-
vides the Eilenberger equation [77], while the diffusive limit is described 
by the Usadel equation [78]. Refs. [69, 79] review the use of quasiclassical 
Green’s functions in normal-metal/superconductor heterostructures, and 
in this section we will provide a very brief introduction to quasiclassical 
theory with an overview of the primary conventions and parameterization 
regimes that populate the literature. The motivation for including this sec-
tion is to give the reader an idea of the theoretical “toolbox” that can be 
used to describe the emergent quantum physics in SF systems.

1.3.1  Quasiclassical Theory

In quantum mechanics, a Green’s function G ′(x, t; x′, t′) can usually be 
thought of as a probability amplitude.2 More precisely, it is a measure of 
the probability that a particle that was at position x′ with spin ′ at time 
t′, will appear at some other position x with spin  at some later time t. In 
quasiclassical theory, the two main Green’s function formalisms in use are 
the Keldysh real-time formalism [81] and the Matsubara imaginary-time 
formalism [82]. Here, we will consider the Keldysh technique for ordering 
Green’s functions, and briefly discuss the Matsubara technique in the sec-
tion on conventions and notations 1.3.2.

The Keldysh technique identifies a retarded and advanced component 
describing particle propagation in the positive and negative temporal 
directions respectively, as well as a Keldysh component which describes 
any non-equilibrium component. As usual, a particle travelling backwards 

2 Depending on the personal preferences of the authors, the same mathematical object 

may be referred to as either a Green’s function, Green function, or propagator [80].
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in time may also be interpreted as an antiparticle travelling forwards in 
time, so a more natural interpretation might be that the retarded compo-
nent describes the propagation of electrons while the advanced component 
describes the propagation of holes. The full 8 × 8 Green’s function Ǧ = 
Ǧ(x, t; x′, t′) is written as a combination of these,

 Ǧ =
Ĝ R ĜK

0 Ĝ A , 
(1.4)

where ĜR, ĜA and ĜK refer to the retarded, advanced and Keldysh com-
ponents respectively. The two 2 × 2 diagonal blocks of these component 
matrices are termed normal Green’s functions G , while the off-diagonal 
blocks are called anomalous Green’s functions F . The normal Green’s 
functions are given by the following expectation values:

 

G R
σσ (x , t ; x ′′

′

′ ′

′

′′, t ) = − i ψσ (x , t), ψ
†
σ (x , t ) Θ(t − t ),

G A
σσ (x , t ; x , t ) = i ψσ (x , t), ψ

†
σ (x , t ) Θ(t − t),

GK
σσ (x , t ; x , t ) = − i ψσ (x , t), ψ

†
σ (x , t ) ,

′′

′′

′ ′

′

′

′′

′′

+

 

(1.5)

where (·) is the Heaviside step function. The anomalous counterparts F  
are defined in the same way except for the †, i.e. they are proportional to 

{ },  and [ ],  instead.
The Green’s function displays a wavepacket-like oscillatory profile, 

where the relative coordinate describes the internal, rapid oscillations of 
the order of the Fermi wavelength 

F
, that occur due to self-interference 

effects. Conversely, the center-of-mass coordinate describes the spatial 
evolution of the wavepacket envelope. Only the average of the fast oscilla-
tions is relevant for the superconductivity of the material since the super-
conducting coherence length of the Cooper pairs 

S
  

F
, and thus one 

averages out the relative coordinate (also known as the gradient approxi-
mation). This is equivalent to assuming that all relevant length scales in 
the system must be much greater than 

F
, and is the starting point for the 

quasiclassical approximation, which goes on to consider only momenta of 
the order of the Fermi momentum. All physical quantities are therefore 
confined to the Fermi surface, and since all quasiparticles have the same 
magnitude of momentum in this approximation, the relevant information 
is the transport direction.
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Explicitly, the approximation enters as an integration over the kinetic 

energy, such that the quasiclassical Green’s function ǧ(x, p
F
, є, t) is given by

 ǧ(x, pF , є, t)
i

π

∞

−∞

d p Ǧ (x , p, є, t), (1.6)

where є is the quasiparticle energy, p is the momentum, p
F
 is the Fermi 

momentum, and 
p
 = p2/2m   is the kinetic energy measured from the 

Fermi level . It is straight forward to verify that this definition is equiva-
lent to the approximation Ǧ(x, p, є, t) ≈ −i (

p
)ǧ(x, p

F
, є, t) where the delta 

function (
p
) constrains the quasiparticle momentum to the Fermi sur-

face. In other words, this integral definition is equivalent to our previous 
qualitative discussion of the approximation as confining physical quanti-
ties to the Fermi surface. This integal is not well-defined for large kinetic 
energies 

p
, so in practice the integral is solved by contour integration. For 

the details of this procedure, we refer the reader to Refs. [83–85].
The 4 × 4 retarded block of ǧ has the structure:

 g
g f

f g
,  (1.7)

and is normalized such that ĝ2 = 1̂, where 1̂ is the 4 × 4 unit matrix. It is 
worth noting that the choice of normalization convention for ĝ is governed 
by the ordering of particle creation and annihilation operators when these 
are combined in a convenient 4-vector form [86]. The normalization of the 
Green’s function matrix can also be set to ĝ2 = –1̂ or ĝ2 = –π21̂ depending on 
the prefactor in Eq. (1.6). The advanced and Keldysh blocks have a similar 
structure to the retarded block, and the notation … denotes a 2 × 2 matrix. 
The tilde-operation …̃ denotes a combination of complex conjugation 
i → i and energy є → є. Note that the Green’s functions of the system 
can be used to directly calculate physical observables for a superconduct-
ing system. For instance, the normalized density of states D(є) =  1

2
Re Tr g 

corresponds to the real part of the normal Green’s function, and the criti-
cal temperature T

c
 can be defined as the temperature where the anomalous 

Green’s function f drops to zero for all energies. Moreover, a small imagi-
nary component is often added to the energy to model inelastic scattering, 
such that є → є  i . This has the effect of smoothing out divergences in the 
density of states.

ˆ
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1.3.1.1  Diffusive Limit: Usadel Equation

In the diffusive limit, we are able to take account of particle scattering by 
impurities and rough interfaces. In this case the system is described by a set 
of second-order partial differential equations for the Green’s function of a 
material collectively termed the Usadel equation. The Usadel equation reads:

 D∇ · (ǧ ∇ǧ ) + i єˆ3 + Δ̂ + M̂ − σ̌sf − σ̌so, ǧ = 0. (1.8)

Here we have written the equation in a quite general form, where D 
denotes the diffusion coefficient of the material, є is the quasiparticle 
energy and 

3̂
 = diag(+1, +1, −1, −1). Moreover, it should be noted that 

ǧ in the above equation refers to the isotropic part of the quasiclassical 
Green’s function defined in Eq. (1.6), which is independent of the direction 
of motion (the position on the Fermi surface). The magnetization matrix 
M̂ = h · diag ( , *), where h is the magnetization exchange field and  
is the Pauli vector. Products of matrices with incompatible dimensions 
should be interpreted by taking Kronecker products with the appropri-
ate identity matrices, so that e.g. 

3̂
ǧ = [

3̂
  diag(1, 1)]ǧ = diag(

3̂
, 

3̂
)ǧ. 

The effects of spin-orbit coupling and randomly aligned magnetic spin-flip 
processes caused by impurities have been included via the terms

 

σ̌so = −
1

8τso
σ̂ ρ̂3 ǧ ρ̂3 σ̂,

σ̌sf = −
1

8τsf
σ̂ ǧ σ̂,  

(1.9)

where 
so

 and 
sf
 are the mean spin-flip and spin-orbit scattering times, 

and we have defined the matrix ˆ = diag( , *). Impurity scattering in the 
Usadel equation is  typically treated in the Born approximation, which 
means that the strength of the impurity potential (the phase-shift imposed 
on the electron wave function when it scatters on the impurity) is suffi-
ciently weak, although the impurity concentration may still be high. This is 
in contrast to the opposite regime of the unitary limit where the scattering 
potential is strong, imposing a large phase-shift.

A note on the derivation and applicability of the Usadel equation

The Usadel formalism assumes that the impurity scattering rate is the larg-
est energy scale in the system besides the Fermi level (typically several eV 
in metals), and may therefore be inaccurate for strong ferromagnets where 
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the exchange field is a significant fraction of the Fermi energy. In this case 
the Eilenberger equations [77] should be used instead. These are the kinetic 
equations for the superconductor before the standard battery of assump-
tions and approximations are applied in order to make more complicated 
scenarios tractable. A detailed derivation of the Usadel equation in the 
dirty limit, starting from the equation of motions for the field operators, 
can be found in Ref. [85]. One first finds the equation of motion for the 
Green’s functions, and the Eilenberger equation is found by setting their 
difference equal to zero. This is done within the BCS mean field approxi-
mation, which reduces two-particle operators to single-particle operators 
by assuming short range interactions and taking the average. This is the 
first of many necessary approximations, and we provide a brief overview 
and discussion of the most common cases and the associated nomencla-
ture typically met in the literature:

Mean-field Approximation: One here assumes that  electron- 
electron interactions can be described effectively by each 
electron moving in a net background field set up by the 
other electrons. Mathematically, this amounts to taking 
the average of two-particle operators to yield single-particle 
operators. In the case of a superconducting order parameter, 
this results in Δ(x, t) = (x, t) (x, t) , where  is the 
coupling constant of the effective electron-electron interac-
tion that causes superconductivity.
Gradient Approximation: This assumes all quantities vary 
slowly compared with the Fermi wavelength, so that one 
may neglect short-ranged oscillations and keep only spatial 
derivatives up to first order.
Clean Limit: The clean limit applies to very pure materi-
als, where the mean free path is greater than the coher-
ence length  and length L of the medium,  , L. At low 
temperatures, the proximity effect is therefore long ranged. 
Ferromagnets with increasingly high Curie temperatures, 
i.e. the temperature beyond which it loses its permanent 
magnetization and becomes a paramagnet, tend towards the 
clean limit. Typical examples are iron (Fe) and cobalt (Co).
Born Approximation: This assumes that the strength of the 
impurity potential is so weak that it imposes a phase-shift 
 on the electron wave function upon scattering, satisfy-

ing   1. In effect one introduces a self-energy term (i.e. 
quantifying the contribution to the particle or quasiparticle’s 
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energy given by interactions with the system) by averaging 
over the positions of the impurities (and averaging over spin 
states in the case of magnetic impurities).
Dirty Limit: In contrast to the clean limit, the dirty limit is 
defined by   or L  , and the proximity effect decays 
exponentially because the Usadel formalism takes the 
ensemble average over impurities. By taking the dirty limit 
one assumes that the elastic scattering self-energy term from 
the Born approximation dominates all terms in the equation 
of motion for the Green’s function, 1/

imp
  Δ, T, and in this 

way models quasiparticle diffusion.
Equilibrium: In equilibrium, there are no applied  voltages 
or temperature gradients, allowing the Keldysh component 
of the quasiclassical Green’s function to be written purely in 
terms of the retarded Green’s function since ĝK = (ĝR − ĝA) 
tanh(є/2k

B
T) and ĝA = −( ˆ

3
ĝR ˆ

3
)†, where k

B
 is the Boltzmann 

constant.
Weak Proximity Limit: The limit of weak proximity effect is 
a reasonable approximation when the non-superconduct-
ing layers are very long, or the interface transparency is 
very low. Mathematically, this limit implies that the anom-
alous Green’s function can be treated as a perturbation 
|| f || 1, since the presence of an anomalous Green’s func-
tion is invariably linked to the presence of superconducting 
phenomena. The resultant simplification allows for analytic 
results which facilitates the understanding of the underly-
ing physical mechanisms. In contrast, the strong proximity 
limit can typically only be solved numerically but allows for 
more accurate predictions of physically relevant signatures.

1.3.2  Notation and Parameterizations

The 4 × 4 components of the retarded Green’s function ĝ(x, є) (dropping 
the superscript ‘R’ for brevity) are not all independent. Firstly, the particle-
hole symmetries g̃(x, є) = g (x, −є) and f (x, є) = f (x, −є) relates the top 
two 2 × 2 blocks of the matrix to the bottom ones. Secondly, writing out the 
normalization condition ĝ2 = 1̂ reveals two further constraints: gg − f f  = 1 
and gf − fg̃ = 0. By picking a parametrization of the Green’s function such 
that these normalization and symmetry constraints are automatically satis-
fied, the relevant physical equations can be significantly simplified. We will 
discuss two such parametrizations in this section.
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In analytical treatments of superconductivity, the most popular param-
etrization is the so-called -parametrization, which is usually written

 g

c s

c s

s c

s c

0 0

0 0

0 0

0 0

,  (1.10)

where sinh  ≡ s  and cosh  ≡ c . Thus, with this parametrization, the 
equations of motion can be recast in terms of only two scalar parameters ↑ 
and ↓. While this choice can be very useful for analytical considerations, 
it has several limitations. Firstly, in the form presented here, it can only be 
used to describe singlet pairing and short-range triplet pairing, although 
there exists a generalization which captures all pairing components [87]. 
We recall that short-range triplet pairs are those which have zero spin- 
projection along the local magnetization direction, whereas the long-
ranged pairs have spins aligned with the magnetization direction. When 
it comes to long-range triplet pairs, these would specifically be described 
by the elements that are set to zero in this parametrization. Secondly, the 
hyperbolic functions and their inverses are multi-valued. This is usually 
not a problem in analytical treatments, but can lead to convergence prob-
lems and instability when treating the problem numerically.

These problems bring us to the other popular parametrization, namely 
the Riccati parametrization [88, 89]. This parametrization is defined as

 
g

N

N
=

−
⎛

⎝⎜
⎞

⎠⎟
+

+
⎛

⎝⎜
⎞

⎠⎟
0

0

1 2

2 1
,
 (1.11)

where the normalization matrices3 N  (1   ˜) 1 and Ñ   (1   ˜ ) 1. In con-
trast to the multi-valued and unbounded -parametrization, the Riccati 
parametrization is both single-valued and bounded || || < 1, and is there-
fore the most popular parametrization for numerical work. Finally, the 
parametrization is completely general as it can be used to analyze all com-
binations of singlet, short-range triplet, and long-range triplet pairing that 
may occur in hybrid structures.

3 In some literature, one uses the convention that ˜(є) = [ ( є)]* instead of changing the 

sign structure of Eq. (1.11).

ˆ

ˆ
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We conclude this section by noting that a common alternative to the 
Keldysh real-time framework discussed herein is the Matsubara imaginary-
time formalism. In that case, the physical equations are expressed in terms 
of only a single Matsubara Green’s function ĝM(x, t), which can be related 
to the retarded and advanced Green’s functions of the real-time formalism 
by analytical continuation to complex energies. We have for instance ĝR(є) = 
ĝM(i  → є + i ) where is a positive infinitesimal.4 The imaginary energy  is 
restricted to one of the discrete Matsubara frequencies 

n
  (2n +1) T, where 

T is the temperature of the system and n is an arbitrary integer. In super-
conductors, the relevant Matsubara frequencies are those below the Debye 
frequency 

c
, so we only need to consider n ∈ (−n

c
, +n

c
) in practice, where n

c
 

≈ 
c
/2 T. Thus, at high temperatures, the number of Matsubara frequencies 

below the Debye frequency decreases, which means the Matsubara formal-
ism becomes more computationally efficient in this regime. This explains why 
the formalism has become quite popular for critical temperature calculations, 
for example. Nevertheless, the Matsubara formalism is less general than the 
Keldysh formalism; the former can only be used to treat systems in thermal 
equilibrium, while the latter is valid also for non-equilibrium systems.

1.4  Experimental Status

In this section we will provide a brief introduction to the techniques and 
materials most readily available in the laboratory setting, and use the the-
ory developed in the preceding chapter to explain the latest experimen-
tal breakthroughs in superconducting spintronics. Three comprehensive 
reviews of proximity effects in superconductor-ferromagnet heterostruc-
tures appeared in 2005 [29, 30, 90], as well as an overview of experimental 
devices in 2014 [91] and thorough review of spin-polarized supercurrents 
in 2015 [92]. We thus limit the scope of this section to provide a broad but 
brief overview of the most important experimental features affecting super-
conducting order in magnetic materials, primarily from the last decade.

1.4.1  Materials and Techniques

To help newcomers to superconducting spintronics or heterostructures in 
general, and to set the stage for the state-of-the-art experimental frontier, 

4 Although  enters in a similar way to , which models the inelastic scattering in the 

Keldysh formalism, the mathematical equivalence here requires  = 0+.
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we provide a brief overview of the primary materials and experimental 
techniques typically used in the construction of such thin-film architec-
tures. For an in-depth explanation of experimental techniques we refer 
readers to Ref. [93], sections of which we briefly paraphrase in 1.4.1.2. The 
overarching process requires an appropriate construction environment, 
methods of generating clean surfaces and well-formed interfaces, and 
methods for measuring the efficacy of all aspects of the process.

1.4.1.1  Material Choice

The range of available ferromagnetic and superconducting elements is too 
extensive to discuss all implemented combinations here with any degree 
of justice, so we provide just a few common examples in order to give the 
unfamiliar reader a feeling for the appropriate parameter range of opera-
tion. Although we assume the reader to be familiar with ferromagnetism, 
we highlight a few examples that work particularly well in combination 
with superconductivity. The common elemental ferromagnets are of course 
the transition metals iron (Fe), nickel (Ni) and cobalt (Co). We men-
tioned above that Fe and Co are in the clean limit due to their high Curie 
 temperature, featuring an exchange field which is a substantial fraction 
of the Fermi energy (high polarization), and these are routinely used in 
their pure state in superconducting heterostructures. Ferromagnetic com-
pounds are preferred when specifically tailored characteristics of the het-
erostructure, such as a desired magnitude of the exchange field, is required. 
Examples include PdNi and CuNi, which can feature a canted magnetiza-
tion orientation relative to the film-plane due to the competition between 
shape- and magnetocrystalline anisotropy [49]. The diffusion constant of 
CuNi is of the order D ∼ 5 cm2/s [94]. Of the elemental superconductors, 
niobium has one of the biggest gaps at around Δ ≈ 3 meV. In the diffusive 
limit one typically expects superconducting coherence lengths in the range 

S
 = 10–30 nm, although it should be noted that its magnitude decreases 

when the thickness of the superconductor becomes comparable or smaller 
than this regime.

1.4.1.2  Experimental Techniques

The preparation of reasonably impurity-free nanoscale heterostructures 
requires extremely low ambient pressures, typically under 10−8 Pa, as the 
ambient pressure governs the rate at which external particles impinge on 
a surface. For this reason all operations are performed inside an ultra-
high vacuum chamber, and such vacuum technology has undergone a 
series of steady improvements in recent years [93]. If the crystal is brittle, a 
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well-defined crystal surface can be prepared by cleavage, where mechanical 
pressure is applied to the crystal via externally controlled magnetic or elec-
tric devices. The cleavage then occurs along a particular crystallographic 
direction, meaning noncentrosymmetric materials are quite unsuited for 
cleaving due to their lack of inversion symmetry.

Since cleavage only works well for brittle crystals, and as a cleaved 
surface may contain rough edges or defects, an alternative preparation 
method is ion bombardment and annealing. In this case noble gas ions 
are fired at the surface of the crystal, removing the top layer along with 
any defects, and high-temperature annealing (~500–1200 °C) removes 
any noble gas remnants on the surface. The purity and crystallographic 
order of the remaining surface are checked by spectroscopic and diffrac-
tion methods (see more below), and the bombardment/annealing process 
may be repeated a number of times until a satisfactory surface is achieved.

Thin-film layers are typically deposited by simple evaporation and 
condensation in general, creating a transversal “pancake-stack”. When 
a  specific crystallographic orientation is required, the evaporation-
condensation conditions are chosen more carefully and deposited with 
a technique called Molecular Beam Epitaxy (MBE). Here a beam of the 
sublimated/evaporated elements or compounds from which one wishes to 
make a layer is directed onto the substrate, and the layer deposition can 
be controlled to within a single monolayer by the rapid switching of this 
beam. Epitaxy refers to the deposition of a thin crystalline layer on top of a 
crystalline substrate, where the epitaxial layer has a fixed crystallographic 
orientation with respect to this substrate. The substrate provides a base 
structure from which the epitaxial layer is “grown” – that is it acts as a 
so-called seed crystal, which lowers the interaction potential of molecules 
to form a crystal lattice near the surface. The quality of the interface is 
therefore quite dependent on the crystallographic matching/lattice con-
stants of the two layers. The III-V semiconductor gallium arsenide (GaAs) 
is a commonly used substrate, which has a zincblende crystal structure, 
i.e. the atoms form two interlocked face-centered cubic lattices where the 
four nearest neighbours at the tetrahedral vertices are of opposite type. 
The epitaxy may also occur through chemical reactions, in which case the 
technique is called Metal-Organic MBE, or Chemical Beam Epitaxy.

For materials that have very high melting points, making the evapora-
tion step difficult, the sputter deposition technique provides an alternative. 
This term actually denotes a range of related vapour deposition methods, 
many of which can still be operated at ultra-high vacuum for increased 
purity and epitaxial growth for structural control. In this case accelerated 
gaseous ions are fired onto the material from which one wishes to create a 
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thin-film layer (the “target”). The impact causes a number of particles to 
be ejected (sputtered) from the surface and are subsequently deposited as 
a thin-film on a substrate. By choosing reactive gases, one may also sput-
ter compounds. The deposition with sputtering, and to a large extent also 
with MBE, is primarily homogeneous; patterning is significantly more of a 
challenge because of the lack of control over deposition direction. Thus, if 
particular structural features are required, these must be created by remov-
ing surface layers via etching with a focused beam of particles or by using 
electron-beam lithography. In the latter case, the pattern is drawn by fir-
ing an electron beam at an electron-sensitive coating, after which selective 
removal is possible in a solvent bath.

High-quality thin-film interfaces are crucial for efficient spin-transport 
between the layers, and the atomic structures of such interfaces are stud-
ied in detail using microscopy, spectroscopy and diffraction methods. 
Using Auger electron microscopy or X-ray photoemission spectroscopy, 
the intensity of the characteristic transitions or emission lines correspond-
ing to electrons from individual atoms in the sample decays exponentially 
with the thin-film thickness. This is due to the often short mean free path 
(~tens of nm) of electrons in matter, the length of which changes accord-
ing to material structure and impurity level. If the deposition occurs as an 
island on the substrate rather than a full monolayer, the intensity profile, 
which is measured as a function of the layer coverage, will instead tend to 
be linear [93].

Using electron diffraction techniques, bright Bragg spots show the 
crystallographic order of the reciprocal lattice, accurate to within the 
electron beam’s coherence length. If one requires a more accurate real-
space image, a range of tools are available, with various advantages and 
drawbacks. They may yield significantly increased resolution for example, 
but may not be compatible with ultra-high vacuum conditions, meaning 
contamination of the sample might occur during transfer to the micro-
scope. This is the case for scanning electron microscopy (SEM), which is 
among the most common high-resolution tools, along with transmission 
electron microscopy (TEM) and scanning tunneling microscopy (STM). 
Optical methods may also be used, such as using inelastic scattering to 
study vibrational properties of the lattice. For buried interfaces, ion scatter-
ing is another indispensable tool, where the subsequent analysis can yield 
information about the chemical composition, crystallographic quality and 
lattice matching between the layers. For further reading, we refer again to 
the book by Lüth [93] and references therein.

So far we have been concerned with the construction of thin-film archi-
tectures. Now we turn to techniques for controlling and measuring the 
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physical features of interest in spintronics. The practicalities of control 
in experimental setups can be quite unintuitive – for example, it is often 
easier in experiment to rotate the sample itself rather than the magnetic 
field source in order to probe the influence of different magnetic field ori-
entations on the system. The pace at which interesting new features are 
being uncovered makes the physics of control and measurement a rapidly 
expanding field in itself, and this discussion will lead us naturally into the 
next section, where we consider the frontier of experimental research.

The differential conductance dI/dV is directly proportional to the den-
sity of states in the tunneling limit (where Andreev reflection is suppressed) 
and so is a common measure in which to present such analysis experimen-
tally. It is typically normalized to the normal-state conductance at high bias 
(5 mV in a Nb superconductor, for a concrete example [95]). An STM can 
be used to generate the current-voltage sweep since the tunneling current 
depends on the voltage between the STM tip and the electronic structure 
to be probed. For this reason differential conductance and tunneling spec-
troscopy are sometimes used interchangeably in the literature. Numerical 
differentiation is very sensistive to noise, so typically an averaging over 
several sweeps must be taken to get an accurate mapping.

The Josephson junction (Section 1.2.2.2) is a mainstay of spintronic 
architectures in the context of superconducting hybrids, but the approach 
to its construction depends on the intended purpose. The phase difference 
between the superconductors can be adjusted by applying a current bias. 
As long as the current is smaller than the critical current I

c
, the super-

conducting phase difference then adjusts in order to support the applied 
current via the relation I = I

c
 sin( ). The phase may also be modified con-

tinuously by applying an external magnetic flux in a loop geometry [70]. In 
an SNS junction, the superconductors have zero phase difference between 
them in the ground state. However, due to the oscillating behavior of the 
order parameter in SFS junctions described previously, the ground state in 
this case can occur at a phase difference equal to . Whether 0 or  is the 
ground state depends on the system parameters, such as the length of the 
interstitial ferromagnetic layer and temperature. It has also been predicted 
that, in special circumstances, the ground state may be manufactured to 
give an arbitrary 

0
-junction (see Section 1.5 for more details).

A highly influential application of Josephson junctions is their use in 
superconducting quantum interference devices (SQUIDs). These are typ-
ically made by joining two junctions in a loop [96], but single-junction 
designs which are less sensitive but more easily manufactured also exist 
[97, 98]. When a magnetic flux passes through the loop, it induces a circu-
lating current. If an external current is applied to the SQUID, the induced 
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current will enhance the current in one arm of the loop and suppress it 
in the other. It will then be energetically favourable for the induced cur-
rent to change direction as a function of the magnetic flux in units of h/2e, 
where h is Planck’s constant and e is the electronic charge, i.e. in practice 
the induced current increases or decreases the flux through the loop. A 
SQUID may then in turn be used to measure properties of other thin-film 
heterostructures, as their high sensitivity to external flux means they func-
tion as high-precision magnometers (equivalently magnetometers). The 
recently developed nanoSQUIDs can even resolve the magnetization of 
individual spins [99–101], and we expand on this in the following section.

1.4.2  Recent Experimental Advances

The full theoretical basis of spin transport between materials in thin-film 
heterostructures involving superconductors is still incomplete, but as the 
potential benefits have emerged the field has undergone rapid develop-
ment. The race is now on to harness the full potential of superconducting 
correlations for spin transport in experimental devices, and a number of 
important steps have already been achieved in this regard. Key features 
include spin injection, spin accumulation, control of spin diffusion as well 
as dynamical detection and manipulation of the spin state of the system. 
Here we briefly discuss some of the superconducting counterparts to these 
conventional procedures from spintronics.

Spin injection and spin Hall effects. A compelling reminder of the 
enhanced capabilities promised by superconducting spintronics was 
provided recently with the report of a quasiparticle-mediated spin Hall 
effect – i.e. spin accumulation on the lateral surfaces due to spin-orbit cou-
pling – in an s-wave superconductor. The magnitude of this effect exceeded 
its non-superconducting equivalent by a factor of more than 2000 [18]. In 
that experiment, a lateral superconductor-ferromagnet structure was cre-
ated by using a non-magnetic Cu wire to join a ferromagnetic Ni

81
Fe

19
 wire 

to a wire of compound superconductor NbN, which has T
c
 = 10 K. A spin 

current was injected into the NbN via diffusion of spin accumulation in the 
Cu wire resulting from driving a current from the ferromagnet to the Cu. 
The inverse spin Hall effect causes scattering of the injected spin current 
and converts it to charge current, which below T

c
 is carried by quasipar-

ticles. The electrical signatures of the inverse spin Hall effect thus manifest 
as a charge imbalance at the edges of the sample [102].

Spin injection in conventional spintronics typically occurs as above, 
through diffusion of spins across a ferromagnet/non-ferromagnet inter-
face. At a superconducting interface, a range of novel phenomena have been 
shown when spin-polarized currents are injected into super conductors, 
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such as quasiparticle spin lifetimes close to one million times longer than 
the normal-state lifetime [16], which is a result of the unique properties of 
quasiparticles in superconductors. While they carry spin-1/2, their effective 
charge depends on their energy. In fact, near the gap edge є Δ

0
, their effec-

tive charge Q → 0 at the same time as their group velocity 
g
 slows down. 

This means that close to the gap edge, one has chargeless spin-1/2 fermion 
excitations which should then be insensitive to processes that cause de-
coherence due to coupling to the charge degree of freedom. Importantly, a 
recent experiment has indeed given an exposition of near-chargeless spin 
imbalance [17], which could have interesting consequences with regard to 
overcoming the problem of Joule heating associated with the large charge 
current densities (order 106 A/cm2) currently required for domain wall 
motion and magnetization dynamics. The fact that the group velocity of 
quasiparticles in superconductors slows down at є Δ

0
 also means that it 

takes a much longer time for them to experience e.g. spin-orbit scattering 
on impurities. Spin diffusion via quasiparticles in superconductors has been 
shown to be strongly enhanced in Zeeman-split superconductors [103].

Spin-polarized Cooper pairs. Whereas the above examples show how spin 
transport in superconductors can be dramatically improved compared to its 
non-superconducting counterpart even at the level of quasiparticles, much 
attention has also been devoted to the role of spin-polarized Cooper pairs 
that can emerge in SF structures. This triplet component of the supercon-
ducting correlations has been enhanced in experiments both via the intro-
duction of a ferromagnet with an inhomogeneous magnetization texture to 
produce long-ranged supercurrents [48, 104], and in multilayered SFS junc-
tions [49] (see the left panel of Figure 1.3). The pioneering experiment with 
regard to long-ranged triplet supercurrents was done by Keizer et al. [105], 
demonstrating transfer of a supercurrent through an extreme magnetic 
environment: a half-metal. Half-metals are ferromagnets with so strong 
magnetic fields that one spin band becomes electrically insulating, while the 
other band is a metallic conductor. Since conventional singlet Cooper pairs 
consist of electrons from both spin bands, such pairs cannot exist in a half-
metal. In the presence of magnetic disorder near the interfaces connecting 
the half-metal to a superconductor, effectively producing a local misalign-
ment of the magnetization there compared to its direction in the bulk, a net 
Josephson coupling via triplet Cooper pairs can be established [106]. The 
history and properties of spin-polarized supercurrents has been covered 
in great detail in a recent review [92]. Martinez et al. reported recently an 
important step forward with regard to exerting well-defined control of such 
triplet supercurrents [107]. The key idea in this experiment was to use an 
external magnetic field to switch on and off a triplet supercurrent by control-
ling the relative magnetization orientation in a Ni/Co/NiFe ferromagnetic 
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stack sandwiched between two conventional superconductors. Whereas Ni 
is a hard ferromagnet (high coercivity field), NiFe switches much more eas-
ily and could be rotated with a small field less than 20 mT. When the NiFe 
was rotated into a non-collinear orientation, a triplet supercurrent could 
flow through the junction, whereas it was otherwise strongly suppressed. In 
this way, the authors obtained “on-off ratios” up to 20 for the supercurrent.

The existence of triplet Cooper pairs is inferred indirectly via long-ranged 
supercurrents through ferromagnets. More direct proof can be obtained by 
considering how triplet Cooper pairs should influence the spectroscopic 
properties of superconducting structures, such as the energy-dependent 
density of states. The first direct experimental signatures of an odd-fre-
quency triplet pairing state in a conventional superconductor was in fact 
reported as recently as 2015 [96], using scanning tunneling spectroscopy of 
a niobium/holmium bilayer. Using a sapphire substrate topped with a thin 
layer of non-superconducting Nb as a seed crystal,5 a 9.5 nm layer of Ho 
was grown epitaxially followed by a 20 nm layer of superconducting Nb. 
The sample was protected from oxidization by applying a final thin layer of 

5 Typically, a superconducting layer needs to be longer than the order of half a coherence 

length of the material in order to display superconductivity, since there are otherwise 

insufficient Cooper pairs to form a condensate.
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Figure 1.3 Left panel: The critical supercurrent can display two types of behavior in 

ferromagnetic Josephson junctions. If no long-ranged triplet pairs are generated (due 

to e.g. magnetic inhomogeneities), the supercurrent is suppressed very quickly with 

increasing junction length L
F
 (note the logarithmic scale). In contrast, if triplet pairs with 

spin-polarization aligned with the magnetization direction are created, these can carry a 

long-ranged current through the system which is only weakly suppressed with increasing 

L
F
. Right panel: Magnetic control over the superconducting critical temperature T

c
 and its 

characteristic behaviour in two types of spin-valve junctions: FSF and SFF.
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gold. Having noted that spin-active interfaces can enhance odd-frequency 
pairing on the superconducting side of an SF interface [106], the authors 
used the controllable magnetic order in Ho to gain such an amplification 
of the triplets. By measuring the density of states on the superconducting 
side, the authors also avoid the normal-state background, thus in principle 
getting a clearer conductance signal. By applying an external field the Ho 
was then driven through a metamagnetic transition from helical antifer-
romagnet to homogeneous ferromagnet and the authors recorded a change 
in the subgap density of states from a double peak indicating spin splitting 
to an enhanced peak at zero energy, characteristic of the behavior of odd-
frequency triplets in the presence of a spin-active interface (see Figure 1.2). 
A similar effect was reported shortly thererafter in a superconductor/half-
metal bilayer [108].

Control of T
c
. In the last few years, there has been increasing activity 

in the quest for controlling the superconducting critical temperature T
c
 in 

spin-valve geometries, i.e. by changing the relative magnetization orienta-
tion of two or more ferromagnetic layers. It is also possible to alter T

c
 by 

altering the width L
F
 of the ferromagnetic layer. This can obviously not be 

done in situ, which is a practical hinderance, but in return the change in T
c
 

becomes potentially much larger and in some cases fully suppresses super-
conductivity, T

c
 → 0. Controlling T

c
 via the relative magnetization direction 

in an FSF spin-valve can be done with a single sample, as shown recently 
in Refs. [109–112]. As discussed previously, the configuration of antipar-
allel magnetizations should be more compatible with the superconduct-
ing state (higher T

c
) compared with the parallel alignment where the fields 

add [113, 114]. However, there is an additional effect that must be taken 
into account when the fields are non-collinear. In this case, an additional 
proximity channel through which Cooper pairs may “leak” into the ferro-
magnet is opened since long-ranged Cooper pairs can now be generated. 
As a result, one could expect that T

c
 is in fact not at its lowest in the paral-

lel alignment, but instead at misalignment angles close to /2. This has 
been experimentally confirmed in [109–111]. It is worth noting that this 
effect becomes much more pronounced in an SFF structure than in an FSF 
structure, since the additive, destructive effect of the ferromagnetic layers 
become less severe in the former case (see the right panel of Figure 1.3).

Recently, an unusually large change in T
c
 of order 1 K was reported by 

using half-metallic ferromagnets in a spin-valve setup [115]. In their device, 
the authors exploited precisely the extra leakage channel via long-ranged 
triplet Cooper pairs which becomes of crucial importance in half-metallic 
ferromagnets. In this case, a proximity effect is indeed only possible when 
such Cooper pairs are allowed to exist. Whereas previous experiments 
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(mentioned above) had achieved a maximum suppression of T
c
 of around 

100 mK, a change of 1 K was obtained in Ref. [115] by utilizing a CrO
2
/Cu/Ni/

MoGe structure (half-metal/normal metal/ferromagnet/ superconductor). 
The normal Cu spacer serves to reduce exchange coupling between the 
CrO

2
 and Ni which otherwise would have their magnetizations locked to 

each other. Using an external magnetic field to thus accomplish rotation of 
the Ni layer magnetization to a 90 degree orientation relative to the CrO

2
 

magnetization, the large shift in T
c
 was observed due to the long-ranged 

triplet proximity effect. This finding has relevance to applications utilizing 
superconducting switches that are controlled magnetically, as discussed in 
Ref. [116]. One reason for this is that when the range of T

c
 varies widely, 

the resistance state (“off ”-state) of the device is more stable with respect to 
thermal fluctuations. For a small change in T

c
, thermal fluctuations could 

accidentally turn the device “on” by lowering the temperature below the T
c
 

dictated by the magnetic configuration. A superconducting GMR device like 
this should be able to perform the same type of logic operations as its non-
superconducting equivalent, but with much lower dissipation of energy.

Thermoelectric effects. Part of what makes the transport properties of 
superconductors so exciting is the strong coupling between not only the 
spin and charge degree of freedom, but also heat. In fact, quasiparticle spin 
accumulation in superconductors can be intimately related to thermoelec-
tric effects. Although overall electron-hole symmetry may be preserved, 
spin-dependent order in superconductors induced either via a proximate 
magnetic host or an in-plane magnetic field in thin-film structures, breaks 
the spin-resolved electron-hole degeneracy. In turn, this allows for very 
large thermoelectric effects as predicted in [117, 118]. Interestingly, this 
has very recently been experimentally confirmed in [19]. In this work, the 
authors measured thermoelectric currents in tunnel junctions comprised 
of superconductor/ferromagnet layers in the presence of a high magnetic 
field. The resulting Seebeck coefficients were found to exceed 100 V/K, 
far beyond what is typically obtained in conventional metallic structures. 
It is encouraging to note that these results were obtained without very 
strongly polarized magnetic materials, alluding to the fact that even larger 
Seebeck coefficients might be possible when using e.g. strongly polarized 
ferromagnetic insulators such as EuO or GdN.

Imaging. SQUID technology is advancing rapidly, with nanoSQUIDs 
reducing noise and allowing increased magnetic field sensitivity over their 
traditional micrometre counterparts [99, 100]. Until very recently however, 
it was not possible to measure the magnetic field generated by single elec-
tron spins using a SQUID. Such precision could be gained via magnetic res-
onance force microscopy [119] or nitrogen-vacancy magnetometers [120], 
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the latter enabling imaging at atmospheric conditions, which is a consid-
erable advantage for biological and chemical applications. However, the 
ubiquitous use of SQUIDs for imaging in condensed matter where low 
temperatures are not a practical hinderance has made this pursuit a long-
standing goal. In 2013 Vasyukov et al. manufactured a nanoSQUID on the 
apex of a hollow quartz tube, with a diameter down to 56 nm [101]. This 
construction gives single-spin sensitivity and, being mounted on a thin tip, 
is straightforwardly applied as a scanning probe. They report improved 
flux noise due to the small effective area and increased spin sensitivity that 
are orders of magnitude better than previous nanoSQUIDs. By utilizing 
Nb and Pb, which have relatively short coherence lengths, their nanoS-
QUID can operate at reasonably high magnetic fields and temperatures, 
making this a very promising new imaging tool whose increased sensitivity 
will allow for much more careful experimental examination of individual 
spintronic architechtures.

On the experimental side, Blamire and Robinson point out [92] that the 
missing ingredient in order to gain the required level of control of the spin 
transport is the ability to manipulate the spins or the magnetic state. However, 
there is also evidence that the underlying physics of long-range proximity 
effects is still not entirely understood. These are cases in which magnetic 
inhomogeneities and spin orbit effects both appear to be negligible, so that 
no known mechanism for generating the triplet component is available. In 
2010, Wang et al. reported zero resistance for single-crystal Co nanowires up 
to 600 nm in length [121]. Ref. [56] argues that this could mean there exists 
Rashba-type coupling in the system, but this is perhaps a contentious issue. 
Rashba coupling is typically a surface effect (unless the lattice itself is noncen-
trosymmetric), and currently there exist no precise experimental estimates of 
how deep such effects can penetrate into the bulk of a material, although an 
order of ~1 nm is typically assumed. A recent alternative suggestion argues 
that giant mesoscopic fluctuations control the emergent behaviour [122].

1.5  Novel Predictions

Although triplet superconductivity may not be at the heart of all long-
range effects, its generation and control has received increasing focus over 
the last decade due to its pivotal role in overcoming the problem of Joule 
heating in spintronics. The importance of combining spin-orbit coupling 
and magnetic materials has in this regard become increasingly apparent, 
and below we take a look at some of the most recent novel predictions and 
benefits in superconducting spintronics.
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1.5.1  
0
-junctions

The phase difference  between the superconductors of a Josephson junc-
tion determines the supercurrent flowing in the junction according to 
I = I

c
 sin( ), with higher order harmonics appearing only at very low tem-

peratures, and systems are routinely manufactured to have ground state 
 = 0 and  =  by altering the sample length as discussed above. In princi-

ple, however, junctions may have any arbitrary single ground state between 
0 and  e.g. if the superconducting state breaks time-reversal symmetry.6 
Such junctions have been dubbed the 

0
-junctions since they follow the 

general current-phase relation I = I
c
 sin( + 

0
) (see left panel of Figure 1.4). 

They were allowed for in Josephson’s original work [61] and have been 
predicted to occur with unconventional superconductors [123–125]. 
Moreover, it was predicted by Buzdin in 2008 [126] that junctions with 
an interstitial noncentrosymmetric magnetic material7 should provide 
direct coupling between the supercurrent and the magnetic moment in 
the interstitial material. This would create a 

0
-junction with 

0
 propor-

tional to the strength of the spin-orbit coupling and the exchange field in 

6 The current-phase relation must be antisymmetric if time reversal symmetry is 

preserved [63].
7 Alternatively, a centrosymmetric ferromagnet could be used if only surface properties 

are probed.
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coupling requires only one single homogeneous ferromagnet, in contrast to all previous 

proposals which have required two or more magnetic materials. Here, T
c,0

 is the bulk 

superconducting critical temperature and the angle  is given in degrees. Right panel: 

Giant triplet proximity effect in spin-orbit coupled Josephson junction at  phase 

difference. Note the absence of a proximity effect without spin-orbit coupling at  phase 

difference for conventional SNS or SFS junctions.
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the metal, consequently shifting the current-phase relation as shown in 
the left panel of Figure 1.4 so that a net supercurrent flows even for zero 
phase difference between the superconductors. The model was originally 
formulated for pure Rashba-type spin-orbit coupling before being devel-
oped for arbitrary Rashba-Dresselhaus coupling in diffusive systems [127], 
and could be incorporated into spintronic circuits as a phase-shifter, to 
generate spin precession or utilizing precession to generate supercurrent 
[126]. The superconducting 

0
-junction has very recently been experimen-

tally observed [128].

1.5.2  Control of T
c

Most previous endeavours to control the critical temperature of supercon-
ducting hybrid structures have focused on the use of multiple magnetic 
elements. For instance, the critical temperature T

c
 of FSF’ and SFF’ junc-

tions can be toggled between a low state T
c,1

 and high state T
c,2

 by rotat-
ing the magnetization of the soft F’ layer relative to the hard F layer, as 
discussed in previous sections. However, it becomes increasingly challeng-
ing to exert control over individual layers in the presence of multiple mag-
netic elements, especially if these are in immediate proximity. Recently, it 
was discovered that inclusion of spin-orbit coupling in superconducting 
spintronics opens up a rich new avenue of physical phenomena. As the 
authors show in Ref. [58], the presence of both Rashba and Dresselhaus 
spin-orbit coupling in an SF bilayer causes its superconducting properties 
to become strongly dependent upon the magnetization direction, in con-
trast to the case without spin-orbit coupling. The magnetization will always 
suppress the triplet pairs with spin projections perpendicular to the field, 
i.e. the singlet pairs and short-range triplet pairs. The spin-orbit coupling, 
on the other hand, suppresses triplet pairs depending on their spin projec-
tions relative to the crystal structure, and not the magnetization direction. 
Depending on the direction of magnetization relative to the spin-orbit cou-
pling then, the latter may either suppress the short-range triplet pairs, long-
range triplet pairs, or both. Finally, whether the short-range triplet pairs 
can be converted into long-range triplet pairs or not in a homogeneous fer-
romagnet depends on the magnetization direction relative to the spin-orbit 
coupling. The net result is that the magnetization and spin-orbit coupling 
can either conspire to suppress or enhance the proximity effect in the ferro-
magnet, and these two situations result in vastly different inverse proximity 
effects in the superconductor. It has been shown theoretically that this can 
lead to a difference T

c,2
 − T

c,1
 of up to 0.2T

c,0
, which for a niobium-titanium 

alloy would correspond to a 2 K change, in comparison with the current 
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world record for structures with multiple magnetic elements of 1 K [115] as 
discussed above. This result is illustrated in the middle panel of Figure 1.4, 
and at the time of writing it has not yet been experimentally verified.

1.5.3  Giant Proximity Effect and Control of Spin Supercurrent

In Ref. [58], the authors derive the Riccati-parameterized Usadel equation 
with spin-orbit coupling and go on to provide a detailed account of the 
effect of spin-orbit coupling on the density of states and T

c
 in transversal 

thin-films. It is shown that the density of states depends strongly on the 
direction of magnetization, so that in fact the direction of the exchange 
field can be used to tune the minigap from open to closed. Moreover, when 
the spin-orbit coupling direction corresponds to the transverse layering 
direction, the presence of spin-orbit coupling leads to an enhanced prox-
imity effect at a phase difference  = , in contrast to the well-known sup-
pression of such effects when no spin-orbit coupling is present [59]. In 
fact, it is possible to fully isolate the triplet component without any con-
tamination from singlets, and this triplet-only state persists throughout the 
entire interstitial layer, all the way up to the superconducting contacts. This 
effect is illustrated in the right panel of Figure 1.4. The density of states 
has a nonmonotonic dependence on the spin-orbit coupling, and, when 
the exchange field lies along the junction, large coupling can again lead 
to a magnetically tunable gap, with a gap at  = 0 and zero-energy peak at 

 = . The significant impact of spin-orbit coupling on the density of states 
translates into an equally dramatic effect on the supercurrent that can flow 
between the superconductors of a Josephson junction. The authors have 
shown that for an SNFNS junction, with very thin normal-metal layers (N) 
and a homogeneous ferromagnet, it is possible generate and control a spin 
supercurrent that displays spin-flip immunity [129]. Normal spin currents 
remain polarized only up to the spin relaxation length, so the lack of spatial 
decay of the current is remarkable.

1.5.4  Inducing Magnetism via Superconductivity

Whereas so far we have discussed mainly how the presence of magnetic 
order influences superconductivity, the reciprocal phenomenon is also 
possible. As an example, one can consider Ref. [130] where it was pro-
posed that it is possible to control magnetism via supercurrents. The con-
crete system under consideration was an SFNFS junction which supports a 
supercurrent when phase-biased. Due to the appearance of triplet Cooper 
pairs in such a junction, there exists a proximity induced magnetization 
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M in the normal metal, which depends sensitively on the superconducting 
phase difference  and the length d of the junction. Interestingly, the total 
induced magnetization M = M

1
 + M

2
 could be decomposed into a phase-

independent part M
1
 = M

1
(d) and a phase-dependent part M

2
 = M

2
( , d). 

The authors found that whereas M
2
 decays rapidly with the length d, the 

phase-independent part only weakly decreased upon increasing d. This 
proposal is interesting because it goes beyond discussing the long-ranged 
effect of triplet supercurrents and instead links Cooper pairs directly to 
their spin-properties, which could possibly be integrated with other mag-
netic components in a cryogenic spintronic device. The spin supercurrent 
flowing through a similar system was found to behave similarly as the mag-
netization [55]. The fact that a triplet proximity effect can induce a mag-
netization could also be a possible explanation for the remotely induced 
magnetism via a superconductor reported in Ref. [131], a topic which 
deserves further exploration.

1.6  Outlook

The field of superconducting spintronics is developing rapidly and a number 
of challenges can be identified from the above discussions. Theoretical mod-
els of spin-orbit coupling show great potential for enhancing features such 
as long-range superconducting proximity effects and realizing 

0
-junctions, 

but a number of experimental challenges must be overcome before the effect 
can be adequately included in real thin-films. Consensus has not yet been 
reached regarding the precise penetration depth of surface Rashba-coupling 
into the bulk of materials. Although the relative strengths of Rashba and 
Dresselhaus couplings in e.g. semiconducting quantum wells can be mea-
sured separately [132], tuning them separately in a controllable manner has 
proven more challenging. We see the benefits of noncentrosymmetric mate-
rials come up again and again in the context of SF structures, and one of the 
most promising experimental directions to study their significance could be 
to make use of very thin heavy normal metals to induce Rashba coupling.

The upswing in experimental activity in the field of superconductor/ 
ferromagnet structures has been notable over the last few years. We believe 
that one of the most interesting experimental directions to explore in the 
coming years will be the direct measurement of the triplet Cooper pair 
spin (as opposed to indirect via long-ranged supercurrents through fer-
romagnets or spectroscopic measurements of the frequency-symmetry). 
There are different ways in which this can be achieved. Experiments mea-
suring effects such as domain wall motion, spin-transfer torques, and 
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magnetization switching due to spin-polarized supercurrents are likely to 
have a transformative effect on the field as it would open up a whole new 
avenue of possible cryogenic applications via superconducting spintron-
ics. Moreover, the theory of equilibrium physics in SF structures is mostly 
well-developed at present, but there remains much work to be done on 
the non-equilibrium side. Spin and charge dynamics in systems combin-
ing superconducting and magnetic elements remain far less explored. 
Developing these aspects of the theory will be a necessary step in order 
to further advance the field and identify novel dynamic effects involving 
triplet Cooper pairs, both with regard to thermoelectric effects and mag-
netization dynamics.

Another interesting avenue to explore is the electromagnetic response 
of magnetic structures including superconducting elements. Ref. [131] 
demonstrated remotely induced magnetism mediated by a superconduc-
tor, leaving the question of how this phenomenon occured open and thus 
also indicating that novel electromagnetic phenomena in superconductors 
may still lie undiscovered. Superconductivity is usually defined by its two 
hallmark properties of zero electrical resistance and the tendency to expel 
magnetic flux. Previous works have nanoengineered super conducting 
films with a lattice of magnetic dots in order to control the existence of 
superconductivity by the interplay of an applied field and the stray field 
of the dipole array of dots [133]. However, the role of odd-frequency 
superconductivity with regard to the electromagnetic response appears to 
be of crucial importance, as recently indicated by Di Bernardo et al. who 
reported an inverse Meissner effect, i.e. the enhancement of magnetic flux 
via a superconductor [134]. This finding is in agreement with theoretical 
predictions regarding how odd-frequency pairing in SF layers should influ-
ence the Meissner effect [135, 136]. Remarkably, this finding may cause us 
to rethink what the fundamental properties of superconductivity really are.

We have no doubt that the coming years will see a number of exciting 
experimental and theoretical advances with regard to the role of spin-orbit 
coupling and magnetization dynamics in SF structures, and thereby open 
up a rich new testing-ground for the further development of supercon-
ducting spintronics.
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Sol H. Jacobsen,* Jabir Ali Ouassou,* and Jacob Linder
Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

(Received 24 March 2015; revised manuscript received 17 June 2015; published 24 July 2015)

We investigate theoretically how the proximity effect in superconductor/ferromagnet hybrid structures with
intrinsic spin-orbit coupling manifests in two measurable quantities, namely, the density of states and critical
temperature. To describe a general scenario, we allow for both Rashba- and Dresselhaus-type spin-orbit coupling.
Our results are obtained via the quasiclassical theory of superconductivity, extended to include spin-orbit coupling
in the Usadel equation and in the Kupriyanov-Lukichev boundary conditions. Unlike previous works, we have
derived a Riccati parametrization of the Usadel equation with spin-orbit coupling which allows us to address
the full proximity regime and not only the linearized weak proximity regime. First, we consider the density of
states in both SF bilayers and SFS trilayers, where the spectroscopic features in the latter case are sensitive to
the phase difference between the two superconductors. We find that the presence of spin-orbit coupling leaves
clear spectroscopic fingerprints in the density of states due to its role in creating spin-triplet Cooper pairs. Unlike
SF and SFS structures without spin-orbit coupling, the density of states in the present case depends strongly
on the direction of magnetization. Moreover, we show that the spin-orbit coupling can stabilize spin-singlet
superconductivity even in the presence of a strong exchange field h � �. This leads to the possibility of a
magnetically tunable minigap: changing the direction of the exchange field opens and closes the minigap. We
also determine how the critical temperature Tc of an SF bilayer is affected by spin-orbit coupling and, interestingly,
demonstrate that one can achieve a spin-valve effect with a single ferromagnet. We find that Tc displays highly
nonmonotonic behavior both as a function of the magnetization direction as well as the type and direction of the
spin-orbit coupling, offering a new way to exert control over the superconductivity of proximity structures.

DOI: 10.1103/PhysRevB.92.024510 PACS number(s): 74.50.+r, 74.45.+c, 74.78.−w, 75.70.Tj

I. INTRODUCTION

Material interfaces in hybrid structures give rise to proxim-
ity effects, whereby the properties of one material can “leak”
into the adjacent material, creating a region with properties
derived from both materials. In superconductor/ferromagnet
(SF) hybrid structures [1], the proximity effect causes super-
conducting correlations to penetrate into the ferromagnetic
region and vice versa. These correlations typically decay over
short distances, which in diffusive systems is of the order√

D/h, where D is the diffusion coefficient of the ferromagnet
and h is the strength of the exchange field. However, for
certain field configurations, the singlet correlations from the
superconductor may be converted into so-called long-range
triplets (LRTs) [2]. These triplet components have spin
projection parallel to the exchange field, and decay over
much longer distances. This results in physical quantities like
supercurrents decaying over the length scale ξN = √

D/T ,
which is usually much larger than the ferromagnetic coherence
length ξF = √

D/h, where T is the temperature. This distance
is independent of h, and at low temperatures it becomes
increasingly large, which allows the condensate to penetrate
deep into the ferromagnet. The isolation and enhancement
of this feature has attracted much attention in recent years
as it gives rise to novel physics and possible low-temperature
applications by merging spintronics and superconductivity [3].

It is by now well-known that the conversion from singlet
to long-range triplet components of the superconducting state
can happen in the presence of magnetic inhomogeneities [4,5],

*These authors contributed equally to this work.

i.e., a spatially varying exchange field, and until recently such
inhomogeneities were believed to be the primary source of
this conversion [6–15], although other proposals using, e.g.,
nonequilibrium distribution functions and intrinsic triplet su-
perconductors also exist [16–19]. However, it has recently been
established that another possible source of LRT correlations
is the presence of a finite spin-orbit (SO) coupling, either
in the superconducting region [20] or on the ferromagnetic
side [21,22]. In fact, it can be shown that an SF structure where
the magnetic inhomogeneity is due to a Bloch domain wall,
as considered in, e.g., Refs. [23–25], is gauge equivalent to
one where the ferromagnet has a homogeneous exchange field
and intrinsic SO coupling [21]. It is known that SO scattering
can be caused by impurities [26], but this type of scattering
results in purely isotropic spin-relaxation, and so does not
permit the desired singlet-LRT conversion. To achieve such
a conversion, one needs a rotation of the spin pair into the
direction of the exchange field [27]. This can be achieved
by using materials with an intrinsic SO coupling, either due
to the crystal structure in the case of noncentrosymmetric
materials [28], or due to interfaces in thin-film hybrids [29],
where the latter also modifies the fundamental process of
Andreev reflection [30,31]. The role of SO coupling with
respect to the supercurrent in ballistic hybrid structures has
also been studied recently [32].

In this paper, we establish how the presence of spin-
orbit coupling in SF structures manifests in two important
experimental observables: the density of states D(ε) probed via
tunneling spectroscopy (or conductance measurements), and
the critical temperature Tc. A common consequence for both
of these quantities is that neither becomes independent of the
magnetization direction. This is in contrast to the case without

1098-0121/2015/92(2)/024510(24) 024510-1 ©2015 American Physical Society
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SO coupling in conventional monodomain ferromagnets,
where the results are invariant with respect to rotations of the
magnetic exchange field. This symmetry is now lifted due to
SO coupling: depending on the magnetization direction, LRT
Cooper pairs can be created, and this leaves clear fingerprints
both spectroscopically and in terms of the Tc behavior. On the
technical side, we will present in this work for the first time a
Riccati parametrization of the Usadel equation and its corre-
sponding boundary conditions that include SO coupling. This
is an important advance in terms of exploring the full physics
of triplet pairing due to SO coupling as it allows for a solution
of the quasiclassical equations without any assumption of
a weak proximity effect. We will also demonstrate that the
SO coupling can actually protect the singlet superconducting
correlations even in the presence of a strong exchange field,
leading to the possibility of a minigap that is magnetically
tunable via the orientation of the exchange field.

The remainder of the article will be organized as follows. In
Sec. II, we introduce the relevant theory and notation, starting
from the quasiclassical Usadel equation, which describes
the diffusion of the superconducting condensate into the
ferromagnet. We also motivate our choice of intrinsic SO
coupling in this section, and propose a new notation for
describing Rashba-Dresselhaus coupling. The section goes
on to discuss key analytic features of the equations in the
limit of weak proximity, symmetries of the density of states
at zero energy, and analytical results needed to calculate
the critical temperature of hybrid systems. We then present
detailed numerical results in Sec. III: we analyze the density
of states of an SF bilayer in Sec. III A [see Fig. 1(a)], with
the case of pure Rashba coupling considered in Sec. III B,
and we study the SFS Josephson junction in Sec. III C [see
Fig. 1(b)]. We consider different orientations and strengths of
the exchange field and SO coupling, and in the case of the

z = 0

(a) Bilayer

(b) Josephson junction

S
F

F
S

S

SO

SO

z = −LS

z = LF

z = −LF/2

z = LF/2

FIG. 1. (Color online) (a) The SF bilayer in Secs. III A, III B,
and III D. (b) The SFS trilayer in Sec. III C. We take the thin-film
layering direction along the z axis, and assume an xy plane Rashba-
Dresselhaus coupling in the ferromagnetic layer.

Josephson junction, the effect of altering the phase difference
between the condensates. Then, in Sec. III D, we continue
our treatment of the SF bilayer in the full proximity regime
by including a self-consistent solution in the superconducting
layer, and focus on how the presence of SO coupling affects
the critical temperature of the system. We discover that the
SO coupling allows for spin-valve functionality with a single
ferromagnetic layer, meaning that rotating the magnetic field
by π/2 induces a large change in Tc. Finally, we conclude in
Sec. IV with a summary of the main results, a discussion of
some additional consequences of the choices made in text, as
well as possibilities for further work.

II. THEORY

A. Fundamental concepts

The diffusion of the superconducting condensate into
the ferromagnet can be described by the Usadel equation,
which is a second-order partial differential equation for the
Green function of the system [33]. Together with appropriate
boundary conditions, the Usadel equation establishes a system
of coupled differential equations that can be solved in one
dimension. We will consider the case of diffusive equilibrium,
where the retarded component ĝR of the Green function is
sufficient to describe the behavior of the system [34,35]. We
start by examining the superconducting correlations in the
ferromagnet, and use the standard Bardeen-Cooper-Schrieffer
(BCS) bulk solution for the superconductors. In particular,
we will clarify the spectroscopic consequences of having SO
coupling in the ferromagnetic layer.

In the absence of SO coupling, the Usadel equation [33] in
the ferromagnet reads

DF ∇(ĝR∇ĝR) + i
[
ερ̂3 + M̂,ĝR

] = 0, (1)

where the matrix ρ̂3 = diag(1, − 1), 1 represents the 2×2 unit
matrix, and ε is the quasiparticle energy. The magnetization
matrix M̂ in the above equation is

M̂ =
(

h · σ 0
0 (h · σ )∗

)
,

where h = (hx,hy,hz) is the ferromagnetic exchange field,
(∗) denotes complex conjugation, σ = (σx,σy,σz) is the Pauli
vector, and σk are the usual Pauli matrices. Throughout, we will
use the notation . . . for 3-vectors and ˆ. . . for 4 × 4 matrices in
Nambu-spin space. The corresponding Kupriyanov-Lukichev
boundary conditions are [36]

2Ljζj ĝ
R
j ∇ĝR

j = [
ĝR

1 ,ĝR
2

]
, (2)

where the subscripts refer to the different regions of the hybrid
structure; in the case of an SF bilayer as depicted in Fig. 1(a),
j = 1 denotes the superconductor, and j = 2 the ferromagnet,
while ∇ denotes the derivative along the junction 1 → 2. The
respective lengths of the materials are denoted Lj , and the
interface parameters ζj = RB/Rj describe the ratio of the
barrier resistance RB to the bulk resistance Rj of each material.

We will use the Riccati parametrization [37] for the
quasiclassical Green function ĝR ,

ĝR =
(

N (1 + γ γ̃ ) 2Nγ

−2Ñ γ̃ −Ñ (1 + γ̃ γ )

)
, (3)
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where the normalization matrices are N = (1 − γ γ̃ )−1 and
Ñ = (1 − γ̃ γ )−1. The tilde operation denotes a combination
of complex conjugation i → −i and energy ε → −ε, with
γ → γ̃ , N → Ñ . The Riccati parametrization is particularly
useful for numerical computation because the parameters are
bounded [0,1], contrary to the multivalued θ parameteriza-
tion [34]. In practice, this means that for certain parameter
choices the numerical routines will only converge in the Riccati
formulation. Appendix A contains some further details on this
parametrization.

To include intrinsic SO coupling in the Usadel equation, we
simply have to replace all the derivatives in Eq. (1) with their
gauge covariant counterparts [21,38]:

∇( · ) �→ ∇̃( · ) ≡ ∇( · ) − i[Â, · ]. (4)

This is valid for any SO coupling linear in momentum. We
consider the leading contribution; higher-order terms, e.g.,
those responsible for the SU(2) Lorentz force, are neglected
here. Such higher-order terms are required to produce so-called
ϕ0 junctions, which have lately attracted interest [39], and
consequently we will see no signature of the ϕ0 effect in the
systems considered herein. The object Â has both a vector
structure in geometric space and a 4 × 4 matrix structure in
Spin-Nambu space, and can be written as Â = diag(A,−A∗) in
terms of the SO field A = (Ax,Ay,Az), which will be discussed
in more detail in the next section. SO coupling in the context of
quasiclassical theory has also been discussed in Refs. [38,40].
When we include the SO coupling as shown above, we derive
the following form for the Usadel equation (see Appendix A):

DF

(
∂2
k γ + 2(∂kγ )Ñ γ̃ (∂kγ )

)
= −2iεγ − ih · (σγ − γ σ ∗)

+DF [AAγ − γA∗A∗ + 2(Aγ + γA∗)Ñ (A∗ + γ̃ Aγ )]

+ 2iDF [(∂kγ )Ñ(A∗
k + γ̃ Akγ ) + (Ak + γA∗

k γ̃ )N (∂kγ )],

(5)

where the index k indicates an arbitrary choice of direction
in Cartesian coordinates. The corresponding equation for γ̃ is
found by taking the tilde conjugate of Eq. (5). Similarly, the
boundary conditions in Eq. (2) become

∂kγ1 = 1

L1ζ1
(1 − γ1γ̃2)N2(γ2 − γ1) + iAkγ1 + iγ1A

∗
k,

∂kγ2 = 1

L2ζ2
(1 − γ2γ̃1)N1(γ2 − γ1) + iAkγ2 + iγ2A

∗
k, (6)

and the γ̃ counterparts are found in the same way as before.
For the details of these derivations, see Appendix A.

We will now discuss the definition of current in the presence
of spin-orbit interactions. Since the Hamiltonian including SO
coupling contains terms linear in momentum (see below),
the velocity operator vj = ∂H/∂kj is affected. We stated
above that the Kupriyanov-Lukichev boundary conditions are
simply modified by replacing the derivative with its gauge
covariant counterpart including the SO interaction. To make
sure that current conservation is still satisfied, we must
carefully examine the Usadel equation. In the absence of SO
coupling, the quasiclassical expression for electric current is

given by

Ie = I0

∫ ∞

−∞
dε Tr[ρ̂3(ǧ∇ǧ)K ], (7)

where ǧ is the 8 × 8 Green function matrix in Keldysh space,

ǧ =
(

ĝR ĝK

0̂ ĝA

)
, (8)

and I0 is a constant that is not important for this discussion.
Current conservation can now be proven from the Usadel
equation itself. We show this for the case of equilibrium, which
is relevant for the case of supercurrents in Josephson junctions.
In this case, ĝK = (ĝR − ĝA) tanh(ε/2T ) and we get

Ie = I0

∫ ∞

−∞
dε Tr[ρ̂3(ĝR∇ĝR − ĝA∇ĝA)] tanh(ε/2T ). (9)

Performing the operation Tr[ρ̂3 · · · ] on the Usadel equation,
we obtain

D∇ · Tr[ρ̂3(ĝR∇ĝR)] + i Tr{ρ̂3[ερ̂3 + M̂,ĝR]} = 0. (10)

Now, inserting the most general definition of the Green
function ĝR , one finds that the second term in the above
equation is always zero. Thus we are left with

∇ · Tr[ρ̂3(ĝR∇ĝR)] = 0, (11)

which expresses precisely current conservation since the same
analysis can be done for ĝA. Now, let us include the SO
coupling. The current should then be given by

Ie = I0

∫ ∞

−∞
dε Tr[ρ̂3(ǧ∇̃ǧ)K ], (12)

so that the expression for the charge current is modified by the
presence of SO coupling, as is known. The question is now
if this current is conserved, as it has to be physically. We can
prove that it is from the Usadel equation with SO coupling by
rewriting it as

D∇ · (ĝR∇̃ĝR)

= D[Â,ĝR∇ĝR] + D[Â,[Â,ĝR]] − i[ερ̂3 + M̂,ĝR],

(13)

and then performing the operation Tr[ρ̂3 · · · ], one finds

D∇ · Tr[ρ̂3(ĝR∇̃ĝR)] = 0, (14)

so we recover the current conservation law ∇ · Ie = 0.

B. Spin-orbit field

The precise form of the generic SO field A is imposed by
the experimental requirements and limitations. As the name
suggests, spin-orbit coupling couples a particle’s spin with its
motion, and more specifically its momentum. As mentioned in
the Introduction, the SO coupling in solids can originate from
a lack of inversion symmetry in the crystal structure. Such
spin-orbit coupling can be of both Rashba and Dresselhaus
types and is determined by the point-group symmetry of the
crystal [41,42]. It is also known that the lack of inversion
symmetry due to surfaces, either in the form of interfaces to
other materials or to vacuum, will give rise to antisymmetric
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spin-orbit coupling of the Rashba type. For sufficiently thin
structures, the SO coupling generated in this way can permeate
the entire structure, but the question of precisely how far into
adjacent materials such surface SO coupling may penetrate
appears to be an open question in general. Intrinsic inversion
asymmetry arises naturally due to interfaces between materials
in thin-film hybrid structures such as the ones considered
herein. Noncentrosymmetric crystalline structures provide an
alternative source for intrinsic asymmetry, and are considered
in Ref. [43]. In thin-film hybrids, the Rashba spin splitting
derives from the cross product of the Pauli vector σ with the
momentum k,

HR = − α

m
(σ × k) · ẑ, (15)

where α is called the Rashba coefficient, and we have chosen
a coordinate system with ẑ as the layering direction. Another
well-known type of SO coupling is the Dresselhaus spin
splitting, which can occur when the crystal structure lacks an
inversion center. For a two-dimensional electron gas (quantum
well) confined in the ẑ direction, then to first order 〈kz〉 = 0,
so the Dresselhaus splitting becomes

HD = β

m
(σyky − σxkx), (16)

where β is called the Dresselhaus coefficient. In our structure,
we consider a thin-film geometry with the confinement being
strongest in the z direction. Although there may certainly be
other terms contributing to the Dresselhaus SO coupling in
such a structure, since real thin-film structures will have three-
dimensional quasiparticle diffusion and we use a 2D form of
the SO coupling here, we consider the standard form (16) as an
approximation that captures the main physics in the problem.
This is a commonly used model in the literature to explore
the effects originating from SO coupling in a system. When
we combine both interactions, we obtain the Hamiltonian for
a general Rashba-Dresselhaus SO coupling,

HRD = kx

m
(ασy − βσx) − ky

m
(ασx − βσy). (17)

In this work, we will restrict ourselves to this form of SO
coupling. It should be noted that our setup may also be viewed
as a simplified model for a scenario where the SO coupling and
ferromagnetism exist in separate, thin layers, in which case we
expect qualitatively similar results to the ones reported in this
manuscript.

As explained in Ref. [21], the SO coupling acts as a
background SU(2) field, i.e., an object with both a vector
structure in geometric space and a 2 × 2 matrix structure in
spin space. We can therefore identify the interaction above
with an effective vector potential A, which we will call the SO
field,

HRD ≡ −k · A/m, (18)

from which we derive that

A = (βσx − ασy,ασx − βσy,0). (19)

At this point, it is convenient to introduce a new notation
for describing Rashba-Dresselhaus coupling, which will let
us distinguish between the physical effects that derive from

FIG. 2. (Color online) Geometric interpretation of the SO
field (21) in polar coordinates: the Hamiltonian couples the momen-
tum component kx to the spin component (σx cos χ + σy sin χ ) with
a coefficient +a/m, and the momentum component ky to the spin
component (σx sin χ + σy cos χ ) with a coefficient −a/m. Thus a

determines the magnitude of the coupling, and χ the angle between
the coupled momentum and spin components.

the strength of the coupling, and those that derive from the
geometry. For this purpose, we employ polar notation defined
by the relations

α ≡ −a sin χ, β ≡ a cos χ, (20)

where we will refer to a as the SO strength, and χ as the SO
angle. Rewritten in the polar notation, Eq. (19) takes the form:

A = a(σx cos χ + σy sin χ )x̂ − a(σx sin χ + σy cos χ )ŷ.

(21)

From the definition, we can immediately conclude that χ = 0
corresponds to a pure Dresselhaus coupling, while χ = ±π/2
results in a pure Rashba coupling, with the geometric interpre-
tation of χ illustrated in Fig. 2. Note that A2

x = A2
y = a2, which

means that A2 = 2a2. Another useful property is that we can
switch the components Ax ↔ Ay by letting χ → 3π/2 − χ .

The appearance of LRTs in the system depends on the
interplay between SO coupling and the direction of the
exchange field. Recall that the LRT components are defined
as having spin projections parallel to the exchange field, as
opposed to the short-ranged triplet (SRT) component which
appears as long as there is exchange splitting [44] but has spin
projection perpendicular to the field and is therefore subject to
the same pair-breaking effect as the singlets [3,27], penetrating
only a very short distance into strong ferromagnets. If we
have an SO field component along the layering direction,
e.g., if we had Az 
= 0 in Figs. 1(a) and 1(b), achievable
with a noncentrosymmetric crystal or in a nanowire setup,
then a nonvanishing commutator [A, h · σ ] creates the LRT.
However, we will from now only consider systems where
Az = 0, in which case the criterion for LRT is [21] that
[A, [A, h · σ ]] must not be proportional to the exchange field
h · σ . Expanding, we have

[A, [A, h · σ ]] = 4a2( h · σ + hzσz)

− 4a2(hxσy + hyσx) sin 2χ, (22)

from which it is clear that no LRTs can be generated for
a pure Dresselhaus coupling χ = 0 or Rashba coupling χ =
±π/2 when the exchange field is in-plane. However, the effect
of SO coupling becomes increasingly significant for angles
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close to χ = ±π/4 (see Fig. 6 in Sec. III A). We also see that
no LRTs can be generated for in-plane magnetization in the
special case hx = hy and hz = 0, since hxσy + hyσx can then
be rewritten as hxσx + hyσy , which is proportional to h · σ .
There is no LRT generation for the case hx = hy = 0 and
hz 
= 0 for similar reasons. In general, however, the LRT will
appear for an in-plane magnetization as long as hx 
= hy and
the SO coupling is not of pure Dresselhaus or pure Rashba
type. It is also important to note that the LRT can be created
even for pure Rashba type SO coupling if the magnetization
has both in- and out-of-plane magnetization components. We
will discuss precisely this situation in Sec. III B.

Once the condition for long-range triplet generation is
satisfied, increasing the corresponding exchange field will also
increase the proportion of long-range triplets compared with
short-range triplets. Whether or not the presence of long-range
triplets can be observed in the system, i.e., if they retain a
clear signature in measurable quantities such as the density
of states when the criteria for their existence is fulfilled,
depends on other aspects such as the strength of the spin-orbit
coupling and will be discussed later in this paper. Thus a main
motivation for this work is to take a step further than discussing
their existence [21] and instead make predictions for when
long-ranged triplet Cooper pairs can actually be observed
via spectroscopic or Tc measurements in SF structures with
spin-orbit coupling. Moreover, we will demonstrate that
the presence of SO coupling offers additional opportunities
besides the creation of LRT Cooper pairs. We will show both
analytically and numerically that the SO coupling can protect
the singlet component even in the presence of an exchange
field, which normally would suppress it. This provides the
possibility of tuning the well-known minigap magnetically,
both in bilayer and Josephson junctions, simply by altering
the direction of the magnetization.

C. Weak proximity effect

In order to establish a better analytical understanding of the
role played by SO coupling in the system before presenting the
spectroscopy and Tc results, we will now consider the limit of
weak proximity effect, which means that |γij | � 1, N ≈ 1 in
the ferromagnet. The anomalous Green function in general is
given by the upper-right block of Eq. (3), f = 2Nγ , which we
see reduces to f = 2γ in this limit. It will also prove prudent
to express the anomalous Green function using a singlet/triplet
decomposition, where the singlet component is described by a
scalar function fs , and the triplet components encapsulated in
the so-called d vector [45,46],

f = (fs + d · σ )iσy. (23)

Combining the above with the weak proximity identity f =
2γ , we see that the components of γ can be rewritten as

γ = 1

2

(
idy − dx dz + fs

dz − fs idy + dx

)
. (24)

Under spin rotations, the singlet component fs will then trans-
form as a scalar, while the triplet component d = (dx,dy,dz)
transforms as an ordinary vector. Another useful feature of
this notation is that it becomes almost trivial to distinguish

between short-range and long-range triplet components; the
projection d = d · ĥ along the exchange field corresponds
to the SRTs, while the perpendicular part d⊥ = |d × ĥ| can
be used to describe the LRTs, where ĥ here denotes the unit
vector of the exchange field. For a concrete example, if the
exchange field is oriented along the z axis, then dz will be the
short-range component, while both dx and dy are long-ranged
components. In the coming sections, we will demonstrate that
the LRT component can be identified from its density of states
signature, as measurable by tunneling spectroscopy.

In the limit of weak proximity effect, we may linearize both
the Usadel equation and Kupriyanov-Lukichev boundary con-
ditions. Using the singlet/triplet decomposition in Eq. (24), and
the Rashba-Dresselhaus coupling in Eq. (19), the linearized
version of the Usadel equation can be written

i

2
DF ∂2

z fs = εfs + h · d, (25)

i

2
DF ∂2

z d = εd + hfs + 2iDF a2�(χ ) d, (26)

where we for brevity have defined an SO interaction matrix

�(χ ) =
⎛
⎝ 1 − sin 2χ 0

− sin 2χ 1 0
0 0 2

⎞
⎠. (27)

We have now condensed the Usadel equation down to two
coupled differential equations for fs and d, where the coupling
is proportional to the exchange field and the SO interaction
term. The latter has been written as a product of a factor
2iDF a2, depending on the strength a, and a factor �(χ )d,
depending on the angle χ in the polar notation. The matrix
�(χ ) becomes diagonal for a Dresselhaus coupling with
χ = 0 or a Rashba coupling with χ = ±π/2, which implies
that there is no triplet mixing for such systems. In contrast,
the off-diagonal terms are maximal for χ = ±π/4, which
suggests that the triplet mixing is maximal when the Rashba
and Dresselhaus coefficients have the same magnitude. In
addition to the off-diagonal triplet mixing terms, we see that
the diagonal terms of �(χ ) essentially result in imaginary
energy contributions 2iDF a2. As we will see later, this can in
some cases result in a suppression of all the triplet components
in the ferromagnet.

We will now consider exchange fields in the xy plane,

h = h cos θ x̂ + h sin θ ŷ. (28)

Since the linearized Usadel equations show that the presence
of a singlet component fs only results in the generation of
triplet components along h, and the SO interaction term only
mixes the triplet components in the xy plane, the only nonzero
triplet components will in this case be dx and dy . The SRT
amplitude d and LRT amplitude d⊥ can therefore be written:

d = dx cos θ + dy sin θ, (29)

d⊥ = −dx sin θ + dy cos θ. (30)

By projecting the linearized Usadel equation for d along the
unit vectors (cos θ, sin θ,0) and (− sin θ, cos θ,0), respectively,
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then we obtain coupled equations for the SRTs and LRTs:

i

2
DF ∂2

z fs = εfs + hd‖, (31)

i

2
DF ∂2

z d‖ = [ε + 2iDF a2(1 − sin 2θ sin 2χ )] d‖

− 2iDF a2 cos 2θ sin 2χ d⊥ + hfs, (32)

i

2
DF ∂2

z d⊥ = [ε + 2iDF a2(1 + sin 2θ sin 2χ )] d⊥

− 2iDF a2 cos 2θ sin 2χ d‖. (33)

These equations clearly show the interplay between the singlet
component fs , SRT component d , and LRT component
d⊥. If we start with only a singlet component fs , then the
presence of an exchange field h results in the generation
of the SRT component d . The presence of an SO field
can then result in the generation of the LRT component d⊥,
where the mixing term is proportional to a2 cos 2θ sin 2χ . This
implies that in the weak proximity limit, LRT mixing is absent
for an exchange field direction θ = ±π/4, corresponding to
hx = ±hy , while it is maximized if θ = {0,π/2,π} and at the
same time χ = ±π/4. In other words, the requirement for
maximal LRT mixing is therefore that the exchange field is
aligned along either the x or y axis, while the Rashba and
Dresselhaus coefficients should have the same magnitude. It
is important to note here that although the mixing between the
triplet components is maximal at θ = {0,π/2,π}, this does not
necessarily mean that the signature of the triplets in physical
quantities is most clearly seen for these angles, as we shall
discuss in detail later.

Moreover, these equations show another interesting con-
sequence of having an SO field in the ferromagnet, which
is unrelated to the LRT generation. Note that the effective
quasiparticle energies coupling to the SRTs and LRTs become

E = ε + 2iDF a2(1 − sin 2θ sin 2χ ), (34)

E⊥ = ε + 2iDF a2(1 + sin 2θ sin 2χ ). (35)

When θ = χ = ±π/4, then the SRTs are entirely unaf-
fected by the presence of SO coupling; the triplet mixing
term vanishes for these parameters, and E is also clearly
independent of a. However, when θ = −χ = ±π/4, the
situation is drastically different. There is still no possibility for
LRT generation, however, the SRT energy E = ε + 4iDF a2

will now obtain an imaginary energy contribution which
destabilizes the SRTs. In fact, numerical simulations show that
this energy shift destroys the SRT components as a increases.
As we will see in Sec. III D, this effect results in an increase in
the critical temperature of the bilayer. Thus switching between
θ = ±π/4 in a system with χ � ±π/4 may suggest a novel
method for creating a triplet spin valve. The same thing should
also occur even in the case of pure Rashba coupling when
altering the ratio of in- and out-of-plane components of the
exchange field.

When χ = ±π/4 but θ 
= ±π/4, the triplet mixing term
proportional to cos 2θ sin 2χ will no longer vanish, so we
get LRT generation in the system. We can then see from
the effective triplet energies that as θ → sgn(χ )π/4, the
imaginary part of E vanishes, while the imaginary part

of E⊥ increases. This leads to a relative increase in the
amount of SRTs compared to the amount of LRTs in the
system. In contrast, as θ → −sgn(χ )π/4, the imaginary part
of E⊥ vanishes, and the imaginary part of E increases. This
means that we would expect a larger LRT generation for
these parameters, up until the point where the triplet mixing
term cos 2θ sin 2χ becomes so small that almost no LRTs
are generated at all. The ratio of effective energies coupling
to the triplet component at the Fermi level ε = 0 can be
written

E⊥(0)

E (0)
= 1 + sin 2θ sin 2χ

1 − sin 2θ sin 2χ
. (36)

D. Density of states

The density of states D(ε) containing all spin components
can be written in terms of the Riccati matrices as

D(ε) = Tr[N (1 + γ γ̃ )]/2, (37)

which for the case of zero energy can be written concisely in
terms of the singlet component fs and triplet components d ,

D(0) = 1 − |fs(0)|2/2 + |d(0)|2/2. (38)

The singlet and triplet components are therefore directly
competing to lower and raise the density of states [47].
Furthermore, since we are primarily interested in the proximity
effect in the ferromagnetic film, we will begin by using the
known BCS bulk solution in the superconductor,

ĝBCS =
(

cosh(θ ) sinh(θ )iσye
iφ

sinh(θ )iσye
−iφ − cosh(θ )

)
, (39)

where θ = atanh(�/ε), and φ is the superconducting phase.
Using Eq. (24) and the definition of the tilde operation, and
comparing ĝR in Eq. (3) with its standard expression in a bulk
superconductor Eq. (39), we can see that at zero energy the
singlet component fs(0) must be purely imaginary and the
triplet dz(0) must be purely real if the superconducting phase
is φ = 0.

By inspection of Eq. (26), we can see that a transformation
hx ↔ hy along with dx ↔ dy leaves the equations invariant.
The density of states will therefore be unaffected by such
permutations,

D[h = (a,b,0)] = D[h = (b,a,0)], (40)

while in general,

D[h = (a,0,b)] 
= D[h = (b,0,a)]. (41)

However, whenever one component of the planar field is
exactly twice the value of the other component, one can
confirm that the linearized equations remain invariant under a
rotation of the exchange field

h = (a,2a,0) → h = (a,0,2a), (42)

with associated invariance in the density of states.

E. Critical temperature

When superconducting correlations leak from a supercon-
ductor to a ferromagnet in a hybrid structure, there will also
be an inverse effect, where the ferromagnet effectively drains
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the superconductor of its superconducting properties due to
tunneling of Cooper pairs. Physically, this effect is observable
in the form of a reduction in the superconducting gap �(z)
near the interface at all temperatures. Furthermore, if the
temperature of the hybrid structure is close to the bulk critical
temperature Tcs of the superconductor, this inverse proximity
effect can be strong enough to make the superconducting
correlations vanish entirely throughout the system. Thus
proximity-coupled hybrid structures will in practice always
have a critical temperature Tc that is lower than the critical
temperature Tcs of a bulk superconductor. Depending on the
exact parameters of the hybrid system, Tc can sometimes be
significantly smaller than Tcs , and in some cases it may even
vanish (Tc → 0).

To quantify this effect, it is no longer sufficient to solve the
Usadel equation in the ferromagnet only. We will now also
have to solve the Usadel equation in the superconductor,

DS∂
2
z γ = −2iεγ − �(σy − γ σyγ ) − 2(∂zγ )Ñ γ̃ (∂zγ ), (43)

along with a self-consistency equation for the gap �(z),

�(z) = N0λ

∫ �0 cosh(1/N0λ)

0
dε Re[fs(z,ε)]

× tanh

(
π

2eγ

ε/�0

T/Tcs

)
, (44)

where N0 is the density of states per spin at the Fermi level,
and λ > 0 is the electron-electron coupling constant in the
BCS theory of superconductivity. For a derivation of the gap
equation, see Appendix B.

To study the effects of the SO coupling on the critical
temperature of an SF structure, we therefore have to find a
self-consistent solution to Eq. (5) in the ferromagnet, Eq. (6)
at the interface, and Eqs. (43) and (44) in the superconductor.
In practice, this is done by successively solving one of the
equations at a time numerically, and continuing the procedure
until the system converges towards a self-consistent solution.
To obtain accurate results, we typically have to solve the Us-
adel equation for 100–150 positions in each material, around
500 energies in the range (0,2�0), and 100 more energies in
the range (2�0,ωc), where the Debye cutoff ωc ≈ 76�0 for the
superconductors considered herein. This procedure will then
have to be repeated up to several hundred times before we
obtain a self-consistent solution for any given temperature of
the system. Furthermore, if we perform a conventional linear
search for the critical temperature Tc/Tcs in the range (0,1)
with a precision of 0.0001, it may require up to 10 000 such iter-
ations to complete, which may take several days depending on
the available hardware and efficiency of the implementation.
The speed of this procedure may, however, be significantly
increased by performing a binary search instead. Using this
strategy, the critical temperature can be determined to a
precision of 1/212+1 ≈ 0.0001 after only 12 iterations, which
is a significant improvement. The convergence can be further
accelerated by exploiting the fact that �(z) from iteration to
iteration should decrease monotonically to zero if T > Tc;
however, the details will not be further discussed in this paper.

III. RESULTS

We consider the proximity effect in an SF bilayer in
Sec. III A, using the BCS bulk solution for the supercon-
ductors. The case of pure Rashba coupling is discussed in
Sec. III B, and the SFS Josephson junction is treated in
Sec. III C. Results for the local density of states are given
for the centre of the ferromagnetic layer, with the full spatial
distribution discussed in Sec. III C. We take the thin-film
layering direction to be oriented in the z direction and fix
the spin-orbit coupling to Rashba-Dresselhaus type in the xy

plane as given by Eq. (19). We set LF /ξS = 0.5. The coherence
length for a diffusive bulk superconductor typically lies in the
range 10–30 nm. We solve the equations using MATLAB with
the boundary value differential equation package BVP6C and
examine the density of states D(ε) for energies normalised
to the superconducting gap �. For brevity of notation, we
include the normalization factor in the coefficients α and β

in these sections. This normalization is taken to be the length
of the ferromagnetic region LF , so that for instance α = 1 in
the figure legends means αLF = 1. Finally, in Sec. III D, we
calculate the dependence of the critical temperature of an SF
bilayer as a function of the different system parameters.

A. SF Bilayer

Consider the SF bilayer depicted in Fig. 1(a). In Sec. II B,
we introduced the conditions for the LRT component to appear,
and from Eq. (22) it is clear that no LRTs will be generated
if the exchange field is aligned with the layering direction,
i.e., h ‖ ẑ, since Eq. (22) will be proportional to the exchange
field. Conversely, the general condition for LRT generation
with in-plane magnetization is both that hx 
= hy and that the
SO coupling is not of pure Rashba or pure Dresselhaus form.
However, it became clear in Sec. II C that the triplet mixing was
maximal for equal Rashba and Dresselhaus coupling strengths,
and in fact the spectroscopic signature is quite sensitive to
deviations from this. This changes when the ferromagnet also
has an out-of-plane component, in which case pure Rashba
coupling can generate the LRT

In Ref. [50], the density of states for an SF bilayer
was shown to display oscillatory behavior as a function of
distance penetrated into the ferromagnet. The physical origin
of this stems from the nonmonotonic dependence of the
superconducting order parameter inside the F layer, which
oscillates and leads to an alternation of dominant singlet
and dominant triplet correlations as a function of distance
from the interface. When the triplet ones dominate, the
proximity-induced change in the density of states is inverted
compared to SN structures, giving rise to an enhancement of
the density of states at low energies in this so-called π phase
where the proximity-induced superconducting order parameter
is negative.

For SF bilayers without SO coupling and a homogeneous
exchange field, one expects to see a spectroscopic minigap
whenever the Thouless energy is much greater than the strength
of the exchange field. The minigap in SF structures closes when
the resonant condition h ∼ Eg is fulfilled, where Eg is the
minigap occuring without an exchange field, and a zero-energy
peak emerges instead [48]. The minigap Eg depends on both
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FIG. 3. (Color online) Density of states D(ε) for the SF bilayer with energies normalized to the superconducting gap � and SO coupling
normalised to the inverse ferromagnet length 1/LF . The table shows the spectroscopic effect of increasing SO coupling with α = β when
the magnetization h = 3�ẑ, i.e., with the field perpendicular to the interface, and the effect of increasing difference between the Rashba and
Dresselhaus coefficients for both h = 3�ẑ and h = 3�ŷ. Although the conditions for LRT generation are fulfilled in the latter case, it is clear
that no spectroscopic signature of this is present.

the Thouless energy and the resistance of the junction. For
stronger fields, we will have an essentially featureless density
of states (see e.g., Ref. [49] and references therein). This
is, indeed, what we observe for α = β = 0 in Fig. 3. With
purely out-of-plane magnetization h ‖ ẑ, the effect of SO
coupling is irrespective of type: Rashba, Dresselhaus, or both
will always create a minigap. With in-plane magnetization,
however, the observation of a minigap above the SO-free
resonant condition h > Eg indicates that dominant Rashba
or dominant Dresselhaus coupling is present. The same is
true for SFS trilayers, and thus to observe a signature of
long-range triplets in the case of a purely in-plane exchange
field the Rashba and Dresselhaus coefficients must be similar
in magnitude, and in the following we shall primarily focus on
this regime. To clarify quantitatively how much the Rashba
and Dresselhaus coefficients can deviate from each other
before destroying the low-energy enhancement of the density
of states, which is the signature of triplet Cooper pairs in
this system, we have plotted in Fig. 4 the density of states at
the Fermi level (ε = 0) as a function of the spin-orbit angle
χ and the magnetization direction θ . For purely Rashba or
Dresselhaus coupling (χ = {0,±π/2}), the deviation from
the normal-state value is small. However, as soon as both
components are present a highly nonmonotonic behavior is
observed. This is particularly pronounced for χ → ±π/4,
although the conversion from dominant triplets to dominant
singlets as one rotates the field by changing θ is seen to occur
even away from χ = ±π/4.

With either h = hx̂ 
= 0, or equivalently h = hŷ 
= 0, LRTs
are generated provided αβ 
= 0, and in Fig. 5, we can see
that the addition of SO coupling introduces a peak in the
density of states at zero energy, which saturates for a certain
coupling strength. This peak manifests as sharper around ε = 0
than the zero-energy peak associated with weak field strengths
of the order of the gap (i.e., as evident from α = β = 0 in
Fig. 5), which occurs regardless of magnetization direction
or texture [48,49]. By analyzing the real components of the

triplets, for a gauge where the superconducting phase is zero,
we can confirm that this zero-energy peak is due to the LRT
component, in this case dx , also depicted in Fig. 5, in agreement
with the predictions for textured magnetization without SO
coupling [49]. However, it is also evident from Fig. 5 that
increasing the field strength rapidly suppresses the density of
states towards that of the normal metal, making the effect more
difficult to detect experimentally. The way to ameliorate this
situation is to remember that the introduction of SO coupling
means the direction of the exchange field is crucially important,
as we see in Fig. 6, and this allows for a dramatic spectroscopic
signature for fields without full alignment with the x or y axes.

Figure 6 shows how the density of states at zero energy
varies with the angle θ between hx and hy at zero energy;
with θ = 0 the field is aligned with hx , and with θ = π/2

FIG. 4. (Color online) Zero-energy density of states D(0) as a
function of the spin-orbit angle χ and magnetization angle θ . We
have used a ferromagnet of length LF /ξS = 0.5 with an exchange
field h/� = 3 and a spin-orbit magnitude aξS = 2.
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FIG. 5. (Color online) Density of states D(ε) for the SF bilayer with energies normalized to the superconducting gap � and SO coupling
normalized to the inverse ferromagnet length 1/LF . The table shows the spectroscopic effect of equal Rashba and Dresselhaus coefficients
when the magnetization is oriented entirely in the y direction, and also the correlation between the SO-induced zero-energy peak with the
long-range triplet component |Re(dx)| ≡ Re(d⊥). It is clear that the predominant effect of the LRT component, which appears only when the
SO coupling is included, is to increase the peak at zero energies. Increasing the field strength rapidly suppresses the density of states towards
that of the normal metal.

it is aligned with hy . We see that the inclusion of SO
coupling introduces a nonmonotonic angular dependance in
the density of states, with increasingly sharp features as the
SO coupling strength increases, although the optimal angle at
approximately θ = 7π/32 and θ = 9π/32 varies minimally
with increasing SO coupling. Clearly, the ability to extract
maximum LRT conversion from the inclusion of SO coupling
is highly sensitive to the rotation angle, with near step-function
behavior delineating the regions of optimal peak in the density
of states and an energy gap for strong SO coupling. It is
remarkable to see how D(0) versus θ formally bears a strong
resemblance to the evolution of a fully gapped BCS [64]
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FIG. 6. (Color online) The dependence of the density of states
of the SF bilayer at zero energy on the angle θ between the x

and y components of the magnetization exchange field h/� =
6(cos(θ ), sin(θ ),0) for increasing SO coupling. As the strength of
the SO coupling increases, we see increasingly sharp variations in
the density of states from an optimal peak at around θ ≈ 7π/32 and
θ ≈ 9π/32 to a gap around θ = π/4.

density of states D(ε) versus ε to a flat density of states as
the SO coupling decreases.

These results can again be explained physically by the
linearized equations (31)–(33). Since the case α = β cor-
responds to χ = −π/4 in the notation developed in the
preceding sections, Eq. (36) implies that E⊥(0) > E (0)
when θ < 0, while E⊥(0) < E (0) when θ > 0. In other
words, for negative θ , the SO coupling suppresses the LRT
components, and the exchange field suppresses the other
components. Since the singlet and SRT components have
opposite sign in Eq. (38), this renders the density of states
essentially featureless. However, for positive θ , both the SO
coupling and the exchange field suppress the SRT components,
meaning that LRT generation is energetically favoured. Note
that E⊥/E → ∞ as θ → +π/4, which explains why the
LRT generation is maximized in this regime. Since the triplet
mixing term in Eq. (33) is proportional to (cos 2θ sin 2χ ), the
LRT component vanishes when the value of θ gets too close
to +π/4. Furthermore, since E has a large imaginary energy
contribution in this case, the SRTs are also suppressed at θ =
+π/4. Thus, despite LRTs being most energetically favored at
this exact point, we end up with a system dominated by singlets
due to the SRT suppression and lack of LRT production
pathway. Nevertheless, one would conventionally expect that
exchange fields of a magnitude h � � as depicted in Fig. 6
would suppress any features in the density of states, while
we observe an obvious minigap. Thus the singlet correlations
become much more resilient against the pair-breaking effect
of the exchange field when spin-orbit coupling is present.
This effect persists even when the Rashba or Dresselhaus
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FIG. 7. (Color online) Density of states D(ε) in the SF bilayer for energies normalized to the superconducting gap � and SO coupling
normalized to the inverse ferromagnet length 1/LF . The table shows the spectroscopic features of the SF bilayer with rotated exchange field in
the xy plane. Again we see a peak in the density of states at zero energy due to the LRT component, i.e., the component of d perpendicular to h,
d⊥. The height of this zero-energy peak is strongly dependent on the angle of the field vector in the plane, as shown in Fig. 6. For near-optimal
field orientations, increasing the SO coupling leads to a dramatic increase in the peak of the density of states at zero energy.

component dominates the other one, i.e. α not close to β in
magnitude.

To identify the physical origin of this effect, we solve the
linearized equations (31)–(33) along with their corresponding
boundary conditions for the specific case ε = 0, θ = −χ =
π/4. We consider a bulk superconductor occupying the space
x < 0, while the ferromagnet length LF is so large that one in
practice only needs to keep the decaying parts of the anomalous
Green function. We then find the following expression for the
singlet component at the SF interface in the absence of SO
coupling:

f 0
s = sinh(arctanh(�/ε))

2ζLF

√
DF

h
. (45)

With increasing h, the singlet correlations are suppressed
in the conventional manner. However, we now incorporate
SO coupling in the problem. For more transparent analytical
results, we focus on the case 2(aξ )2 � h/�. This condition
can be rewritten as 2DF a2 � h. In this case, a similar
calculation gives the singlet component at the SF interface
in the presence of SO coupling:

fs = f 0
s

√
DF a2

2h
. (46)

Clearly, the SO coupling enhances the singlet component in
spite the presence of an exchange field since

√
DF a2/h � 1.

This explains the presence of the conventional zero energy
gap for large SO coupling even with a strong exchange field.
A consequence of this observation is that SO coupling in fact
provides a route to a magnetically tunable minigap. Figure 6
shows that when both an exchange field and SO coupling are
present, the direction of the field determines when a minigap
appears. This holds even for strong exchange fields h � � as
long as the SO coupling is sufficiently large as well.

We recall that the LRT Cooper pairs, defined as the
components of d perpendicular to h, may be characterized by
a quantity d⊥, which is defined by the cross product of the two
vectors: d⊥ = |d × ĥ|. We saw above that the spectroscopic

signature of LRT generation is strongly dependent on the angle
of the field, and this angle is a tunable parameter for sufficiently
weak magnetic anisotropy. In Fig. 7, we see an example of the
effect this rotation can have on the spectroscopic signature
of LRT generation: when the exchange field is changed from
h = (6�,3�,0) → (6�,5�,0), i.e., changing the direction of
the field, we see that a strong zero-energy peak emerges due
to the presence of LRT in the system. This large peak emerges
despite the stronger exchange field that would ordinarily
reduce the density of states towards the normal state, i.e.,
as in Fig. 5 for h = �ŷ → 3�ŷ. If one were to remove the
SO coupling, the low-energy density of states would thus
have no trace of any superconducting proximity effect, which
demonstrates the important role played by the SO interactions
here. Finally, for completeness we include an example of the
effect of rotating the field to have a component along the
junction in Fig. 8. Comparing the case of h = (0,3�,6�) in
Fig. 8 with h = (6�,3�,0) in Fig. 7, we see that the two cases
are identical, as predicted in the limit of weak proximity effect,
and increasing the magnitude of the out-of-plane z component
of the field has no effect on the height of the zero-energy peak,
which is instead governed by the in-plane y component.

B. SF bilayer with pure Rashba coupling

There exists another experimentally viable setup where
the LRT can be created. In the case where pure Rashba
SO coupling is present, originating, e.g., from interfacial
asymmetry, the condition for the existence of LRT is that
the exchange field has both the in-plane and out-of-plane
components. Although the LRT formally is nonzero, it is
desirable to clarify if and how it can be detected through
spectroscopic signatures.

From an experimental point of view, it is known that PdNi
and CuNi [11] can in general feature a canted magnetization
orientation relative to the film-plane due to the competition
between shape anisotropy and magnetocrystalline anisotropy.
This is precisely the situation required in order to have an
exchange field with both an in-plane (xy plane in our notation)
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FIG. 8. (Color online) Density of states D(ε) in the SF bilayer for energies normalized to the superconducting gap � and SO coupling
normalized to the inverse ferromagnet length 1/LF . The table shows the spectroscopic features of the SF bilayer with a rotated exchange field
in the xz ≡ yz plane. Note that when the field component along the junction is twice the component in the y direction, here h = (0,3�,6�),
the density of states is equivalent to the case h = (6�,3�,0) illustrated in Fig. 7, as predicted in the limit of weak proximity effect.

and out-of-plane (z direction) components. In our model, the
ferromagnetism coexists with the Rashba SO coupling, which
may be taken as a simplified model of two separate layers
where the SO coupling is induced, e.g., by a very thin heavy
metal and PdNi or CuNi is deposited on top of it.

To determine how the low-energy density of states is
influenced by the triplet pairing, we plot in Fig. 9(a) D(0) as a
function of the misalignment angle ϕ between the film-plane
and its perpendicular axis [see inset of Fig. 9(b) for junction
geometry]. In order to correlate the spectroscopic features with
the LRT, we plot in Fig. 9(b) the LRT Green function |d⊥|.

FIG. 9. (Color online) (a) Plot of the zero-energy density of states
D(0) in an S/F structure with pure Rashba spin-orbit coupling. We
have set h/� = 4 and L/ξS = 0.5. (Inset) Stronger SO coupling
α = 1.5, demonstrating that the angular variation of D(0) remains,
although the enhancement due to triplets is absent. (b) Plot of the
magnitude of the LRT anomalous Green function |d⊥| at ε = 0. As
seen, its enhancement correlates with an accompanying increase in
the density of states for the same angle ϕ, and beyond an optimal
SO coupling value there is anticorrelation between the density of
states peak and |d⊥|. The only angle of importance is the angle ϕ

between the out-of-plane and in-plane components of the exchange
field, shown in the inset.

It is clear that the LRT vanishes when ϕ = 0 or ϕ = π/2.
This is consistent with the fact that for pure Rashba coupling,
purely in-plane or out-of-plane direction of the exchange field
gives d⊥ = 0 according to our previous analysis. However, for
ϕ ∈ (0,π/2) the LRT exists. Its influence on D(0) is seen in
Fig. 9(a): an enhancement of the zero-energy density of states.
For any particular set of junction parameters there is an optimal
value of the SO coupling, and in approaching this value the
density of states is correlated with Re(d⊥). Beyond this optimal
value, they are anticorrelated, as evident from Fig. 9 as the SO
coupling increases, but the angular correlation remains. We
note that the magnitude of the enhancement of the density
of states is substantially smaller than what we obtained with
both Rashba and Dresselhaus coupling. At the same time, the
magnitude of the enhancement is of the same order as previous
experimental works that have measured the density of states
in SF structures [50,51].

Note that it is only the angle between the plane and the tun-
neling direction, which is of importance: the density of states
is invariant under a rotation in the film-plane of the exchange
field. The SO-induced enhancement of the zero-energy density
of states reaches an optimal peak before further increases in
the magnitude of the Rashba coupling results in a suppression
of both the short- and long-ranged triplet components, causing
the low-energy density of states enhancement to vanish. The
correlation with the LRT component |d⊥| correspondingly
changes to anticorrelation, evident in Fig. 9. Nevertheless, the
strong angular variation with D(0) remains although D(0) < 1
for all ϕ [see inset of Fig. 9(a)]. Increasing the exchange field
h further suppressed the proximity effect overall.

The main effect of the SO coupling is that D(0) depends
on the exchange-field direction. As seen for the case of
α = 0 in Fig. 9(a), there is no directional dependence without
SO coupling. Thus, depending on the exchange-field angle
between the in-plane and out-of plane direction, measuring an
enhanced D(0) at low-energies is a signature of the presence
of LRT Cooper pairs in the ferromagnet. More generally,
measuring a dependence on the exchange-field direction ϕ

would be a direct consequence of the presence of SO coupling
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FIG. 10. (Color online) The table shows the density of states D(ε) in the SFS junction with increasing SO coupling and exchange field in
a single direction, with D(ε) normalised to the superconducting gap � and SO coupling normalised to the inverse ferromagnet length 1/LF .
With no SO coupling and very weak exchange field we see a phase-dictated gap-to-peak qualitative change in the density of states at zero
energy. When the field is strong enough to destroy this gap, i.e., above the resonant condition, increasing the phase difference simply lowers
the density of states towards that of the normal metal, which is achieved at a phase difference of φ = π . With the addition of SO coupling we
see a clear difference in the density of states due to the long range triplet component, which is present when the field is oriented in y but not
in z. When LRTs are present with weak exchange fields, a phase-dictated gap-to-peak feature is retained and increased as the strength of SO
coupling increases the gap, with the peak shown here at a phase difference of 0.75π . For stronger exchange fields, increasing the SO coupling
produces the minigap when there is no LRT component, whereas the existence of an LRT component again introduces an increasing peak at
zero energy when no minigap is present.

in the system, even in the regime of, e.g., moderate to strong
Rashba coupling where the triplets are suppressed.

C. Josephson junction

By adding a superconducting region to the right interface
of the SF bilayer, we form an SFS Josephson junction.

It is well known that the phase difference between the
superconducting regions governs how much current can flow
through the junction [52], and the density of states for a
diffusive SNS junction has been measured experimentally
with extremely high precision [53]. Here, we consider such
a transversal junction structure as depicted in Fig. 1(b),
again with intrinsic SO coupling in the xy plane [Eq. (19)]
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in the ferromagnet and with BCS bulk values for each
superconductor. In Sec. III C 1, we consider single orientations
along the principal axes of the system (x,y,z) of the uniform
exchange field, and in Sec. III C 2, we consider a rotated
field. Experimentally, the density of states can be probed
at the superconductor/ferromagnet interface if one of the
superconductors is a superconducting island, and the scanning
tunneling microscope approaches from the top, next to this
superconductor island.

Let us first recapitulate some known results. We saw
in Sec. II that the spin-singlet, SRT and LRT components
compete to raise and lower the density of states at low energies.
Their relative magnitude is affected by the magnitude and
direction of both the exchange field and SO coupling and
results in three distinctive qualitative profiles: the zero-energy
peak from the LRTs, the singlet-dominated regime with a
minigap, and the flat, featureless profile in the absence of
superconducting correlations. In the Josephson junction, the
spectroscopic features are in addition sensitive to the phase
difference φ between the superconductors. In junctions with
an interstitial normal metal, the gap decreases as φ = 0 → π ,
closing entirely at φ = π such that the density of states is that
of the isolated normal metal; identically one [53,54]. Without
an exchange field, the density of states is unaffected by the
SO coupling. This is because without an exchange field the
equations governing the singlet and triplet components are
decoupled and thus no singlet-triplet conversion can occur.
From a symmetry point of view, it is reasonable that the
time-reversal invariant spin-orbit coupling does not alter the
singlet correlations.

Without SO coupling and as long as the exchange field is
not too large, changing the phase difference can qualitatively
alter the density of states from minigap to peak at zero energy
(see Fig. 10), a useful feature permitting external control
of the quasiparticle current flowing through the junction.
The underlying reason is that the phase difference controls
the relative ratio of the singlet and triplet correlations: when
the singlets dominate, a minigap is induced which mirrors their
origin in the bulk superconductor. As in the bilayer case, there
is a resonant condition [48,49] indicating an exchange-field
strength beyond which the minigap can no longer be sustained
and increasing the phase difference simply lowers the density
of states towards that of the normal metal. Amongst the
features we outline in the following sections, one of the effects
of adding SO coupling is to make this useful gap-to-peak effect
accessible with stronger exchange fields, i.e., for a greater
range of materials. At the same time, the SO coupling cannot
be too strong since the triplet correlations are suppressed in this
regime leaving only the minigap and destroying the capability
for qualitative change in the spectroscopic features.

1. Josephson junction with uniform exchange
field in single direction

Consider first the case in which the exchange field is
aligned in a single direction, meaning that we only consider an
exchange field purely along the principal {x,y,z} axes of the
system. If we again restrict the form of the SO vector to (19),
aligning h in the z direction will not result in any LRTs. In this
case, the spectroscopic effect of the SO coupling is dictated by

the singlet and short-range triplet features, much as in the SF
bilayer case (Fig. 3). This is demonstrated in Fig. 10, where
again we see a qualitative change in the density of states as
the exchange field increases, with the regions of minigap and
zero-energy-peak separated by the resonant condition h ∼ Eg

without SO coupling.
We will now examine the effect of increasing the exchange

field aligned in the x or, equivalently, the y direction. In
this case, we have generation of LRT Cooper pairs. If h

is sufficiently weak to sustain a gap independently of SO
coupling, introducing weak SO coupling will increase the
gap at zero phase difference while maintaining a peak at
zero energy for a phase difference of 0.75π (see Fig. 10).
Increasing the SO coupling increases this peak at zero energy
up to a saturation point. As the exchange field increases
sufficiently beyond the resonant condition to keep the gap
closed, increasing the SO coupling increases the zero-energy
peak at all phases, again due to the LRT component, eventually
also reaching a saturation point. As the phase difference φ =
0 → π , the density of states reduces towards that of the normal
metal, closing entirely at φ = π as expected [43,54,55]. As
the value of the density of states at zero energy saturates for
increasing SO coupling, fixed phase differences yield the same
drop at zero energy regardless of the strength of SO coupling.

We note in passing that when the SO coupling field has a
component along the junction direction (z), it can qualitatively
influence the nature of the superconducting proximity effect.
As very recently shown in Ref. [43], a giant triplet proximity
effect develops at φ = π in this case, in complete contrast
to the standard scenario of a vanishing proximity effect in π -
biased normal or magnetically homogeneous junctions without
SO coupling.

2. Josephson junction with rotated exchange field

With two components of the field h, e.g., from rotation,
it is again useful to separate the cases with and without a
component along the junction direction. When the exchange
field lies in-plane (the xy plane), and provided we satisfy the
conditions hx 
= hy and αβ 
= 0, increasing the SO coupling
drastically increases the zero energy peak as shown in Fig. 11,
again due to the LRT component. This is consistent with
the bilayer behavior, where the maximal generation of LRT
Cooper pairs occurs at an angle 0 < θ < π/4. As the phase
difference approaches π , the proximity-induced features are
suppressed in the center of the junction. This can be understood
intuitively as a consequence of the order parameter averaging
to zero since it is positive in one superconductor and negative
in the other.

The 2D plots in this paper of the local density of states
are given for the center of the junction (z = 0), where
one naturally expects the relative proportion of LRTs to be
greatest. However, it is interesting to note that the large peak
at zero energy—the signature of the LRTs—is maintained
throughout the ferromagnet. This is shown in Fig. 12, for the
case α = β = 1 and h = (1.5�,3.5�,0), where the maximal
peak for φ = 0 is almost twice the normal-state value. In
comparison, the depletion of this peak is surprisingly small
at the superconductor interfaces.
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FIG. 11. (Color online) Density of states D(ε) in the SFS junction for energies normalized to the superconducting gap � and SO coupling
normalized to the inverse ferromagnet length 1/LF . The table shows the spectroscopic effects of increasing SO coupling in SFS with rotated
exchange field. In the absence of SO coupling, the density of states is flat and featureless at low energies. Increasing the SO coupling again
leads to a strong increase in the peak of the density of states at zero energy, while increasing the phase difference reduces the peak and shifts
the density of states weight toward the gap edge for higher SO coupling strengths. With a component of the field in the junction direction a
qualitative change in the density of states from strongly suppressed to enhanced at zero energy can be achieved by altering the phase difference
between the superconductors. This change can occur in the presence of stronger exchange fields when SO coupling is included. Increasing
the exchange field destroys the ability to maintain a gap in the density of states and the LRT component of the SO coupling increases the
zero-energy peak as it did in the bilayer case.
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FIG. 12. (Color online) Spatial distribution of the density of
states D(ε) throughout the ferromagnet of an SFS junction with phase
difference φ = 0, spin-orbit coupling α = β = 1, and magnetization
h = (1.5�,3.5�,0).

With one component of the exchange field along the
junction and another along either x or y, a phase-dictated
gap-to-peak transition at zero energy is possible with stronger
fields than with the field aligned in a single direction, as
shown in Fig. 11. Notice that in this case increasing the phase
difference φ = 0 → 0.5π gives an increase in the peak at
zero energy before reducing towards the normal metal state.
For higher field strengths, we find once again that increasing
the SO coupling increases the peak at zero energy, up to
a system-specific threshold, and increasing phase difference
reduces the density of states towards that of the normal metal.

It is also useful to consider how the zero-energy density
of states depends simultaneously on the phase-difference and
magnetization orientation. To this end, we show in Fig. 13 a
contour plot of the density of states at the Fermi level (ε = 0)
as a function of the superconducting phase difference φ across
the junction and the magnetization direction θ . The proximity
effect vanishes in the center of the junction at φ = π for any
value of the exchange-field orientation, giving the normal-state
value. Just as in the bilayer case (Fig. 4), we see that the
proximity effect is strongly suppressed for the range of angles
θ > 0. When rotating the field in the opposite direction, θ <

0, strongly nonmonotonic behavior emerges. For zero phase
difference, the physics is qualitatively similar to the bilayer
situation. In this case, we proved analytically that the LRT
is not produced at all when θ = −π/4. Accordingly, Fig. 13
shows a full minigap there.

Whether or not a clear zero-energy peak can be seen due
to the LRT depends on the relative strength of the Rashba
and Dresselhaus coupling. In the top panel, we have dominant
Dresselhaus coupling in which case the low-energy density
of states show either normal-state behavior or a minigap.
Interestingly, we see that the same opportunity appears in the
present case of a Josephson setup as in the bilayer case: a
magnetically tunable minigap appears. This effect exists as
long as the phase difference is not too close to π , in which
case the minigap closes. In the bottom panel corresponding to
equal magnitude of Rashba and Dresselhaus, however, a strong
zero-energy enhancement due to long-range triplets emerges
as one moves away from θ = −π/4. With increasing phase
difference, the singlets are seen to be more strongly suppressed
than the triplet correlations since the minigap region (dark

FIG. 13. (Color online) Zero-energy density of states D(0) as a
function of the phase-difference φ and magnetization angle θ , both
tunable parameters experimentally. The other parameters used are
LF /ξS = 0.5, h/�0 = 3, aξS = 2. In the top panel, we have dominant
Dresselhaus coupling (χ = 0.15π ) while in the bottom panel we
have equal magnitude of the Rashba and Dresselhaus coefficients
(χ = π/4).

blue) vanishes shortly after φ/π � 0.6 while the peaks due to
triplets remain for larger phase differences.

D. Critical temperature

In this section, we present numerical results for the critical
temperature Tc of an SF bilayer. The theory behind these
investigations is summarized in Sec. II E, and discussed in
more detail in Appendix B. An overview of the physical
system is given in Fig. 1(a). In all of the simulations we
performed, we used the material parameter N0λ = 0.2 for
the superconductor, the exchange field h = 10�0 for the
ferromagnet, and the interface parameter ζ = 3 for both
materials. The other physical parameters are expressed in a
dimensionless form, with lengths measured relative to the
superconducting correlation length ξS , energies measured
relative to the bulk zero-temperature gap �0, and temperatures
measured relative to the bulk critical temperature Tcs . This
includes the SO coupling strength a, which is expressed in the
dimensionless form aξS . The plots presented in this subsection
were generated from 12–36 data points per curve, where each
data point has a numerical precision of 0.0001 in Tc/Tcs . The
results were smoothed with a LOESS algorithm.

Before we present the results with SO coupling, we will
briefly investigate the effects of the ferromagnet length LF
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FIG. 14. (Color online) Plot of the critical temperature Tc/Tcs

as a function of the length LS/ξS of the superconductor for aξS =
0. Below a critical length LS , superconductivity can no longer
be sustained and Tc becomes zero. For larger thicknesses of the
superconducting layer, Tc reverts back to its bulk value.

and superconductor length LS on the critical temperature, in
order to identify the interesting parameter regimes. The critical
temperature as a function of the size of the superconductor is
shown in Fig. 14.

First of all, we see that the critical temperature drops to
zero when LS/ξS ≈ 0.5. This observation is hardly surprising;
since the superconducting correlation length is ξS , the critical
temperature is rapidly suppressed once the length of the junc-
tion goes below ξS . After this, the critical temperature increases
quickly, already reaching nearly 50% of the bulk value when
LS/ξS = 0.6, demonstrating that the superconductivity of the
system is clearly very sensitive to small changes in parameters
for this region.

The next step is then to observe how the behavior of the
system varies with the size of the ferromagnet, and these results
are presented in Fig. 15.

We again observe that the critical temperature increases
with the size of the superconductor, and decreases with the size
of the ferromagnet. The critical temperature for a supercon-
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FIG. 15. (Color online) Plot of the critical temperature Tc/Tcs as
a function of the ferromagnet length LF /ξS for aξS = 0. Increasing
the thickness of the ferromagnet gradually suppresses the Tc of the
superconductor, causing a stronger inverse proximity effect.
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FIG. 16. (Color online) Plot of the critical temperature Tc/Tcs as
a function of the SO angle χ , when LS/ξS = 1.00, LF /ξS = 0.2, and
h ‖ ẑ. Increasing the SO coupling causes Tc to move closer to its bulk
value, since the triplet proximity effect channel becomes suppressed.

ductor with LS/ξS = 0.525 drops to zero at LF /ξS ≈ 0.6, and
stays that way as the size of the ferromagnet increases. Thus
we do not observe any strongly nonmonotonic behavior, such
as reentrant superconductivity, for our choice of parameters.
This is consistent with the results of Fominov et al., who only
reported such behavior for systems where either the interface
parameter or the exchange field is drastically smaller than for
the bilayers considered herein [56].

We now turn to the effects of the antisymmetric SO coupling
on the critical temperature, which has not been studied before.
Figures 16 and 17 show plots of the critical temperature as
a function of the SO angle χ for an exchange field in the z

direction. The critical temperature is here independent of the
SO angle χ . This result is reasonable, since the SO coupling is
in the xy plane, which is perpendicular to the exchange field
for this geometry. We also observe a noticeable increase in
critical temperature for larger values of a. This behavior can
be explained using the linearized Usadel equation. According
to Eq. (26), the effective energy Ez coupling to the triplet
component in the z direction becomes

Ez = ε + 4iDF a2; (47)
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FIG. 17. (Color online) Plot of the critical temperature Tc/Tcs as
a function of the SO angle χ , when LS/ξS = 0.55, LF /ξS = 0.2, and
h ‖ ẑ.
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FIG. 18. (Color online) Plot of the critical temperature Tc/Tcs as
a function of the SO angle χ , when LS/ξS = 1.00, LF /ξS = 0.2, and
h ‖ x̂. The critical temperature depends on the relative magnitudes of
the Rashba and Dresselhaus coefficients.

so in other words, the SRTs obtain an imaginary energy
shift proportional to a2. However, as shown in Eq. (25),
there is no corresponding shift in the energy of the singlet
component. This effect reduces the triplet components relative
to the singlet component in the ferromagnet, and as the
triplet proximity channel is suppressed the critical temperature
becomes restored to higher values.

The same situation for an exchange field along the x axis
is shown in Figs. 18 and 19. For this geometry, we observe a
somewhat smaller critical temperature for all a > 0 and all χ

compared to Figs. 16 and 17. This can again be explained by
considering the linearized Usadel equation in the ferromagnet,
which suggests that the effective energy Ex coupling to the x

component of the triplet vector should be

Ex = ε + 2iDF a2, (48)

which has a smaller imaginary part than the corresponding
equation for Ez. Furthermore, note the drop in critical
temperature as χ → ±π/4. Since the linearized equations
contain a triplet mixing term proportional to sin 2χ , which
is maximal precisely when χ = ±π/4, these are also the
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FIG. 19. (Color online) Plot of the critical temperature Tc/Tcs as
a function of the SO angle χ , when LS/ξS = 0.55, LF /ξS = 0.2, and
h ‖ x̂.
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FIG. 20. (Color online) Plot of critical temperature Tc/Tcs as a
function of the exchange-field angle θ , when LS/ξS = 1.00, LF /ξS =
0.2, and aξS = 2. In contrast to ferromagnets without SO coupling, Tc

now depends strongly on the magnetization direction. This gives rise
to a spin-valve like functionality with a single ferromagnet featuring
SO coupling.

geometries for which we expect a maximal LRT generation.
Thus this decrease in critical temperature near χ = ±π/4 can
be explained by a net conversion of singlet components to
LRTs in the system, which has an adverse effect on the singlet
amplitude in the superconductor, and therefore the critical
temperature.

In Figs. 20 and 21, we present the results for a varying
exchange field h ∼ cos θ x̂ + sin θ ŷ in the xy plane. In
this case, we observe particularly interesting behavior: the
critical temperature has extrema at |χ | = |θ | = π/4, where
the extremum is a maximum if θ and χ have the same sign,
and a minimum if they have opposite signs. Since θ = ±π/4
is precisely the geometries for which we do not expect
any LRT generation, triplet mixing cannot be the source of
this behavior. For the choice of physical parameters chosen
in Fig. 21, this effect results in a difference between the
minimal and maximal critical temperature of nearly 60% as
the magnetization direction is varied. As shown in Fig. 20, the
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FIG. 21. (Color online) Plot of critical temperature Tc/Tcs as a
function of the exchange-field angle θ , when LS/ξS = 0.55, LF /ξS =
0.2, and aξS = 2.
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effect persists qualitatively in larger structures as well, but is
then weaker.

Instead, these observations may be explained using the
theory developed in Sec. II. When we have a general exchange
field and SO field in the xy plane, Eq. (34) reveals that the
effective energy of the SRT component is

E = ε + 2iDF a2(1 − sin 2θ sin 2χ ). (49)

Since the factor (1 − sin 2θ sin 2χ ) vanishes for θ = χ =
±π/4, we get E = ε for this case. This geometry is also one
where we do not expect any LRT generation, since the triplet
mixing factor cos 2θ sin 2χ = 0, so the conclusion is that the
SO coupling has no effect on the behavior of SRTs for these
parameters—at least according to the linearized equations.
However, since 1 − sin 2θ sin 2χ = 2 for θ = −χ = ±π/4,
the situation is now dramatically different. The SRT effective
energy is now E = ε + 4iDF a2, with an imaginary contri-
bution which again destabilizes the SRTs, and increases the
critical temperature of the system. We emphasize that the
variation of Tc with the magnetization direction is present
when χ 
= π/4 as well (unequal Rashba and Dresselhaus
coefficients), albeit with a magnitude of the variation that
gradually decreases as one approaches pure Rashba or pure
Dresselhais coupling.

E. Triplet spin-valve effect with a single ferromagnet

The results discussed in the previous section show that the
critical temperature can be controlled via the magnetization
direction of one single ferromagnetic layer. This is a new
result originating from the presence of SO coupling. In con-
ventional SF structures, Tc is independent of the magnetization
orientation of the F layer. By using a spin-valve setup such as
FSF [57–61], it has been shown that the relative magnetization
configuration between the ferromagnetic layers will tune the
Tc of the system. In contrast, in our case, such a spin-valve
effect can be obtained with a single ferromagnet (see Figs. 20
and 21): by rotating the magnetization an angle π/2, Tc goes
from a maximum to a minimum. The fact that only a single
ferromagnet is required to achieve this effect is of practical
importance since it can be challenging to control the relative
magnetization orientation in magnetic multilayered structures.

IV. SUMMARY AND DISCUSSION

It was pointed out in Ref. [21] that for the case of transversal
structures as depicted in Fig. 1(b), pure Rashba or pure
Dresselhaus coupling and in-plane magnetization direction
are insufficient for long range triplets to exist. However,
although these layered structures are more restrictive in their
conditions for LRT generation than lateral junctions, they are
nevertheless one of the most relevant for current experimental
setups [10,11,50], and herein we consider the corresponding
experimentally accessible effects of SO coupling in this
scenario. We have provided a detailed exposition of the density
of states and critical temperature for both the SF bilayer and
SFS junction with SO coupling, highlighting in particular the
signature of long range triplets.

We saw that the spectroscopic signature depends nonmono-
tonically on the angle of the magnetic exchange field, and that

the LRT component can induce a strong peak in the density of
states at zero energy for a range of magnetization directions.
In addition to the large enhancement at zero energy, we see
that by carefully choosing the SO coupling and exchange-field
strengths in the Josephson junction it is again possible to
control the qualitative features of the density of states by
altering the phase difference between the two superconductors,
e.g., with a loop geometry [53].

The intrinsic SO coupling present in the structures consid-
ered herein derives from their lack of inversion symmetry
due to, e.g., the junction interfaces, so-called interfacial
asymmetry, and we restricted the form of this coupling to the
experimentally common and, in some cases, tunable Rashba-
Dresselhaus form. A lack of inversion symmetry can also
derive from intrinsic noncentrosymmmetry of a crystal. This
could in principle be utilised to provide a component of the
SO field in the junction direction, but to date we are not aware
of such materials having been explored in experiments with
SF hybrid materials. However, analytic and numerical data
suggest that such materials could have significant importance
for spintronic applications making use of a large triplet Cooper
pair population [43].

It is also worth considering the possibility of separating the
spin-orbit coupling and the ferromagnetic layer, which would
arguably be easier to fabricate, and we are currently pursuing
this line of investigation. In this case, we would expect similar
conclusions regarding when the long-range triplets leave clear
spectroscopic signatures and also regarding the spin-valve
effect with a single ferromagnet, as found when the SO
coupling and exchange field coexist in the same material. One
way to practically achieve such a setup would be to deposit
a very thin layer of a heavy normal metal such as Au or Pt
between a superconductor and a conventional homogeneous
ferromagnet. The combination of the large atomic number Z

and the broken structural inversion symmetry at the interface
region would then provide the required SO coupling. With
a very thin normal metal layer (of the order of a few nm),
the proximity effect would be significantly stronger, and
thus analysis of this regime is only possible with the full
Usadel equations in the Riccati parametrization developed
herein.

The current analysis pertains to thin film ferromagnets.
Upon increasing the length of ferromagnetic film, one will
increase the relative proportions of long-range to short-
range triplets in the middle of the ferromagnet. For strong
ferromagnets where the exchange field is a significant fraction
of the Fermi energy, the quasiclassical Usadel formalism may
no longer describe the system behavior appropriately, since it
assumes that the impurity scattering rate is much larger than
the other energy scales involved, and the Eilenberger equation
should be used instead [62].

In the previous section, we also observed that the presence
of SO coupling will in many cases increase the critical
temperature of a hybrid structure compared to when SO
coupling is absent. This effect is explained through an increase
in the effective energy coupled to the triplet component in the
Usadel equation, which destabilizes the triplet pairs and closes
that proximity channel. However, for the special geometry
θ = −χ = ±π/4, the linearized equations suggest that the
SRTs are unaffected by the presence of SO coupling, and

024510-18



CRITICAL TEMPERATURE AND TUNNELING . . . PHYSICAL REVIEW B 92, 024510 (2015)

this is consistent with the numerical results. We also note
that for the geometries with a large LRT generation, such
as θ = 0 and χ = ±π/4, the LRT generation reduces the
critical temperature again. Thus, for the physical parameters
considered herein, we see that there is only a slight net increase
in critical temperature for these geometries, but not as large as
for the geometries without LRT generation.

One particularly striking result from the critical temper-
ature calculations is that when the Rashba and Dresselhaus
contribution to the SO coupling is of similar magnitude, one
observes that the critical temperature can change by as much
as 60% upon changing θ = −π/4 to θ = +π/4, i.e., by a 90◦
rotation of the magnetic field. This implies that it is possible
to create a novel kind of triplet spin valve using an SF bilayer,
where the ferromagnet has a homogeneous exchange-field and
Rashba-Dresselhaus coupling. This is in contrast to previous
suggestions for triplet spin valves, such as the one described
by Fominov et al., which have required trilayers with different
homogeneous ferromagnets [63]. The construction of such a
device is likely to have possible applications in the emerging
field of superconducting spintronics [3].
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APPENDIX A: RICCATI PARAMETRIZATION OF THE
USADEL EQUATION AND KUPRIYANOV-LUKICHEV

BOUNDARY CONDITIONS

The 4 × 4 components of the retarded Green function ĝ are
not entirely independent, but can be expressed as

ĝ(z,ε) =
(

g (z, + ε) f (z, + ε)
−f ∗(z,−ε) −g∗(z,−ε)

)
, (A1)

which suggests that the notation can be simplified by introduc-
ing the tilde conjugation

g̃(z, + ε) ≡ g∗(z,−ε). (A2)

Moreover, the normalization condition ĝ2 = 1 further con-
strains the possible form of ĝ by relating the g components to
the f components,

gg − f f̃ = 1, gf − f g̃ = 0. (A3)

If we pick a suitable parametrization of ĝ, which automatically
satisfies the symmetry and normalization requirements above,
then both the Usadel equation and the Kupriyanov-Lukichev
boundary conditions can be reduced from 4 × 4 to 2 × 2
matrix equations. In this paper, we employ the so-called Riccati
parametrization for this purpose, which is defined by

ĝ =
(

N 0
0 −Ñ

)(
1 + γ γ̃ 2γ

2γ̃ 1 + γ̃ γ

)
, (A4)

where the normalization matrices are N ≡ (1 − γ γ̃ )−1 and
Ñ ≡ (1 − γ̃ γ )−1. Solving the Riccati parametrized equations
for the function γ (z,ε) in spin space is then sufficient to
uniquely construct the whole Green function ĝ(z,ε). It is
noteworthy that ĝ → 1 when γ → 0, while the elements of
ĝ diverge to infinity when γ → 1; so we see that a finite range
of variation in γ parametrizes an infinite range of variation
in ĝ.

We begin by deriving some basic identities, starting with
the inverses of the two matrix products Nγ and γ Ñ :

(Nγ )−1 = γ −1N−1 = γ −1(1 − γ γ̃ ) = γ −1 − γ̃ ; (A5)

(γ Ñ)−1 = Ñ−1γ −1 = (1 − γ̃ γ )γ −1 = γ −1 − γ̃ . (A6)

By comparison of the results above, we see that Nγ = γ Ñ .
Similar calculations for other combinations of the Riccati
matrices reveal that we can always move normalization
matrices past gamma matrices if we also perform a tilde
conjugation in the process:

Nγ = γ Ñ, Ñγ = γN, Nγ̃ = γ̃ Ñ , Ñ γ̃ = γ̃ N.

(A7)
Since we intend to parametrize a differential equation, we
should also try to relate the derivatives of the Riccati matrices.
This can be done by differentiating the definition of N using
the matrix version of the chain rule:

∂zN = ∂z(1 − γ γ̃ )−1

= −(1 − γ γ̃ )−1[∂z(1 − γ γ̃ )](1 − γ γ̃ )−1

= (1 − γ γ̃ )−1[(∂zγ )γ̃ + γ (∂zγ̃ )](1 − γ γ̃ )−1

= N [(∂zγ )γ̃ + γ (∂zγ̃ )]N. (A8)

Performing a tilde conjugation of the equation above, we get a
similar result for ∂zÑ . Thus the derivatives of the normalization
matrices satisfy the following identities:

∂zN = N [(∂zγ )γ̃ + γ (∂zγ̃ )]N, (A9)

∂zÑ = Ñ [(∂zγ̃ )γ + γ̃ (∂zγ )]Ñ . (A10)

In addition to the identities derived above, one should note that
the definition of the normalization matrix N = (1 − γ γ̃ )−1

can be rewritten in many forms which may be of use when
simplifying Riccati parametrized expressions; examples of this
include γ γ̃ = 1 − N−1 and 1 = N − Nγ γ̃ .

Now that the basic identities are in place, it is time to
parametrize the Usadel equation in the ferromagnet,

DF ∇̃(ĝ∇̃ĝ) + i[ερ̂3 + M̂,ĝ] = 0, (A11)

where we for simplicity will let DF = 1 in this Appendix. We
begin by expanding the gauge covariant derivative ∇̃(ĝ∇̃ĝ),
and then simplify the result using the normalization condition
ĝ2 = 1 and its derivative {ĝ, ∂zĝ} = 0, which yields the result

∇̃ · (ĝ∇̃ĝ) = ∂z(ĝ∂zĝ) − i∂z(ĝÂzĝ)

− i[Âz, ĝ∂zĝ] − [Â, ĝÂĝ]. (A12)

We then write ĝ in component form using Eq. (A1), and also
write Â in the same form using Â = diag(A,−A∗). In the rest
of this Appendix, we will for simplicity assume that A is real,
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so that Â = diag(A,−A); in practice, this implies that A can
only depend on the spin projections σx and σz. The derivation

for the more general case of a complex Â is almost identical.
The four terms in Eq. (A12) may then be written as follows:

∂z(ĝ∂zĝ) =
[
∂z(g∂zg − f ∂zf̃ ) ∂z(g∂zf − f ∂zg̃)

∂z(g̃∂zf̃ − f̃ ∂zg) ∂z(g̃∂zg̃ − f̃ ∂zf )

]
; (A13)

∂z(ĝÂĝ) =
[
∂z(gAg + f Af̃ ) ∂z(gAf + f Ag̃)

−∂z(g̃Af̃ + f̃ Ag) −∂z(g̃Ag̃ + f̃ Af )

]
; (A14)

[Â, ĝ∂zĝ] =
[

[A, g∂zg − f ∂zf̃ ] {A, g∂zf − f ∂zg̃}
−{A, g̃∂zf̃ − f̃ ∂zg} −[A, g̃∂zg̃ − f̃ ∂zf ]

]
; (A15)

[Â, ĝÂĝ] =
[

[A, gAg + f Af̃ ] {A, gAf + f Ag̃}
{A, g̃Af̃ + f̃ Ag} [A, g̃Ag̃ + f̃ Af ]

]
. (A16)

Substituting these results back into Eq. (A12), we can find the upper blocks of the covariant derivative ∇̃ · (ĝ∇̃ĝ),

[∇̃ · (ĝ∇̃ĝ)](1,1) = ∂z(g∂zg − f ∂zf̃ ) − i∂z(gAzg + f Azf̃ ) − i[Az, g∂zg−f ∂zf̃ ]−[A, gAg+f Af̃ ], (A17)

[∇̃ · (ĝ∇̃ĝ)](1,2) = ∂z(g∂zf − f ∂zg̃) − i∂z(gAzf + f Azg̃) − i{Az, g∂zf−f ∂zg̃}−{A, gAf +f Ag̃}. (A18)

In this context, the notation M̂ (n,m) refers to the nth row and mth column in Nambu space. Since the Green function ĝ and
background field Â also have a structure in spin space, the (1,1) element in Nambu space is the upper-left 2 × 2 block of the
matrix, and the (1,2) element is the upper-right one.

There are two kinds of expressions that recur in the equations above, namely the components of ĝ∂zĝ, and the components of
ĝÂĝ. After we substitute in the Riccati parametrization g = 2N − 1 and f = 2Nγ , these components take the form:

[ĝ∂zĝ](1,1) = g∂zg − f ∂zf̃ = 2N [(∂zγ )γ̃ − γ (∂zγ̃ )]N (A19)

[ĝ∂zĝ](1,2) = g∂zf − f ∂zg̃ = 2N [(∂zγ ) − γ (∂zγ̃ )γ ]Ñ ; (A20)

[ĝÂĝ](1,1) = gAg + f Af̃ = 4N (A + γAγ̃ )N − 2{A,N} + A; (A21)

[ĝÂĝ](1,2) = gAf + f Ag̃ = 4N (Aγ + γA)Ñ − 2{A,Nγ }. (A22)

If we explicitly calculate the commutators of Â with the two matrices ĝ∂zĝ and ĝÂĝ, then we find

[Â, ĝ∂zĝ](1,1) = [A, g∂zg − f ∂zf̃ ] = 2N (1 − γ γ̃ )AN [(∂zγ )γ̃ − γ (∂zγ̃ )]N − 2N [(∂zγ )γ̃ − γ (∂zγ̃ )]NA(1 − γ γ̃ )N ; (A23)

[Â, ĝ∂zĝ](1,2) = {A, g∂zf − f ∂zg̃} = 2N (1 − γ γ̃ )AN [(∂zγ ) − γ (∂zγ̃ )γ ]Ñ + 2N [(∂zγ ) − γ (∂zγ̃ )γ ]ÑA(1 − γ̃ γ )Ñ ; (A24)

[Â, ĝÂĝ](1,1) = [A, gAg + f Af̃ ] = 4AN (A + γAγ̃ )N − 4N (A + γAγ̃ )NA − 2[A2, N]; (A25)

[Â, ĝÂĝ](1,2) = {A, gAf + f Ag̃} = 4AN (Aγ + γA)Ñ + 4N (Aγ + γA)ÑA − 4ANγA − 2{A2, Nγ }. (A26)

If we instead differentiate the aforementioned matrices with respect to z, we obtain

[∂z(ĝ∂zĝ)](1,1) = ∂z(g∂zg − f ∂zf̃ ) = 2N [(∂2
z γ ) + 2(∂zγ )Ñ γ̃ (∂zγ )]γ̃ N − 2Nγ [(∂2

z γ̃ ) + 2(∂zγ̃ )Nγ (∂zγ̃ )]N ; (A27)

[∂z(ĝ∂zĝ)](1,2) = ∂z(g∂zf − f ∂zg̃) = 2N [(∂2
z γ ) + 2(∂zγ )Ñ γ̃ (∂zγ )]Ñ − 2Nγ [(∂2

z γ̃ ) + 2(∂zγ̃ )Nγ (∂zγ̃ )]γ Ñ ; (A28)

[∂z(ĝÂĝ)](1,1) = ∂z(gAg + f Af̃ ) = 2N (1 + γ γ̃ )AN [γ (∂zγ̃ ) + (∂zγ )γ̃ ]N + 2N [γ (∂zγ̃ ) + (∂zγ )γ̃ ]NA(1 + γ γ̃ )N

+ 4Nγ ÂÑ [(∂zγ̃ ) + γ̃ (∂zγ )γ̃ ]N + 4N [(∂zγ ) + γ (∂zγ̃ )γ ]ÑAγ̃N ; (A29)

[∂z(ĝÂĝ)](1,2) = ∂z(gAf + f Ag̃) = 2N (1 + γ γ̃ )AN [(∂zγ ) + γ (∂zγ̃ )γ ]Ñ + 2N [(∂zγ ) + γ (∂zγ̃ )γ ]ÑA(1 + γ̃ γ )Ñ

+ 4NγAÑ [γ̃ (∂zγ ) + (∂zγ̃ )γ ]Ñ + 4N [γ (∂zγ̃ ) + (∂zγ )γ̃ ]NAγ̃ Ñ. (A30)
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Combining all of the equations above, we can express Eqs. (A17) and (A18) using Riccati matrices. In order to isolate the
second-order derivative ∂2

z γ from these, the trick is to multiply Eq. (A17) by γ from the right, and subsequently subtract the
result from Eq. (A18):

1
2N−1{[∇̃ · (ĝ∇̃ĝ)](1,2) − [∇̃ · (ĝ∇̃ĝ)](1,1)γ } = ∂2

z γ + 2(∂zγ )Ñ γ̃ (∂zγ ) − 2i(Az + γAzγ̃ )N (∂zγ ) − 2i(∂zγ )Ñ(Az + γ̃ Azγ )

− 2(Aγ + γA)Ñ (A + γ̃ Aγ ) − A2γ + γA2. (A31)

If we finally rewrite [∇̃ · (ĝ∇̃ĝ)](1,1) and [∇̃ · (ĝ∇̃ĝ)](1,2) in the equation above by substituting in the Usadel equation (A11), then
we obtain the following equation for the Riccati matrix γ :

∂2
z γ = − 2iεγ − ih · (σγ − γ σ ∗) − 2(∂zγ )Ñ γ̃ (∂zγ ) + 2i(Az + γAzγ̃ )N (∂zγ ) + 2i(∂zγ )Ñ(Az + γ̃ Azγ )

+ 2(Aγ + γA)Ñ(A + γ̃ Aγ ) + A2γ − γA2. (A32)

The corresponding equation for γ̃ can be found by tilde conjugation of the above. After restoring the diffusion coefficient DF ,
and generalizing the derivation to a complex SO field A, the above result takes the form shown in Eq. (5).

After parametrizing the Usadel equation, the next step is to do the same to the Kupriyanov-Lukichev boundary conditions.
The gauge covariant version of Eq. (2) may be written

2Lnζnĝn∇̃ĝn = [ĝ1,ĝ2], (A33)

which upon expanding the covariant derivative ĝ∇̃ĝ becomes

ĝn∂zĝn = 1
2�n[ĝ1, ĝ2] + iĝn[Âz, ĝn], (A34)

where we have introduced the notation �n ≡ 1/Lnζn for the interface parameter. We will now restrict our attention to the (1,1)
and (1,2) components of the above,

gn∂zgn − fn∂zf̃n = 1
2�n(g1g2 − g2g1 − f1f̃2 + f2f̃1) + ign[Az, gn] + ifn{Az, f̃n}, (A35)

gn∂zfn − fn∂zg̃n = 1
2�n(g1f2 − g2f1 − f1g̃2 + f2g̃1) + ign{Az, fn} + ifn[Az, g̃n]. (A36)

Substituting the Riccati parametrizations gn = 2Nn − 1 and fn = 2Nnγn in the above, we then obtain

Nn[(∂zγn)γ̃n − γn(∂zγ̃n)]Nn = �nN1(1 − γ1γ̃2)N2 − �nN2(1 − γ2γ̃1)N1 − iNn(1 − γnγ̃n)ANn − iNnA(1 − γnγ̃n)Nn

+ 2iNn(A + γnAγ̃n)Nn, (A37)

Nn[(∂zγn) − γn(∂zγ̃n)γn]Ñn = �nN1(1 − γ1γ̃2)γ2Ñ2 − �nN2(1 − γ2γ̃1)γ1Ñ1 + iNn(1 + γnγ̃n)AγnÑn

+ iNnγnA(1 + γ̃nγn)Ñn. (A38)

If we multiply Eq. (A37) by γn from the right, subtract this from Eq. (A38), and divide by Nn from the left, then we obtain the
following boundary condition for γn:

∂zγn = �n(1 − γ1γ̃2)N2(γ2 − γn) + �n(1 − γ2γ̃1)N1(γn − γ1) + i{Az, γn}. (A39)

When we evaluate the above for n = 1 and 2, then it simplifies to the following:

∂zγ1 = �1(1 − γ1γ̃2)N2(γ2 − γ1) + i{Az, γ1}, (A40)

∂zγ2 = �2(1 − γ2γ̃1)N1(γ2 − γ1) + i{Az, γ2}. (A41)

The boundary conditions for ∂zγ̃1 and ∂zγ̃2 are found by tilde conjugating the above. If we generalize the derivation to a complex
SO field A, and substitute back �n ≡ 1/Lnζn in the result, then we arrive at Eq. (6).

APPENDIX B: DERIVATION OF THE
SELF-CONSISTENCY EQUATION FOR �

For completeness, we present here a detailed derivation of
the self-consistency equation for the BCS order parameter [64]
in a quasiclassical framework. Similar derivations can also
be found in Refs. [52,65–68]. In this paper, we follow the
convention where the Keldysh component of the anomalous
Green function is defined as

FK
σσ ′(r,t ; r ′,t ′) ≡ −i〈[ψσ (r,t), ψσ ′(r ′,t ′)]〉, (B1)

where ψσ (r,t) is the spin-dependent fermion annihilation
operator, and the superconducting gap is defined as

�(r,t) ≡ λ〈ψ↑(r,t) ψ↓(r,t)〉, (B2)

where λ > 0 is the electron-electron coupling constant in the
BCS theory. For the rest of this appendix, we will also assume
that we work in an electromagnetic gauge where � is a purely
real quantity. Comparing Eqs. (B1) and (B2), and using the
fermionic anticommutation relation

ψ↑(r,t) ψ↓(r,t) = −ψ↓(r,t) ψ↑(r,t), (B3)
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we see that the superconducting gap �(r,t) can be expressed
in terms of the Green functions in two different ways:

�(r,t) = iλ

2
FK

↑↓(r,t ; r,t), (B4)

�(r,t) = − iλ

2
FK

↓↑(r,t ; r,t). (B5)

We may then perform a quasiclassical approximation by
first switching to Wigner mixed coordinates, then Fourier
transforming the relative coordinates, then integrating out
the energy dependence, and finally averaging the result over
the Fermi surface to obtain the isotropic part. The resulting
equations for the superconducting gap are

�(r,t) = 1

4
N0λ

∫
dε f K

↑↓(r,t,ε), (B6)

�(r,t) = −1

4
N0λ

∫
dε f K

↓↑(r,t,ε), (B7)

where f K
σσ ′ is the quasiclassical counterpart to FK

σσ ′ , ε is the
quasiparticle energy, and N0 is the density of states per spin at
the Fermi level.

In the equilibrium case, the Keldysh component ĝK can be
expressed in terms of the retarded and advanced components
of the Green function,

ĝK = (ĝR − ĝA) tanh(ε/2T ), (B8)

and the advanced Green function may again be expressed in
terms of the retarded one,

ĝA = −ρ̂3ĝ
R†ρ̂3, (B9)

which implies that the Keldysh component can be expressed
entirely in terms of the retarded component,

ĝK = (ĝR − ρ̂3ĝ
R†ρ̂3) tanh(ε/2T ). (B10)

If we extract the relevant anomalous components f K
↑↓ and f K

↓↑
from the above, we obtain the results

f K
↑↓ = [f R

↑↓(r, + ε) + f R
↓↑(r,−ε)] tanh(ε/2T ), (B11)

f K
↓↑ = [f R

↓↑(r, + ε) + f R
↑↓(r,−ε)] tanh(ε/2T ). (B12)

We then switch to a singlet/triplet-decomposition of the
retarded component f R , where the singlet component is
described by a scalar function fs , and the triplet component
by the so-called d-vector (dx,dy,dz). This parametrization is
defined by the matrix equation

f R = (fs + d · σ )iσy, (B13)

or in component form,(
f R

↑↑ f R
↑↓

f R
↓↑ f R

↓↓

)
=

(
idy − dx dz + fs

dz − fs idy + dx

)
. (B14)

Parametrizing Eqs. (B11) and (B12) according to Eq. (B14),
we obtain

f K
↑↓(r,ε) = [dz(r, + ε) + fs(r, + ε)

+ dz(r,−ε) − fs(r,−ε)] tanh(ε/2T ), (B15)

f K
↑↓(r,ε) = [dz(r, + ε) − fs(r, + ε)

+ dz(r,−ε) + fs(r,−ε)] tanh(ε/2T ). (B16)

The triplet component dz can clearly be eliminated from the
above equations by subtracting Eq. (B15) from Eq. (B16),

f K
↑↓ − f K

↓↑ = 2[fs(r,ε) − fs(r,−ε)] tanh(ε/2T ), (B17)

and a matching expression for the superconducting gap can be
acquired by adding Eqs. (B6) and (B7),

2�(r) = 1

4
N0λ

∫
dε [f K

↑↓(r,ε) − f K
↑↓(r,ε)] tanh(ε/2T ).

(B18)
By comparing the two results above, we finally arrive at an
equation for the superconducting gap which only depends on
the singlet component of the quasiclassical Green function:

�(r) = 1

4
N0λ

∫
dε [fs(r,ε) − fs(r,−ε)] tanh(ε/2T ).

(B19)
If the integral above is performed for all real values of ε,

it turns out to be logarithmically divergent, e.g., for a bulk
superconductor. However, physically, the range of energies
that should be integrated over is restricted by the energy spectra
of the phonons that mediate the attractive electron-electron
interactions in the superconductor. This issue may therefore
be resolved by introducing a Debye cutoff ωc, such that we
only integrate over the region where |ε| < ωc. Including the
integration range, the gap equation is therefore

�(r) = 1

4
N0λ

∫ ωc

−ωc

dε [fs(r,ε) − fs(r,−ε)] tanh(ε/2T ).

(B20)
The equation above can, however, be simplified even further.
First of all, both fs(ε) − fs(−ε) and tanh(ε/2T ) are clearly
antisymmetric functions of ε, which means that the product
is a symmetric function, and so it is sufficient to perform an
integral over positive values of ε,

�(r) = 1

2
N0λ

∫ ωc

0
dε [fs(r,ε) − fs(r,−ε)] tanh(ε/2T ).

(B21)
However, because of the term fs(r,−ε), we still need to know
the Green function for negative values of ε before we can
calculate the gap. On the other hand, the singlet component of
the quasiclassical Green functions also has a symmetry when
the superconducting gauge is chosen as real,

fs(r,ε) = −f ∗
s (r,−ε), (B22)

which implies that

fs(r,ε) − fs(r,−ε) = 2 Re[fs(r,ε)]. (B23)

Substituting Eq. (B23) into Eq. (B21), the gap equation takes a
particularly simple form, which only depends on the real part
of the singlet component fs(r,ε) for positive energies ε:

�(r) = N0λ

∫ ωc

0
dε Re[fs(r,ε)] tanh(ε/2T ). (B24)
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Let us now consider the case of a BCS bulk superconductor,
which has a singlet component given by the equation

fs(ε) = �√
ε2 − �2

, (B25)

so that the gap equation may be written as

� = N0λ

∫ ωc

0
dε Re

(
�√

ε2 − �2

)
tanh(ε/2T ). (B26)

The part in the curly braces is only real when |ε| � �,
which means that the equation can be simplified by changing
the lower integration limit to �. After also dividing the
equation by �N0λ, we then obtain the self-consistency
equation

1

N0λ
=

∫ ωc

�

dε
tanh(ε/2T )√

ε2 − �2
. (B27)

For the zero-temperature case, where T → 0 and � → �0,
performing the above integral and reordering the result yields

ωc = �0 cosh(1/N0λ). (B28)

Using the above equation for ωc, and the well-known result

�0

Tc

= π

eγ
, (B29)

where γ ≈ 0.57722 is the Euler-Mascheroni constant, we can
finally rewrite Eq. (B24) as

�(r) = N0λ

∫ �0 cosh(1/N0λ)

0
dε Re[fs(r,ε)]

× tanh

(
π

2eγ

ε/�0

T/Tc

)
. (B30)

This version of the gap equation is particularly well-suited
for numerical simulations. One advantage is that we only
need to know the Green function for positive energies, which
halves the number of energies that we need to solve the Usadel
equation for. The equation also takes a particularly simple form
if we use energy units where �0 = 1 and temperature units
where Tc = 1, which is common practice in such simulations.
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Electric control of superconducting 
transition through a spin-orbit 
coupled interface
Jabir Ali Ouassou1, Angelo Di Bernardo2, Jason W. A. Robinson2 & Jacob Linder1

We demonstrate theoretically all-electric control of the superconducting transition temperature using 
a device comprised of a conventional superconductor, a ferromagnetic insulator, and semiconducting 
layers with intrinsic spin-orbit coupling. By using analytical calculations and numerical simulations, 
we show that the transition temperature of such a device can be controlled by electric gating which 
alters the ratio of Rashba to Dresselhaus spin-orbit coupling. The results offer a new pathway to control 
superconductivity in spintronic devices.

The dissipationless flow of electric charge and phase coherence are major driving forces for the research and 
development of superconducting electronics along with phase coherence. For example, superconducting logic 
circuits have already been implemented, including computer processors and memory chips that work at frequen-
cies up to several gigahertz1–4. For spintronics5–8 the main aim is to create logic and memory devices that exploit 
both the charge and spin degrees of freedom of electrons, and which offer high operating frequencies and low 
energy consumption9.

In recent years, there has been a surge of interest in the intersection of these fields, and new discoveries have 
enabled the new field of superconducting spintronics10,11. At the interface between a conventional supercon-
ductor and a ferromagnet, the singlet electron pairs |↑​↓​〉​ −​ |↓​↑​〉​ in the superconductor can be transformed into 
spin-polarized triplet pairs through a two-step process involving spin-mixing and spin-rotation10. Spin-mixing 
occurs at magnetic interfaces whereas magnetic inhomogeneities12,13 or spin-orbit coupling14–16 can rotate triplet 
Cooper pairs into each other, leading to long-ranged proximity effects in strong ferromagnets17–31.

One important application of superconducting spintronics is to control the temperature Tc at which a material 
becomes superconducting using spin-valves32–44. These systems consist of a superconductor proximity-coupled to 
two ferromagnetic layers. By changing the relative magnetization direction of two ferromagnets one can toggle 
superconductivity on and off. A key to achieving this effect lies in whether the magnetic configuration allows 
generation of spin-polarized Cooper pairs or not. When permitted, the generation of spin-polarized pairs which 
can penetrate deeper into adjacent ferromagnets opens an extra proximity “leakage channel”. This contributes 
to the draining of superconductivity from the superconductor and therefore further reduces Tc. Although much 
research has been dedicated to magnetic control of Tc, it would be beneficial to be able to electrically control Tc, as 
that would enable integration of superconducting nanostructures into electronic circuits without the requirement 
of applying magnetic fields, e.g. by changing the quasiparticle distribution45,46.

Here we propose a device comprised of a ferromagnetic insulator (FI) and a semiconductor with a 
two-dimensional electron gas (2DEG) in contact with a conventional superconductor (S). Experimentally, it is 
known that the Rashba and Dresselhaus spin-orbit coupling in a 2DEG can be tuned via a gate voltage47–50: this 
voltage can change the Rashba coefficient by a factor of 1.5–2.5 in thin-film structures based on GaAs or InAs47–49, 
and up to a factor of ~6 in nanowires50. These results were obtained for different gate voltage ranges; e.g., ref. 48 
varied it from −​6 V to +​2 V, while ref. 42 used −​1.0 V to +​1.5 V. It has also been shown that a suitably doped 
2DEG can have Rashba and Dresselhaus coefficients of the same order of magnitude, with a ratio of ~1.5 in GaAs/
AlGaAs51. It should therefore be possible to engineer a thin-film semiconductor with approximately matching 
Rashba and Dresselhaus couplings, and dynamically modulate the ratio between them by a factor of ~2 via a gate 
voltage.
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Recently, it was demonstrated that the superconductor proximity effect depends strongly on the amount of 
Rashba and Dresselhaus coupling that is present in the system52. Because of this, we set out to determine if Tc 
could be controlled purely electrically by tuning the ratio of Rashba to Dresselhaus interactions with an elec-
tric field when a 2DEG is in electrical contact to a superconductor via a FI, the latter one serving as a source of 
triplet pairs. In this work, we confirm this conjecture and predict that all-electric control of Tc is possible in a  
S/FI/2DEG device. In addition to a gate voltage control, Tc also responds to a change in the FI magnetization 
orientation, causing our proposed device to function as a combined superconducting transistor and magnetic 
spin-valve. By superconducting transistor, we mean a device where a gate voltage is used to switch on and off 
superconductivity in the structure, thus controlling to what extent a supercurrent can flow through the supercon-
ductor. This type of functionality is of interest since it corresponds to an electrically controlled transition from 
finite to zero resistance.

Here we investigate a setup where magnetism and spin-orbit coupling are split into two distinct layers rather 
than coexisting in the same material52, the former being experimentally more feasible to achieve. Furthermore, 
whereas previous works have modelled the superconductor/ferromagnet interface using spin-independent tun-
neling boundary conditions, we here use the recently derived boundary conditions for strongly spin-polarized 
interfaces53. This means that spin-dependent tunneling, phase-shifts, and depairing effects for arbitrarily strong 
polarization are included in our new model whereas this has not been possible previously in the literature.

Results
Proposed experimental setup.  Our proposed experimental setup is sketched in Fig. 1. The electrically 
controlled superconducting switch is based on an S/FI bilayer grown on an epitaxial GaAs-based (e.g. AlGaAs/
GaAs) semiconductor thin-film multilayer. To enable electrical control over the Rasha spin-orbit interaction in 
the 2DEG, Au gate electrodes are fabricated by electron-beam lithography on a few-nanometer-thick insulating 
SiO2 layer deposited after the growth and lithographic patterning of the S/FI stack. A four-point probe setup is 
used to measure changes in the superconducting critical temperature as a function of applied gate voltage Vg. 
Although the insulating SiO2 layer should minimize possible modulations in the Curie temperature Tc of the FI 
driven by the applied gate voltage Vg, which can alone have an effect on the superconducting proximity effect, 
control samples without the FI layer should also be fabricated to exclude this possibility. We also note that the 
Rasha spin-orbit coupling is independent on the polarity of Vg

50. In contrast, Vg usually has an opposite effect on 
Tc, meaning that a positive Vg normally enhances Tc, while a negative Vg decreases Tc

54. Therefore, modulations in 
Tc due to Vg can also be excluded by investigating variations in the spin-orbit-driven superconducting proximity 
effect as a function of the Vg polarity.

Analytical results.  To explain the mechanism of the electric control of Tc, we first approximate the multi-
layer structure as an effective monolayer structure where spin-orbit coupling and magnetic exchange fields coex-
ist. This analogy is relevant because the spin-dependent phase-shifts induced by proximity to a FI are known to 
act as an effective exchange field in thin superconducting structures55. Afterwards, we will confirm the analytical 
treatment by full numerical simulations performed without these approximations.

To the linear order in the superconducting pair amplitudes, the diffusion equations of the system are52

∂ = +iD f f h f( /2) , (1)z s s
2 

θ χ θ χ∂ = − +|| ⊥iD f E f R f h f( /2) ( , ) ( , ) , (2)z s
2

θ χ θ χ∂ = − .⊥ ⊥ ⊥iD f E f R f( /2) ( , ) ( , ) (3)z
2

The symbols 
⊥f f f, ,s  refer to the electron pair amplitudes with spin-singlet, short-range spin-triplet, and 

long-range spin-triplet projections, respectively. We have also defined the the triplet mixing factor

θ χ θ χ=R iDA( , ) 2 cos 2 sin 2 , (4)2

and the effective triplet energies

Figure 1.  Schematic of the proposed superconducting device. 
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θ χ θ χ= + +⊥E iDA( , ) 2 [1 sin 2 sin 2 ], (5)2

θ χ θ χ= + − .E iDA( , ) 2 [1 sin 2 sin 2 ] (6)
2

The ferromagnetism is described by an in-plane exchange splitting h =​ h(cos θ ex +​ sin θ ey), which is para-
metrized in terms of a magnitude h and direction θ. We also assume an in-plane spin-orbit coupling, which is 
described in polar coordinates by a magnitude α β≡ +A 2 2  and type χ ≡​ atan(α/β), where α and β are the 
Rashba and Dresselhaus coefficients. The spin-orbit coefficients are defined by the single-particle Hamiltonian 

σ σ σ σ= − + −α β
⁎ ⁎H p p p p( ) ( )

m y x x y m y y x x , where m*​ is the effective mass, p the momentum, and σ the spin. 
Finally, D is the diffusion coefficient of the material, and  is the quasiparticle energy.

The singlet component fs is produced in all conventional superconductors. When these pairs leak into the 
adjoining ferromagnet, eqs (1–3) show that a magnetic exchange splitting h induces a nonzero short-ranged tri-
plet component f , as is well-known13. When spin-orbit coupling is present (A ≠​ 0), with both Rashba and Dresselhaus 
contributions (sin 2χ ≠​ 0), one also generates the long-range15 triplet component f⊥ so long as the magneti-
zation direction satisfies cos 2θ ≠​ 0. It is the latter observation which offers several ways to control the long-ranged 
triplet generation. Firstly, since the triplet mixing term is proportional to cos 2θ, we may enable this mechanism 
by letting θ →​ 0, or disable it by letting θ →​ ±​π/4. Secondly, since the same term is also proportional to sin 2χ, 
where we defined χ =​ atan(α/β), the mechanism is enhanced for α ≅​ β, but suppressed when α ≪​ β or α ≫​ β. 
Since the magnetization direction θ can be changed using an external magnetic field, and the Rashba coefficient 
α can be changed using an external electric field, this means that the triplet mixing can be in principle be con-
trolled using either a magnetic field by itself 56–60, an electric field by itself, or a combination thereof.

It is important to note that the spin-orbit coupling not only introduces a coupling between the different types 
of spin-polarized Cooper pairs, but that it also has a depairing effect. This is seen by how A modifies the diagonal 
terms in the equations above, resulting in an alteration of the effective energies in eqs (5) and (6) associated with 
the superconducting correlation functions f. Imaginary terms in the effective energy can be interpreted as a dest-
abilization and suppression of the given correlations, so the spin-orbit coupling can suppress either f , f⊥, or both, 
depending on the parameters χ and θ. It follows from eq. (5) that increasing the magnitude of A and sin 2χ 
increases this pair-breaking effect, meaning that the same spin-orbit coupling that maximizes the triplet mixing 
also maximizes the depairing. However, while the mixing term is proportional to cos 2θ, the depairing terms are 
proportional to sin 2θ. A key observation which enables the purely electric control over Tc is that for a fixed mag-
netization orientation θ, the depairing energy is controlled by the ratio of Rashba and Dresselhaus spin-orbit 
coupling χ =​ atan(α/β). This argument is of importance since we from the numerical simulations find that the 
dominant effect of the spin-orbit coupling on the critical temperature is not the long-range triplet generation, but 
rather the short-range triplet suppression. In fact, the most extreme results were obtained for θ =​ ±​π/4, which are 
precisely the configurations where the linearized diffusion equations disallow triplet mixing.

Numerical results.  We have calculated Tc numerically and the results are shown in Fig. 2. S is taken as con-
ventional (e.g. Nb), the FI (e.g. GdN, EuO) is treated as a polarized spin-active interface, and the semiconducting 
layer (e.g. GaAs, InAs) is treated as a normal metal with a Rashba–Dresselhaus spin-orbit coupling. We used the 
Ricatti-parametrization61 including the case of spin-orbit coupling52 together with general magnetic boundary 
conditions53 valid for arbitrary polarization of the interface region. We provide a detailed exposition of the com-
putation of the critical temperature in the Methods section.

For all structures, we assumed a thickness of 0.65ξ for the superconductor and 0.15ξ for the 2DEG, where ξ is 
the zero-temperature coherence length of a bulk superconductor. Assuming ξ =​ 30 nm, this would imply a super-
conductor thickness of ~20 nm and thickness of ~4 nm for the spin-orbit coupled layer. As for the magnitude of 
the spin-orbit coupling, we normalized both α and β to ξ/2 . If the effective quasiparticle mass m*​ is assumed 
equal to the bare electron mass, and we again set ξ =​ 30 nm, we find that α, β =​ 1 in dimensionless units corre-
sponds to a coupling α/m*, β/m* =​ 2.2 ×​ 10−12 eV m. The spin-active interface was taken to have an experimen-
tally realistic spin-polarization of 50%, a tunneling conductance GT/G ∈​ {0.2, 0.3}, and a spin-mixing conductance 
Gϕ/GT =​ 1.25, where G is the bulk normal-state conductance of both materials (taken as equal for simplicity). We 
have run extensive Tc calculations for other parameter values as well (not shown here), where we find qualitatively 
the same behavior as in Fig. 2, but quantitatively less variation if either the tunneling conductance GT is reduced, 
the spin-mixing conductance Gϕ is reduced, or the spin-polarization is increased. In particular, depending on the 
quality of the contact between the 2DEG and the FI layer, the tunneling conductance could be very small com-
pared to the normal-state conductance, GT ≪​ G.

The results in Fig. 2 display the same basic dependence on the magnetic field direction: the critical tempera-
ture is maximal when θ →​−​ π/4, and minimal when θ →​ +​π/4. It is interesting to note how spin-valve function-
ality is obtained in the present structure with just one magnetic layer, tuning Tc from a maximum to minimum 
upon 90 degrees rotation of the magnetization. The magnitude of this variation depends strongly on the param-
eters. For strong spin-orbit coupling and moderate interface conductance, we see a variation of nearly 0.6Tcs in 
Fig. 2, where Tcs is the critical temperature of a bulk superconductor. This corresponds to 5.5 K for niobium; for 
comparison, the current experimental record for spin-valve effects is around 1 K62. Furthermore, in the region 
where θ >​ 0, the critical temperature drops to zero, which means that such a device could in principle function 
as a spin-valve even at absolute zero. Increasing the interface polarization or weakening the spin-orbit coupling 
diminishes this effect.
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The most interesting observation is nevertheless that we can achieve all-electric control over Tc for a fixed 
orientation θ of the FI magnetic moment. One particularly striking example is seen in Fig. 2: for a range of mag-
netization orientations θ, Tc increases from absolute zero at α/β =​ 1 to a substantial fraction of the bulk critical 
temperature Tcs as α/β is either increased or decreased. For instance, when θ/π =​ −​0.125, Tc =​ 0 at α/β =​ 1 while 
Tc =​ 0.42Tcs at α/β =​ 1.5. For e.g. niobium, this yields a variation of 3.9 K by increasing the Rashba coefficient α 
by 50%. We highlight this behavior in Fig. 3, where Tc is plotted against the spin-orbit coupling ratio α/β for a 
fixed magnetization orientation. Moreover, we show in Fig. 3 the large change in Tc that occurs when altering the 
in-plane magnetization orientation θ for a fixed α/β.

Let us now interpret the numerical findings in terms of the previous analytical treatment. Although the 2DEG 
by itself has no intrinsic exchange field, rendering the distinction between short-ranged and long-ranged pairs 
more accurately described by the terminology “opposite and equal spin-pairing states relative the FI orientation”, 
we will continue to refer to f  as short-ranged pairs for brevity and easy comparison with the analytical treatment. 
When α →​ β and θ →​−​ π/4, the short-ranged triplet energy → +E iDA4 2 , resulting in a strong suppression of 
these triplet pairs. By closing the triplet proximity channel, this reduces the leakage of Cooper pairs from the 
superconductor, thus increasing the critical temperature of the structure. On the other hand, when α →​ β and  
θ →​+​ π/4, the energy →E , resulting in a minimal suppression of short-ranged triplets. This causes a larger 

Figure 2.  Critical temperature results. (a–c) Critical temperature normalized by the bulk value Tc/Tcs (colors) 
as a function of the in-plane magnetization angle θ/π (horizontal axis) and spin-orbit ratio α/β (vertical 
axis). We have used the parameters (a) β =​ 1, GT/G =​ 0.2, (b) β =​ 5, GT/G =​ 0.2, and (c) β =​ 5, GT/G =​ 0.3. 
(d) Variation [Tc(α/β) −​ Tc(0.5)]/Tcs in the critical temperature as a function of α/β when θ/π =​ −​0.25. The 
different curves correspond to the systems used in (a–c). For other magnetization angles |θ/π| ≠​ 0.25, the 
variation of Tc with α/β is non-monotonic since such orientations allow for long-range triplet generation.

Figure 3.  Critical temperature highlights. Normalized critical temperature Tc/Tcs as function of the spin-
orbit coupling ratio α/β (blue line, θ/π = −0.125), and as function of the in-plane magnetization θ (red line, 
α/β = 1.5). The other parameters are the same as in Fig. 2.
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leakage from the superconductor, and decreases the critical temperature. This leading-order analysis of the physics 
is in accordance with the numerical results in Fig. 2, as is reasonable since the weak proximity effect described by 
the linearized equations is expected to be a good approximation for T ≅​ Tc.

Discussion
In the quasiclassical theory used to compute the critical temperature, one assumes that the thickness of the layer 
exceeds the Fermi wavelength. This criterion is not satisfied in a 2DEG, which means that phenomena such as 
weak localization/antilocalization cannot be described by quasiclassical theory. However, the coupling mecha-
nism governing the appearance of a superconducting triplet proximity channel in the system is not expected to 
change because of this and hence our results should remain qualitatively valid even in this scenario. Moreover, we 
have considered the diffusive limit of transport which is of relevance for the in-plane motion, whereas the 2DEG 
thickness is much smaller than the mean free path. There is nevertheless scattering at the multiple interfaces of 
our structure which is expected to enhance the effective diffusive character of quasiparticle motion considered in 
our model. 2DEGs can also feature a rather strong spin-orbit interaction, in which case corrections to the Usadel 
equation have been examined63. It could also be of interest to go beyond quasiclassical theory to study Tc and 
other proximity effects in this kind of system64, although this is beyond the scope of the present work.

Semiconductors such as GaAs and InAs are known to provide both an intrinsic Dresselhaus coupling and an 
electrically tunable Rashba coupling48–50. By combining such 2DEG materials with a superconductor and a ferro-
magnetic insulator, we have shown both analytically and numerically that Tc responds to changes in both electric 
and magnetic fields, either individually or combined. It should therefore be possible to create a device that can 
function as a superconducting transistor, superconducting spin-valve, or both, depending on whether electric or 
magnetic stimuli are used as the input signal.

Methods
Diffusion equation.  In the diffusive and quasiclassical limit, we can describe the structures discussed herein 
with the Usadel diffusion equation15,16,52

τ∇ ∇ = + ∆ +˜ ˆ ˜ ˆ ˆ ˆ ˆ ˆiD g g h g( ) [ , ], (7)z

where ĝ  is the retarded quasiclassical propagator in Nambu ⊗​ Spin space, τ̂z is the third Pauli matrix in Nambu 
space,  is the quasiparticle energy of the electrons and holes, ∆ = + ∆ − ∆ + ∆ − ∆ˆ ⁎ ⁎antidiag( , , , ), Δ​ is the 
superconducting gap, σ σ= ⋅ˆ ⁎hh diag( , ), h is the ferromagnetic exchange field, σ is the Pauli vector in spin 
space, and D is the diffusion coefficient. The notation ∇ ⋅ = ∇ ⋅ − ⋅ˆ˜ Ai( ) ( ) [ , ] is used for the gauge covariant 
derivative, where = −ˆ ⁎A A Adiag( , ) is a background field that accounts for spin-orbit coupling. In this paper, we 
assume that we have a thin-film structure oriented along the z-axis so ∇​ →​ ∂​z. We assume the exchange field and 
Rashba–Dresselhaus coupling are both confined to the xy-plane, so they can be parametrized as

θ θ= +h e eh(cos sin ), (8)x y

βσ ασ ασ βσ= − + − .A e e( ) ( ) (9)x y x x y y

Note that it is the orientation of the spin-orbit field A that defines the x- and y-axes of our coordinate system, 
since the Dresselhaus spin-orbit coupling is determined by the crystal structure. Thus, the magnetic orientation 
is measured relative to the crystal structure.

Numerically, solving directly for the propagator ĝ  is impractical for two reasons. Firstly, the elements of ĝ  are 
unbounded, and can be arbitrarily large complex numbers. Secondly, the propagator satisfies a normalization 
condition and particle-hole symmetry which reduces the number of degrees of freedoms, such that solving for 
each individual matrix element in ĝ  would be redundant. Because of this, we have used the so-called Riccati par-
ametrization of the propagators in the numerical simulations61:

γγ γ
γ γγ

=


 −








+

+








 

ˆ ˜ ˜g N
N

N
N

0
0

1 2
2 1

,
(10)

where the Riccati parameters γ and γ


 are 2 ×​ 2 matrices in spin space which are related by tilde-conjugation 
γ ε γ ε+ = −


⁎( ) ( ), and the normalization matrices are defined by γγ≡ − −


N (1 ) 1. For an in-plane spin-orbit 
interaction, eq. (7) parametrizes as

σ σγ γ γ γ γ σ γ σ γ γ γ

γ γ γ γ γ γ

∂ + ∂ ∂ = − ∆ + ∆ + ⋅ −

+ − + + +





˜

˜

⁎ ⁎

⁎ ⁎ ⁎ ⁎

h

AA A A A A A A

iD N

iD N

[ 2( ) ( )] 2 ( )

[ 2( ) ( )], (11)

z z z y y
2 

which is the form we use numerically. For more information about the derivation and interpretation of the above, 
see ref. 52.

Gap equation.  Before we can calculate the critical temperature of a material, we require not only a way to 
calculate the propagator ĝ , but also a way to dynamically update the superconducting gap Δ​ based on the calcu-
lated propagators. This gap equation can be written52
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 


∫λ
π

∆ =





∆ 




λ∆
z f z

e T T
( ) d Re[ ( , )]tanh

2
/
/

,
(12)s c

s

cs0

cosh(1/ )
0s0

where λ is a dimensionless coupling constant, fs the singlet component of the anomalous propagator, Δ​0s the 
zero-temperature gap of a bulk superconductor, Tcs the critical temperature of a bulk superconductor, and c the 
Euler–Mascheroni constant. In terms of the Riccati parametrization, fs =​ [Nγ]12 −​ [Nγ]21, where the subscript 
notation refers to individual matrix elements.

Boundary conditions.  Since our purpose is to model a system where the superconductivity, ferromagne-
tism, and spin-orbit coupling originate from different thin-film layers, we need boundary conditions that connect 
the propagators of these materials at the interfaces. Numerically, we focused on S/FI/N structures, in which case 
the ferromagnetic insulator itself is modelled as a strongly polarized spin-active interface. We have used the 
low-transparency limit of the general spin-active boundary conditions derived in ref. 53,

= + + − ϕ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆI G g g G g mg m G g g m iG g m2 [ , ] [ , ] [ , { , }] [ , ], (13)L T L R 1 L R MR L R L

where ÎL is the 4 ×​ 4 matrix current on the left side of the interface, GT is the tunneling conductance of the inter-
face, G1 describes the interfacial depairing, GMR describes the magnetoresistance, Gϕ describes the spin-mixing, 

σ σ= ⋅ˆ ⁎mm diag( , ), m is a unit vector that describes the interface magnetization, and ĝ L and ĝ R describes the 
propagators on the left and right side of the interface, respectively. An equivalent equation for the other side  
of the interface can be found by letting → −ˆ ˆI IL R and L ↔​ R in the equation above. Assuming that all the  
interface scattering have the same polarization P, it can be shown that = + −/[ ]G G P P/ 1 1MR T

2  and 
= − − + −[ ]/[ ]G G P P/ 1 1 /1 11 T

2 2 , so we can calculate G1 and GMR directly from the interface 
polarization.

The matrix current is related to the propagators at the interface by = ∇ˆ ˆ ˜ ˆI GL g g( ) where G is the normal-state 
conductance and L the length of the material. It can then be shown that the Riccati parameters must satisfy the 
boundary condition

γ γ∂ = −−GLN I I(2 ) ( ), (14)z
1

12 11

where I12 and I11 refers to the top-right and top-left 2 ×​ 2 blocks of the 4 ×​ 4 matrix current Î . In this equation, the 
matrix current Î  should be interpreted as either ÎL or ÎR, depending on which side of the interface the boundary 
conditions should describe.

Critical temperature.  The critical temperature can be defined as the temperature Tc such that the supercon-
ducting gap Δ​ =​ 0 if and only if T ≥​ Tc. However, in practice, we cannot expect to obtain the exact result Δ​ =​ 0 in 
simulations due to inexact numerical methods and random floating-point errors. For numerical simulations, we 
therefore use a more relaxed criterion |Δ​| <​ δ to define the critical temperature Tc, where we have set δ =​ 10−5Δ​0s,  
and Δ​0s is the zero-temperature gap of a bulk superconductor. See the solid black curve in Fig. 4 for a sketch of 
how Δ​(T) typically behaves, and how this is related to the critical temperature Tc.

Conceptually, the simplest way to find this critical temperature is to explicitly calculate the superconducting 
gap Δ​ as a function of temperature T, and check directly at which temperature we first find |Δ​| <​ δ. However, 
such a linear search can be very costly when a high accuracy is desired. For instance, to determine the critical 
temperature to a precision of 0.0001Tcs, where Tcs is the critical temperature of a bulk superconductor, this would 
require that Δ​(T) be calculated for 10,000 different values of T. For each of these temperatures, we need to solve a 
set of nonlinear diffusion equations for 150 positions and 800 energies, and repeat this procedure in one material 

Figure 4.  Sketch of the superconducting gap Δ as a function of temperature T for a superconducting 
hybrid structure. When performing a binary search for the critical temperature, we check whether Δ​ >​ δ at a 
certain number of temperatures–in other words, whether the black solid line is above the red dashed line. The 
numbered markers show which points on the curve would be evaluated during the first five bisections of such a 
binary search, and in what order. Note that since the algorithm is actually looking for the intersection between 
the black solid curve and red dashed curve, we need δ ≪​ Δ​0s to obtain accurate results.
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of the hybrid structure at a time until a selfconsistent solution is found. Thus, the calculation at each of these 
10,000 temperatures can in some cases take hours, making this method quite inefficient.

We have instead used a much more efficient binary search algorithm to determine the critical temperature 
numerically. The main benefit of this algorithm is that after calculating Δ​(T) for N particular values of T, we 
can determine the critical temperature to a precision Tcs/2N+1. So in contrast to the linear search algorithm, an 
accuracy of around 0.0001Tcs would require calculations at 12 temperatures instead of 10,000. Furthermore, we 
do not actually need to calculate Δ​(T) exactly at these temperatures–it is sufficient to check whether |Δ​| <​ δ or  
|Δ​| >​ δ to determine whether T >​ Tc or T <​ Tc. Thus, at each of these 12 temperatures, we only have to initialize 
the entire system to a BCS superconducting state with Δ​ =​ δ, then solve the Usadel equation and gap equation a 
fixed number of times in each material, and finally check whether |Δ​| <​ δ or |Δ​| >​ δ to determine whether T is an 
upper or lower bound on Tc. How the binary search algorithm converges is illustrated in Figs 4 and 5.
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Whereas considerable evidence exists for the conversion of singlet Cooper pairs into triplet Cooper pairs in
the presence of inhomogeneous magnetic fields, recent theoretical proposals have suggested an alternative way
to exert control over triplet generation: intrinsic spin-orbit coupling in a homogeneous ferromagnet coupled to a
superconductor. Here, we proximity couple Nb to an asymmetric Pt/Co/Pt trilayer, which acts as an effective
spin-orbit-coupled ferromagnet owing to structural inversion asymmetry. Unconventional modulation of the
superconducting critical temperature as a function of in-plane and out-of-plane applied magnetic fields suggests
the presence of triplets that can be controlled by the magnetic orientation of a single homogeneous ferromagnet.
Our studies demonstrate an active role of spin-orbit coupling in controlling the triplets, an important step towards
the realization of novel superconducting spintronic devices.

DOI: 10.1103/PhysRevB.97.184521

I. INTRODUCTION

Conventional superconductivity emerges from an attractive
pairing of spin-up and spin-down electrons, whereas ferromag-
netism arises due to an imbalance in the number of spin-up
and spin-down electrons. In superconductor/ferromagnet (S/F)
proximity structures, the competing nature of these two orders
is the source of rich physics [1,2]. For example, the two elec-
trons in a conventional Cooper pair enter different spin bands
upon transmission into an adjacent F layer, resulting in a finite
center-of-mass momentum. This causes a weak oscillatory
dependence of the superconducting transition temperature Tc,
which is superimposed on the monotonic Tc suppression due
to increasing F layer thickness [3,4]. In more complex F/S/F
trilayers, Tc is higher when the F moments are antiparallel than
when they are parallel [1,5–7], arising from the higher net pair-
breaking exchange field in the parallel state. This spin-switch
effect allows an active control of Tc using magnetic states.

In contrast, S/F/F and F/S/F systems have recently shown
an enhancement in the proximity effect between the S and
F layers [8–11] for noncollinear F-moment alignments. This
unusual proximity effect results from conventional spin-zero
singlet Cooper pairs being transformed into spin-one triplet
pairs. These long-range triplets (LRTs) consist of electrons
from the same spin band and are therefore immune to a
pair-breaking exchange field in F oriented along the spin polar-
ization of the Cooper pairs, enhancing the coupling between
the layers. The increased coupling makes superconductivity
spread across the whole system, reducing Tc by up to 120–
400 mK [8,10,12]. Although the control of superconductivity
by modulating magnetic states is attractive for applications in
superconducting spintronics [13–17], precisely controlling the

*Corresponding author: N.Banerjee@lboro.ac.uk
†Corresponding author: jacob.linder@ntnu.no

angle between the magnetic layers is difficult [8–10,17–19].
Practical applications require a simplified structure with fewer
interfaces to minimize spin scattering, motivating the explo-
ration of alternative mechanisms for triplet generation. Theo-
retical studies [20–27] predict that spin-orbit coupling (SOC)
in S/F bilayers can produce an anisotropic depairing effect on
triplets. The Cooper pair spin direction being determined by
the F layer moment then implies that in an S/F bilayer with
SOC, triplets can be controlled by the magnetization direction
of a single homogeneous magnet [25]. In this paper, we report
measurements on Nb/Pt(x)/Co/Pt proximity structures, where
the structural inversion asymmetry gives rise to a Rashba
coupling for x > 0 [28,29]. We compare the Tc(H ) behavior
between samples with and without SOC to demonstrate the
role of a triplet proximity effect in the former and confirm
the prediction that Tc can be controlled by rotating a single
homogeneous magnetic layer in SOC systems.

The structure of this paper is as follows. We start by giving
a brief theoretical discussion of the proposed mechanism in
Sec. II, which serves to motivate the experiment. In Sec. III,
we then describe the experimental setup and measurements,
demonstrating a spin-valve effect with only one homogeneous
ferromagnet. These results are then compared to numerical
simulations based on the Usadel equation in Sec. IV and further
interpreted and discussed in Sec. V.

II. THEORY

In the quasiclassical and diffusive limits, superconductivity
is well described by the so-called Usadel diffusion equa-
tion [30]. Near the critical temperature Tc, the superconducting
pair amplitudes go to zero, meaning that the diffusion equation
can be linearized with respect to pair amplitudes near this tran-
sition. In materials with superconductivity, ferromagnetism,
and spin-orbit coupling, the linearized diffusion equations

2469-9950/2018/97(18)/184521(8) 184521-1 ©2018 American Physical Society



N. BANERJEE et al. PHYSICAL REVIEW B 97, 184521 (2018)

are [25]

iD ∇2fs = εfs + h f t − �, (1)

iD ∇2 f t = ε f t + hfs + 2iD � f t , (2)

where fs is the singlet pair amplitude, f t is the triplet pair
amplitude, D is the diffusion coefficient, ε is the quasiparticle
energy, � is the superconducting gap, h is the exchange field,
and � is a 3 × 3 matrix that describes the effects of the spin-
orbit coupling.

From these equations alone, we can understand a lot about
the system behavior. When the superconducting gap � is
nonzero, Eq. (1) implies that there has to be singlet pairs fs

in the system as well. Indeed, it is precisely these singlet pairs
that form the superconducting condensate of a conventional
superconductor like Nb in the first place. Next, in the presence
of an exchange field h, some of these singlets fs are converted
into triplets f t according to Eq. (2). Note that the direction
of the triplet vector f t parametrizes the spins of the pair,
and f t is proportional to the conventional d vector [23]. The
triplets generated here are oriented along the exchange field
( f t ‖ h) and are known as short-range triplets (SRTs) in the
literature since they are exposed to the pair-breaking effects of
the exchange field. Finally, Eq. (2) shows that the triplet pairs
are then affected by the spin-orbit matrix �. Depending on the
structure of this matrix, the triplet pairs can either be rotated
into LRTs or just be suppressed by the pair-breaking effect of
the spin-orbit coupling.

For a Rashba coupling in the xy plane, i.e., broken inversion
symmetry along the z axis, � becomes diagonal [25],

� = α2

⎛
⎝1 0 0

0 1 0
0 0 2

⎞
⎠, (3)

where α is the Rashba coefficient. The fact that this matrix
is diagonal implies that the spin-orbit coupling does not
facilitate any conversion between SRTs and LRTs. Note that
this is different from the case of both Rashba and Dresselhaus
couplings and also different from the nonlinear equations
(required when T � Tc). The spin-orbit coupling shifts the
effective energies of the in-plane (IP) triplets fx,fy by 2iDα2

and of the out-of-plane (OOP) triplets fz by 4iDα2. This
energy penalty is twice as large for OOP compared to IP
triplets, and since the triplets are again oriented along the
exchange field h, we note that the triplet energy penalty can
effectively be adjusted by rotating the exchange field.

To make this manifest, let us parametrize the exchange field

h = h (cos θ ex + sin θ ez), (4)

with θ being a parameter that rotates the field from IP to OOP.
We can then project Eqs. (1) and (2) along the exchange field,
obtaining the scalar diffusion equations

iD ∇2fs = εfs + hft − �, (5)

iD ∇2ft = Etft + hfs, (6)

where we have defined the effective triplet energy

Et (θ ) = ε + iDα2(3 − cos 2θ ). (7)

This effective energy rotates between ε + 2iDα2 and ε +
4iDα2 depending on the magnetization angle θ . But we again
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FIG. 1. Magnetization M as a function of the applied field H for
(a) Nb(24)/Co(1.5)/Pt(1.5) and (b) Nb(24)/Pt(2.0)/Co(1.5)/Pt(1.5).
The blue and red points show the results for IP and OOP applied
fields, respectively. The insets show the stack sequence.

note that the origin of this magnetic field dependence is that the
spin-orbit coupling suppresses triplets oriented OOP more than
triplets oriented IP; the magnetic field dependence appears only
because the magnetic field controls what triplets we generate.

This magnetically tunable energy penalty lies at the core of
the Tc control discussed in this paper. By increasing the triplet
energy Et , we can directly suppress the triplet amplitude in the
effective ferromagnet, thus closing the triplet proximity chan-
nel. Because this implies that fewer pairs will leak out of the
superconductor, the singlet amplitude in the superconductor
goes up, and this restores Tc to higher levels.

Note that the spin-valve effect, i.e., the variation of the
critical temperature Tc with the magnetization direction θ , is
not a monotonic function of the spin-orbit coupling α. If α

is very low, then neither energy penalty, 2iDα2 or 4iDα2,
is high enough to significantly suppress triplets, and Tc is
low for all magnetic configurations. However, if α is very
high, then both energy penalties are high enough to strongly
suppress triplets, and Tc is high for all magnetic configurations.
It is for intermediate values of α that the spin-valve effect is
maximized.

III. EXPERIMENT

The thin-film stacks were deposited by dc magnetron
sputtering in an ultrahigh vacuum chamber onto unheated
oxidized Si(100) substrates placed on a rotating table. The
substrates passed under magnetrons whose power and the ro-
tation speed of the substrate table were adjusted to control the
layer thicknesses (thicknesses are in nanometers in parentheses
below). The Pt and Co layer thicknesses were adjusted to tune
the IP and OOP magnetic anisotropy, allowing control over the
angle between the magnetization and sample plane by applying
moderate magnetic fields, and so control the effectiveness of
the singlet/triplet conversion. During deposition, the chamber
was cooled by a liquid-nitrogen jacket to achieve a pressure
below 3 × 10−7 Pa. The layers were sputtered in 1.5-Pa Ar.
Control samples of Nb/Pt and Nb/Co/Pt, as well as samples
with varying Pt and Nb thickness, were also deposited. Fig-
ures 1(a) and 1(b) show magnetization M vs applied field H

for Nb(24)/Co(1.5)/Pt(1.5) and Nb(24)/Pt(2)/Co(1.5)/Pt(1.5),
which was measured at 10 K using a superconducting quantum
interference device magnetometer. The blue and red points,
respectively, represent the magnetic field applied in the IP and
OOP directions. While for the Nb/Co/Pt stack the magneti-
zation preferentially lies IP [Fig. 1(a)], insertion of a 2-nm

184521-2
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FIG. 2. Superconducting transition temperature Tc plotted against the applied field H for (a) and (d) Nb(24)/Pt(2), (b) and (e)
Nb(24)/Co(1.5)/Pt(1.5), and (c) and (f) Nb(24)/Pt(2)/Co(1.5)/Pt(1.5). The rows correspond to (a)–(c) IP and (d)–(f) OOP applied fields. The
insets in (c) and (f) show the Tc vs H plot for IP and OOP applied fields for Nb(18)/Pt(2)/Co(1.5)/Pt(1.5) with a thinner Nb layer, respectively.

Pt layer at the Nb/Co interface [Fig. 1(b)] results in a clear
hysteretic switching for IP and OOP applied fields. This allows
us to control the magnetization tilt with respect to the film
plane using moderate magnetic fields. Perpendicular magnetic
anisotropy in Pt/Co systems [31,32] is generally attributed to an
enhancement in the perpendicular Co orbital moment resulting
from a Pt(5d)-Co(3d) hybridization. The OOP anisotropy is
inversely proportional to the Co layer thickness [33], and
a 1.5-nm Co layer allows us to control the tilt using low
magnetic fields. Transport measurements were performed on
unpatterned samples in the range of 3–8 K using the four-point
resistance measurement technique in a pulsed-tube cryocooler.
The critical temperature Tc was defined as the temperature
corresponding to 50% of the resistive transition. A constant
bias current of 5 μA was used. The magnetic field was applied
by starting at zero and ramping it up in 5–10-mT steps, and
each Tc measurement was carried out in constant field. The
maximum transition width was ∼180 mK.

Figure 2 shows Tc(H ) for the three different samples. For
most of the samples there is an apparent difference between
Tc(0) for IP and OOP measurements likely arising due to the
different relative positions of the sample holders with respect to
the temperature sensor. Several measurements from the same
sample show that this difference in Tc(0) is random and field
independent and does not affect the overall trends of the Tc(H )
curve. This possibly arises due to minor differences in steady-
state gas-flow conditions between each cooling cycle.

Figures 2(a) and 2(b) show Tc(H ) for a Nb(24)/Pt(2) bilayer
and Nb(24)/Co(1.5)/Pt(1.5) trilayer in an IP field. Except for
∼15 mK background noise, we find that Tc remains roughly
constant up to H = 120 mT. Figure 2(c) shows correspond-
ing measurements for the Nb(24)/Pt(2)/Co(1.5)/Pt(1.5) stack.
Strikingly, we find a rapid 40 mK suppression of the critical

temperature between 0 and 100 mT. The full data range
for all three samples shows that the Tc suppression below
100 mT for Nb(24)/Pt(2)/Co(1.5)/Pt(1.5) is comparable to the
Tc suppression for the other two structures for the entire field
range up to 500 mT (data not shown). While the net constant
field-induced Tc suppression of ∼60 mK until 500 mT for
all the structures can be explained by a weak field-induced
depairing for 24-nm-thick Nb films, the explanation for the
Tc suppression by 40 mK at low fields for the structure with
an additional Pt interlayer is not straightforward. From the
systematic layer sequences, it is clear that the extra Pt layer
between Nb and Co plays a role. For the OOP fields [Figs. 2(d)–
2(f)], all samples show a pronounced Tc suppression due to the
strong orbital depairing from the applied field.

Before attempting to explain our results in terms of SOC-
induced control of triplets, we rule out two other possibilities.
First, domain-wall-induced suppression of superconductivity
can be ruled out since at higher fields elimination of domain
walls should restore superconductivity. This is in sharp contrast
to Fig. 2(c), where superconductivity is suppressed at larger IP
fields. Second, we quantify the flux-induced Tc modulation
which arises from the OOP magnetization of Co-containing
samples [Figs. 2(e) and 2(f)]; for the Nb/Pt sample there is
no magnetic moment, so the suppression shown in Fig. 2(d)
must originate purely from the orbital depairing effect. The
Co layer in the Nb/Co/Pt sample has an IP anisotropy with an
OOP saturation field of∼120 mT [Fig. 1(a)]; the corresponding
Tc plot [Fig. 2(e)] shows a rapid Tc suppression in the field
range below this value, which can be partially explained by
the magnetization-induced flux density being drawn OOP
and added to the applied field. A similar effect would be
expected for the Nb/Pt/Co/Pt sample, albeit with a lower
saturation field reflecting the OOP anisotropy [Fig. 1(b)];
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in fact, the low-field suppression of Tc is lower than that
for the Nb/Co/Pt sample, implying that a different, partially
compensating, Tc-modulating effect must be at work. This
behavior is more pronounced for Nb/Pt/Co/Pt containing a
thinner 18-nm Nb [Fig. 2(f), inset]. The OOP Tc suppression
is expected to be significantly larger for the following reason:
in superconducting thin films, we can use Ginzburg-Landau
theory to understand the magnetic field dependence of the
critical temperature Tc [34]. In a perpendicular field, the upper
critical Hc(T ) is found from

dHc

dT
= − �0

2πTc0ξ
2
0

, (8)

where ξ0 is the zero-temperature Ginzburg-Landau coherence
length and �0 = h/2e is the flux quantum. Integrating this
from zero critical field (Hc = 0, T = Tc0) to a finite field
(Hc = H⊥,T = Tc < Tc0), we find that the critical temperature
reduction �Tc = Tc − Tc0 due to orbital depairing follows

�Tc

Tc0
= −2πξ 2

0

�0
H⊥. (9)

Thus, the Tc variation with the field H⊥ should depend only on
the coherence length ξ0. Fitting the observations for Nb(24)/Pt
and Nb(20)/Pt and extrapolating linearly to Nb(18)/Pt, we get
an estimated ξ0 ≈ 15.5 nm for 18-nm Nb. We therefore expect
�Tc ≈ 406 mK for Nb(18)/Pt/Co/Pt with H⊥ = 120 mT.

Note that the equation above ignores the additional flux
injection from Co due to the magnetization rotation. To
estimate a lower bound for this flux, we can rewrite Eq. (9) with
the effective magnetic field H⊥ = Hext + Hint, where Hext is
the external applied field and Hint is the internal contribution
from the Co layer. Solving the resulting equation for Hint, we
get

Hint = Hext − �0

2πξ 2
0

�Tc

Tc0
. (10)

Using the experimental �Tc for the Nb(24)/Co/Pt sample and
Hext = 120 mT, we estimate Hint ≈ 52 mT, yielding a total
field H⊥ ≈ 172 mT. Applying an effective field H⊥ = 172 mT
to Nb(18)/Pt/Co/Pt, we then estimate �Tc ≈ 581 mK, while
the measured value was 380 mK. We note that the estimated
value here gives us only a lower bound since Nb(18)/Pt/Co/Pt
is expected to have a larger flux injection from the Co layer than
Nb/Co/Pt due to the increased OOP anisotropy of the sample.
A similar calculation for Nb(24)/Pt/Co/Pt gives an estimated
�Tc ≈ 420 mK, while the measured value was 270 mK.

Taking the difference between the estimated and measured
values above, we can attribute a critical temperature change of
201 mK to proximity effects in Nb(18)/Pt/Co/Pt, compared to
150 mK for Nb(24)/Pt/Co/Pt. This shows that the spin-valve
effect increases significantly for thinner Nb layers.

The role of an unconventional proximity effect in the
Nb/Pt/Co/Pt sample is further strengthened by the IP Tc data in
Figs. 2(a)–2(c). The data in Fig. 2(a) without a magnetic layer
demonstrate small orbital depairing in the IP configuration,
resulting in �Tc < 15 mK for H < 120 mT. Similar behavior
is observed for the Nb/Co/Pt sample [Fig. 2(b)], for which
the IP anisotropy means that an IP field does not modify
the magnetic moment. In contrast, the Nb/Pt/Co/Pt sample
shows a decrease in Tc of 50 mK in the same range; if this

Tc modulation arose from field-induced changes to the flux
injection from the Co layer, Tc should have increased as the
OOP magnetization decreased. Similar behavior is observed
for thinner Nb: Tc remains roughly constant at low IP fields
for a Nb(20)/Pt(2) bilayer but is suppressed by 90 mK for
Nb(18)/Pt(2)/Co(1.5)/Pt(1.5) [Fig. 2(c), inset]. Changes aris-
ing from anisotropic interface magnetoresistance in Pt/Co/Pt
structures [35,36] can be ruled out as the resistance changes
would be an order of magnitude smaller than here. To summa-
rize, while the Nb/Pt and Nb/Co/Pt results can be qualitatively
explained in terms of flux and field-induced orbital depairing,
the Nb/Pt/Co/Pt behavior is distinctly different, and a rapid
low-field Tc suppression is induced for the IP field which tends
to align the Co magnetization parallel to the Nb plane.

The key to understanding our results is that the proximity
effect in S/F systems with a single homogeneous F layer cannot
be controlled by changing the magnetization angle with respect
to the film plane (after subtracting the effect of flux injection
from the F layer). In S/F/F′ systems, noncollinear F and F′
layer moments generate LRTs, which enhance the proximity
coupling between S and F and so decrease Tc. However, in
our inversion asymmetric Pt/Co/Pt trilayers, we have both a
magnetic field h and a Rashba coupling α in the system. As
shown in Sec. II, this setup admits a spin-valve mechanism
whereby superconductivity can be toggled on and off using
the orientation of a single homogeneous magnetic layer.

IV. NUMERICS

We have modeled our results using the Usadel formalism,
where we treat the Pt/Co/Pt trilayer as an effective diffusive
ferromagnet with an intrinsic Rashba coupling. This approach
has two advantages: first, scattering at Pt/Co interfaces allows
us to use a diffusive model without knowing the microscopic
details of the interface; second, the exchange splitting of the
Co layer is now averaged out over a larger volume, allowing
us to use a quasiclassical approach. Below, we first summarize
the numerical results and then discuss the fitting procedure.

The results of the numerical simulations are shown
in Fig. 3 along with a comparison with the experi-
mental results. The difference �Tc is calculated between
Nb(24)/Pt(2)/Co(1.5)/Pt(1.5) and Nb(24)/Co(1.5)/Pt(1.5) for
IP and OOP fields. The experimental and numerically cal-
culated �Tc are shown for IP [Figs. 3(a) and 3(b)] and the
corresponding plots for OOP fields [Figs. 3(c) and 3(d)]. The
overall numerical trend [Figs. 3(b) and 3(d)] is in excellent
agreement with the experiments [Figs. 2(a) and 2(c)]. The
magnitude of �Tc from the simulation (∼22 mK) is 55% of
that of the experimental value of 40 mK. The lower simulated
values can arise due to a simplified model where we have
assumed an ideal interface and a simplified magnetic model.
In real systems, interdiffusion and interface roughness can
affect the magnitude of �Tc. The shaded regions indicate the
range of Tc variation in our model when the exchange field
rotation range by an external field is varied. The significance
of this range and the corresponding Tc variation is explained
below under the discussion on magnetization modeling. But
importantly, the difference �Tc has the right trend and order
of magnitude for both IP and OOP fields. We discuss the
underlying mechanism in detail in Sec. V.

184521-4



CONTROLLING THE SUPERCONDUCTING TRANSITION BY … PHYSICAL REVIEW B 97, 184521 (2018)

FIG. 3. Critical temperature difference �Tc calculated between
Nb(24)/Pt(2)/Co(1.5)/Pt(1.5) and Nb(24)/Co(1.5)/Pt(1.5) as a func-
tion of the applied IP and OOP fields H . The top row shows the
(a) experimental and (b) simulated �Tc for IP fields. The correspond-
ing OOP (c) experimental and (d) simulated �Tc are shown in the
bottom row. The solid curves in (b) and (d) show the exchange field
components for a rotation angle δθ = 30◦, while the shaded regions
correspond to δθ ∈ [25◦,35◦].

We have also compared the critical temperature difference
�Tc between Nb/Pt/Co/Pt and Nb/Co/Pt for different Pt inter-
layer thicknesses, which is discussed in more detail in Sec. V.

For the numerical calculations of the critical temperature,
we solved the full nonlinear diffusion equations [25],

iD∇̃(ĝ∇̃ĝ) = [ετ̂z + �̂ + ĥ + κ̂ , ĝ], (11)

where ĝ is the 4 × 4 retarded quasiclassical propagator and
∇̃(·) = ∇(·) − i[ Â,·] is a gauge-covariant derivative that ac-
counts for spin-orbit coupling. The other matrices are

τ̂z = diag(+1,+1,−1,−1), (12)

�̂ = antidiag(+�,−�,+�∗,−�∗), (13)

ĥ = diag(hσ ,hσ ∗), (14)

Â = diag(A, − A∗), (15)

κ̂ = iκτ̂zĝτ̂z. (16)

Here, � is the superconducting gap, h is the exchange field,
σ is the Pauli vector, A = α(σx ey − σy ex) is the spin-orbit
field [25], and κ is a parameter that accounts for the orbital
depairing [37]. To get rid of the diffusion coefficient in Eq. (11),
we used the diffusive coherence length ξ ≡ √

D/�0 ≈ 14 nm.
Using the relation ξ ≈ √

ξ0
 for the coherence length, where
ξ0 ≈ 38 nm is the ballistic coherence length of Nb and 
 is the
mean free path of the sample, we find that this corresponds to a
reasonable estimate for the mean free path, 
 ≈ 5 nm [38,39].
The diffusion coefficient was assumed to the same in all
materials.

For the interface between the superconductor and effective
ferromagnet, we used the tunneling boundary conditions [40],

2G0LLĝL∂zĝL = 2G0LRĝR∂zĝR = GT [ĝL , ĝR], (17)

where G0 is the normal-state conductance of each material,
GT is the tunneling conductance of the interface, ĝL,R are
the propagators on the left and right sides of the interface,
respectively, and LL,R are the corresponding material lengths.
The tunnel conductance between the superconductor and
effective ferromagnets was determined by calculating the
critical temperature Tc/Tcs in the absence of an external field
and selecting the best possible values for the conductance
ratio GT /G0. We simultaneously tried to make sure that
the ratio between Tc for Nb/Co/Pt and Nb/Pt/Co/Pt was as
close to the experimental values as possible. Unfortunately, we
were unable to get a perfect quantitative fit using reasonable
parameters here, but using GT /G0 = 0.65 for Nb/Co/Pt and
GT /G0 = 0.85 for Nb/Pt/Co/Pt did provide a qualitative
match. Note that we assume the normal-state conductance G0

is the same in Nb and the [Pt]/Co/Pt heterostructure. In reality,
these two are different, and estimating an effective G0 for the
heterostructure from known parameters is not straightforward.
However, a difference in the normal-state conductances of the
materials simply decreases the proximity effect [2], and the
same happens if the tunneling conductance is decreased. Thus,
we may compensate for a conductance asymmetry by adjusting
GT accordingly, and since the tunneling conductance is already
treated as a fitting parameter, this happens automatically.

In order to self-consistently determine the superconducting
properties of a hybrid structure, we require not only equations
for the propagator ĝ but also an accompanying equation for the
superconducting gap �. This equation can be written as [25]

� = 1

ln(2ωc/�0)

∫ ωc

0
dε Re[fs] tanh

(
π

2eγ

ε/�0

T/Tcs

)
, (18)

whereωc is the Debye cutoff energy, �0 is the zero-temperature
gap of a bulk superconductor, Tcs is the critical temperature of a
bulk superconductor, and γ is the Euler-Mascheroni constant.
We used ωc = 30�0 in our simulations, and for Nb the relevant
material constants are �0 ≈ 1.4 meV and Tcs ≈ 9.2 K. In the
numerical implementation, we use a Riccati parametrization
for the propagator ĝ and employ a kind of binary search
algorithm for the calculation of the critical temperature Tc.
For more details about this numerical procedure, see Ref. [41].

The magnetization was modeled as follows. The measured
magnetization was found to roughly follow the profile

M = M0 + δM tanh(H/H0), (19)

where M is the magnetization component along the applied
field H . This suggests that we model the exchange field as

hx/h0 = cos(θ0) + [cos(θ0 − δθ ) − cos(θ0)] tanh(H/H0)

(20)

in the case of an IP applied field H and

hz/h0 = sin(θ0) + [sin(θ0 + δθ ) − sin(θ0)] tanh(H/H0)

(21)

for an OOP applied field H . In both cases, we have assumed
that the exchange field remains in the xz plane, so that the
relation h2

x + h2
z = h2

0 can be used to find the other component.
Here, θ0 is interpreted as the angle that the exchange field
direction makes with the thin-film plane in the absence of
external fields, while δθ parametrizes the maximum exchange
field rotation that can be achieved using an external field. Based
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FIG. 4. Plot of the (a) IP and (b) OOP exchange field in our
numerical model as functions of the applied field H . The blue curves
correspond to an IP applied field, and the red curves correspond
to an OOP applied field. The solid curves show the exchange field
components for a rotation angle δθ = 30◦, while the shaded regions
correspond to δθ ∈ [25◦,35◦].

on the experimental measurements, we found the saturation
parameter H0 ≈ 100 mT to fit the data very well, but estimating
θ0 and δθ turned out to be difficult. We therefore fixed the first
parameter to θ0 = 45◦ and varied δθ ∈ [25◦,35◦] to see how
the results change since the critical temperature Tc is more
sensitive to variations in δθ than θ0. Finally, we assumed an av-
erage exchange field h0 = 100�0 ≈ 140 meV for the Pt/Co/Pt
heterostructure based on previously reported values of 300
meV for Co [42]. Using the model above, we plot the resulting
exchange field h as a function of the applied field H in Fig. 4.

Next, we discuss the orbital depairing effect. For thin-
film systems, the depairing effect usually causes the critical
temperature to decrease linearly with the applied field when the
external field is applied OOP and quadratically when the exter-
nal field is applied IP [43]. These two cases correspond to the
depairing parameters κ = �0(H/Hc) and κ = �0(H/Hc)2,
respectively, where Hc is a critical field for which Tc → 0
in the absence of proximity effects. From the experimental
results, we see that for an OOP case we do get a linear decrease
in Tc as expected. By fitting the critical temperature decay
Tc(H = 120 mT)/Tc(H = 0) that we get from the numerical
simulations to that in the Nb/Co/Pt experiment, we get an
estimate Hc ≈ 1.8 T for the critical field. For the Nb/Pt/Co/Pt
structure, we simply assumed that the orbital depairing effect
was the same as for Nb/Co/Pt. For the case of an IP applied
field, however, we see from the experiment that the orbital
depairing is negligible for H < 150 mT, and it was therefore
excluded from the IP models (i.e., Hc = ∞).

Finally, we estimated the Rashba coupling α ≈ 12 by fitting
the ratio Tc(H = 120 mT)/Tc(H = 0) for the Nb/Pt/Co/Pt
structures and selecting the value of α that produces the best
possible fits for both the IP and OOP cases. This is in units of
h̄2/mξ , where m is the electron mass and h̄ is Planck’s reduced
constant; restoring the units, we get α ≈ 6.5 × 10−11 eV m,
which is very close to previous experimental estimates. This
value is close to ∼5 × 10−12 eV m for asymmetric Pt/Co/Pt
structures estimated from Ref. [44]. The higher values in our
system could arise due to different Pt and Co thicknesses and
interfaces, which strongly influence the Rashba coupling [29].

V. DISCUSSION

In the previous section, a comparison of the experimental
results with the numerical calculation shows that the Tc
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FIG. 5. Critical temperature difference �Tc calculated between
Nb(24)/Co(1.5)/Pt(1.5) and Nb(24)/Pt(1.5) as a function of the
applied (a) IP and (b) OOP fields H .

suppression for OOP fields for Nb(24)/Co(1.5)/Pt(1.5) is
purely due to orbital effects. The Pt layer at the Nb/Co interface
in Nb/Pt/Co/Pt therefore plays an important role. This is most
strikingly evident in the �Tc between Nb/Co/Pt and Nb/Pt
(Fig. 5). The IP �Tc [Fig. 5(a)] remains constant (∼10 mK
fluctuation), whereas the OOP �Tc [Fig. 5(b)] decreases with
increasing applied field, in sharp contrast to Nb/Pt/Co/Pt
structures. This can easily be explained by equal negligible
orbital depairing for IP fields in both structures and increased
flux injection in Nb/Co/Pt for OOP fields which suppresses Tc

more rapidly for Nb/Co/Pt.
However, in Nb(24)/Pt(2)/Co(1.5)/Pt(1.5) there is a com-

pensating effect due to suppression of the spin-zero triplet
(SRT) generation resulting in an increasing �Tc with the
applied field. For IP fields with negligible orbital depairing,
�Tc decreases due to an enhancement of the proximity effect
in Nb(24)/Pt(2)/Co(1.5)/Pt(1.5) arising from an increased SRT
generation. To better understand the role of the Pt layer at
the Nb/Co interface, we have examined Tc variation with
the thickness of this layer. In Fig. 6, we plot �Tc between
Nb(24)/Pt(x)/Co(1.5)/Pt(1.5) and Nb(24)/Co(1.5)/Pt(1.5) for
x = 0.3 and x = 1 and the results of the numerical simulation
for these structures. While for IP fields �Tc is ∼15 mK for
0.3 nm [Fig. 6(a)], the 1-nm structure shows an ∼25 mK
drop superimposed on the noise [Fig. 6(b)]. The fitting process
described in Sec. IV has been repeated for Pt interlayers with
thicknesses of 0.3 and 1.0 nm, instead of the 2.0-nm interlayer
discussed above. The simulated�Tc values [Figs. 6(e) and 6(f)]
are in reasonable agreement with the experimental data. For
the 0.3-nm case, we found a reduced Rashba coupling α ≈ 9,
and the same tunneling conductance as for Nb/Co/Pt. For the
1.0-nm case, however, both these parameters were the same as
for the 2.0-nm case.

The �Tc trend with Pt thickness becomes clear when it
is compared with the M(H ) loops (Fig. 7) for these samples
measured at 10 K. With increasing Pt layer thickness from 0.3
to 1 nm, the magnetization gradually changes from fully IP
[Fig. 7(a)] with an OOP hard axis [Fig. 7(c)] to a clear hysteretic
switching for both IP and OOP [Figs. 7(b) and 7(d)]. This
develops further when the bottom Pt thickness is increased to 2
nm, as seen from Fig. 1. The corresponding IP field-dependent
Tc for 2-nm Pt shows a large change of ∼50 mK at low fields
[Fig. 2(c)].

The large change in low-field Tc appears only in the region
where the IP magnetization approaches saturation, beyond
which the Tc suppression is comparable for all the structures.
This indicates the active role played by the magnetization
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FIG. 6. Critical temperature difference �Tc between
Nb(24)/Pt(x)/Co(1.5)/Pt(1.5) and Nb(24)/Co(1.5)/Pt(1.5) as a
function of the applied field H . The columns correspond to x = 0.3
and x = 1.0. From top to bottom, the rows correspond to IP fields,
OOP fields, and numerical simulations.

angle in modulating Tc for structures showing a comparable
IP and OOP anisotropy in addition to the presence of a Pt
layer at the Nb/Co interface. �Tc for the OOP field [Figs. 6(c)
and 6(d)] increases with applied field, and similar to the
IP �Tc [Figs. 6(a) and 6(b)], the magnitude of this change
increases with thicker Pt layer at the Nb/Co interface. Our
measurements possibly underestimate the magnitude of the
SOC-induced change. This is because the increased OOP
magnetization with increasing x in Nb/Pt(x)/Co/Pt results in
more Co flux being directed into Nb. This reduces Tc as x

is increased, which can counteract some of the Tc increase
caused by the stronger SOC associated with increasing x.
This implies that even though we see a finite nonzero Tc for
OOP fields for x = 0.3 and x = 1.0, the actual SOC-induced
changes get progressively higher with increasing Pt thickness
to compensate for the increasing flux injection from OOP
magnetization. SOC introduces two competing effects: triplet
depairing due to imaginary terms in the effective energy and
LRT generation due to triplet mixing terms [25]. Numerically,
we found the energy penalty of the SRT is more important
than the LRT generation for the Tc modulation. We reiterate an
important point: SOC couples the magnetization with the SRT
energy, which is different from spin-relaxation effects induced
by SOC on superconductivity [38].

In S/F structures without SOC, the SRT energy is inde-
pendent of the magnetization state, and Tc is independent of
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FIG. 7. Magnetization M as a function of the applied field H . The
left column shows results for Nb/Pt(0.3)/Co/Pt, and the right column
shows results for Nb/Pt(1.0)/Co/Pt. The top row corresponds to IP
applied fields, and the bottom row corresponds to OOP applied fields.

the magnetization angle θ . However, in the presence of SOC
the SRT energy depends on Tc; with an increasing OOP field,
the “leakage” of the Cooper pairs through the triplet channel
is reduced, thereby increasing Tc (since the superconducting
gap directly depends on the singlet pair amplitude). As the
magnetization is made IP, the SRT generation is energetically
more favorable, thereby “draining” the superconductor of
Cooper pairs and reducing Tc. The triplet Cooper pairs are not
confined to the ferromagnetic region and are also expected to
exist in the Nb region near the interface. However, an explicit
demonstration of this would require, e.g., local scanning tunnel
microscope measurements, which is outside of the scope of the
present work. There is thus a qualitative difference between
the samples for which SOC is expected to be relevant and
those which simply have a magnetic layer whose magnetic
orientation controls the injected flux.

VI. CONCLUSION

The results reported here cannot be explained by conven-
tional S/F proximity theory without considering SOC. While
the superconducting spin valve with a single homogeneous fer-
romagnet demonstrated here drastically simplifies the control
of superconductivity, a natural progression involves structures
with combined Rashba and Dresselhaus coupling predicted to
control LRT [25]. Incorporating such structures in Josephson
junctions would allow the design of devices currently under
intense focus in superspintronics.
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Microwave control of the 
superconducting proximity effect 
and minigap in magnetic and 
normal metals
Jacob Linder, Morten Amundsen & Jabir Ali Ouassou

We demonstrate theoretically that microwave radiation applied to superconducting proximity 
structures controls the minigap and other spectral features in the density of states of normal and 
magnetic metals, respectively. Considering both a bilayer and Josephson junction geometry, we 
show that microwaves with frequency ω qualitatively alters the spectral properties of the system: 
inducing a series of resonances, controlling the minigap size Emg, and even replacing the minigap with 
a strong peak of quasiparticle accumulation at zero energy when ω = Emg. The interaction between 
light and Cooper pairs may thus open a route to active control of quantum coherent phenomena in 
superconducting proximity structures.

Combining materials with different properties is a certain way to generate exciting physics at their interface. 
Superconducting hybrid structures are particularly interesting in this regard due to the coherent quantum correla-
tions that give rise to dissipationless transport of both charge and, when combined with magnetic materials, spin. 
There is currently much interest in discovering ways to exert well-defined control the properties of such prox-
imity structures, including the electronic density of states, the critical temperature at which superconductivity  
arises, and the appearance of supercurrents1–3.

The influence of microwave radiation on superconductors has been studied in several works, and includes 
investigations of its effect on the critical superconducting current4, the dissipative conductivity5, the current-phase 
relation in Josephson junctions6,7, the non-equilibrium distribution of quasiparticles8, the photoelectric effect9, 
microwave-assisted supercurrents10, and the temperature for the onset of superconductivity11,12. The appearance 
of coherent excited states and the depairing effect of microwave radiation on dirty superconductors was very 
recently theoretically considered in ref. 13.

However, what remains virtually unexplored is how microwave radiation alters the superconducting proxim-
ity effect, which is the existence of superconducting correlations in an otherwise non-superconducting material 
when placed in contact with a superconductor, made possible due to electron tunneling between the layers. A 
concrete manifestation is the strong modification of the density of states, in both normal and magnetic metals 
proximity-coupled to a superconductor. The reason for why this is of importance is that proximity structures 
play a key part in creating non-conventional types of coherent electron pairing that are not present in ordi-
nary superconductors. This includes both spin-polarized triplet superconductivity14 and odd-frequency super-
conducting order15, which recently have been experimentally demonstrated to provide diametrically opposite 
Meissner response16 and low-energy spectral properties17,18 compared to Bardeen-Cooper-Schrieffer theory19. 
From another perspective, the opportunity to manipulate low-energy excitations in superconducting proximity 
structures has clear practical implications for cryogenic technology since it controls the availability of spin- and 
charge-carriers. In fact, quasiparticles in superconductors can become nearly chargeless spin-1/2 carriers, leading 
to effects such as20–24 strongly enhanced spin lifetimes and spin relaxation lengths when compared to injection of 
spin-polarized currents into normal metals, especially when using Zeeman split superconductors (a thin super-
conducting film in the presence of an in-plane magnetic field)25. This, in turn, allows one to envision various 
types of devices such as highly sensitive magneto- and thermometers as well as superconducting magnetoresistive 
elements.
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In this work, we show that shining light on superconducting hybrid structures offers a way to control the 
proximity effect in both normal metals and magnetic materials. We discover that an oscillating electric field (t)  
applied transversely to the junction induces a series of resonances in the density of states, and that it can be 
used to control the size of the minigap Emg in both bilayer superconductor/normal-metal (SN) and Josephson 
(SNS) junctions. The light interaction even inverts the minigap, generating a peak of quasiparticle accumula-
tion at E =​ 0 when the frequency of the light is tuned to ω​ =​ Emg. These findings give interesting prospects for 
transistor-like functionality via light-superconductor interactions since the density of states controls the availabil-
ity of charge- and spin-carriers. Providing both analytical and numerical results, including the case of a magnetic 
exchange-field being present in the metal or in the superconductor, we show how the interaction between light 
and Cooper pairs controls the low-energy density of states, offering a new way to manipulate superconducting 
correlations. This may open a new pathway to active control of quantum coherent phenomena in superconduct-
ing proximity structures.

Theory
We use the time-dependent quasiclassical Keldysh-Usadel theory26–29 to describe the superconductivity of these 
systems in the diffusive limit. We begin with the SN bilayer, in which case superconducting correlations leak into 
the normal metal via the proximity effect. The electric field (t) =ωA0 sin (ωt) =−∂A/∂t  is accounted for by the 
gauge field A =​ A0 cos(ω​t). The Usadel equation in N then reads:

∂ ∂ + 
 ρ + αρ + ρ 

 = .+ −ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆD g g E i g g g( ) i ( ) , 0 (1)x x 3 3 3

Here, D is the diffusion coefficient, =ˆ ˆg g x E( , ) is the quasiclassical time-averaged Green function, E is the 
quasiparticle energy, α = DA /40

2  is a measure of the strength of the interaction with light, ω​ is the driving fre-
quency, ρ = + + − −ˆ diag( 1, 1, 1, 1)3 , while ≡ ± ω±ˆ ˆg g x E( , /2). The derivation of this equation is shown in the 
Methods section and is valid when α ω . We assume that the field is screened in the S region, which is taken to 
have a size and thickness far exceeding the superconducting coherence length ξ​ and penetration depth λ​, allow-
ing us to use the bulk superconducting Green function ĝBCS there. Practically, our proposed setup could be real-
ized by depositing a thick superconductor to partially cover a thin normal metal layer, such that the microwave 
field penetrates the normal layer where it is not covered by a superconductor whereas it is shielded in the super-
conductor (see the inset of e.g. Fig. 1). Such a lateral geometry should be well described by an effective 1D model, 
as done in ref. 30. The thickness of the N layer should be much smaller than the skin depth and penetration depth 
λ​, which is experimentally feasible (typical values for the skin depth of a normal metal such as Cu is of order μm 
at microwave frequencies, whereas λ​Nb ~ 50 nm and λ​Al ~ 20 nm). From Eq. (1), we derive the following 
Ricatti-parametrized31,32 Usadel equation:

σ σ∂ γ + ∂ γ γ ∂ γ + + δ γ + ⋅ γ− γ ⋅ −α γ−αγ +α + γ γ = .
∼




⁎ (2)h hD E i i G G F F[ 2( ) ( )] 2i( ) i( ) ( ) ( ) 0x x x
2 

The Green function ĝ  can then be calculated from the 2 ×​ 2 matrix γ​ in spin space, the normalization matrix 
≡ − γγ −


(1 ) 1 , and their tilde-conjugates defined by ≡ −

⁎f x E f x E( , ) ( , ). An equivalent equation for γ


 can be 
found by tilde-conjugation of Eq. (2). In Eq. (2), we have also incorporated the possibility of a magnetic exchange 
field h = |h| which allows us to later consider the case of a ferromagnetic metal. The other quantities in the equa-
tion are the inelastic scattering rate δ​, and the short-hand notations

∑ ∑≡ + γ γ ≡ − γ
±

± ± ±
±

± ±
G F(1 ), 2 ,

(3)
 

where γ ≡ γ ± ω± x E( , /2). From these equations, physical quantities of interest may be computed, such as the 
proximity-modified density of states

= − .N N/ Re{Tr( )} 1 (4)0 

The Usadel equation is supplemented by the Kupriyanov-Lukichev boundary conditions33, which are valid at 
low-transparency tunneling interfaces.

We now have at hand a coupled set of non-linear partial differential equations which are non-local in energy 
space. A numerical solution can be obtained via iteration. After discretizing the energy space, the equations are 
initially solved for α​ =​ 0. The procedure is then repeated with α​ ≠​ 0 until self-consistency is achieved, using the 
solutions γ​ and γ


 from the previous iteration to approximate G and F. In this way, we are able to compute the 

quasiclassical Green function in the presence of microwave radiation, α ≠ĝ ( 0), and access the density of states 
N/N0 in the proximate metal.

Results and Discussion
The light-interaction with the proximity-induced condensate has a strong effect on the spectral properties of the 
quasiparticles. We show this in what follows, considering an SN bilayer in Fig. 1, an SNS junction in Fig. 2, and an 
SF bilayer in Fig. 3. In each case, we have provided results for different system parameters in order to demonstrate 
the robustness of the microwave radiation influence.

Starting with the SN bilayer, it is seen that by tuning the microwave frequency ω​, the density of states takes on 
qualitatively different characteristics. At ω​/Δ​0 =​ 0.4, there is a strong quasiparticle accumulation at E =​ 0, diamet-
rically opposite to the hallmark minigap that usually is present in SN bilayers. Increasing ω​ gradually to  
ω​/Δ​0 =​ 1.0 causes the density of states to revert to a minigap structure, albeit with a much reduced magnitude. We 
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will later in this manuscript describe the precise condition leading to the appearance of the quasiparticle accumu-
lation peak and its physical origin, providing also analytical results which supports the underlying explanation. In 
the plots, we have set α​/Δ​0 =​ 0.1, which gives a maximum ratio of α​/ω​ =​ 0.25, so that α​ is always considerably 
smaller than ω​. The criterion α ω  is, however, more strictly satisfied at the higher frequency range considered 
in the figures.

The minigap itself is monotonically tuned with ω​, as shown in Fig. 2 for the SNS case. At zero phase difference 
φ​, the minigap is gradually reduced as ω​ increases, demonstrating that the driving frequency can be used to tailor 
the minigap size. At a finite phase difference, the light-interaction again inverts the minigap for certain frequen-
cies, and generates a peak of quasiparticle accumulation at E =​ 0, similarly to the bilayer case [see Fig. 1(e)]. This 
can be seen in Fig. 2(c) for φ​/π​ =​ 0.5. Finally, we show results for when an exchange field is present, i.e. a magnetic 
metal h ≠​ 0, in Fig. 3, in which case the microwave field also alters the modulation of the density of states. To 
facilitate comparison with experiments, we note that for a typical diffusion constant of e.g. D =​ 7 ×​ 10−3 m2/s in 
Cu34, the requirement ω  De A /42

0
2 2  (having reinstated e and ħ) corresponds to ω . 0 3GHz for a modest 

electric field magnitude of 0.1 V/m, which is feasible. Moreover, for a superconducting gap Δ​0 =​ 0.5 meV, the 
parameter choice ħω​/Δ​0 =​ 0.4 corresponds to a frequency ω  300GHz.

Besides the control and inversion of the minigap, another particularly noteworthy feature that all the above-
mentioned structures have in common is that the low-energy density of states features a series of spectral features 
resembling weak resonances, which vanish as soon as the microwave field is turned off (α​ =​ 0). To gain insight 
into the physical origin of these features seen in the density of states, we provide an analytical solution which is 
permissible in the ferromagnetic case, but which also seems to account for the nature of the light interaction with 
the superconducting condensate in the normal case (h =​ 0). In the weak proximity effect regime, the linearized 
equation governing the behavior of the spinless fs and spin-polarized ft Cooper pairs reads

Figure 1.  (a–d) Proximity-induced density of states at the vacuum edge (x =​ L) of an SN bilayer with length 
L/ξ​ =​ 0.5 of the N region, where ξ​ is the superconducting coherence length. We set the barrier strength ζ​ =​ 3 
and microwave field amplitude α​/Δ​0 =​ 0.1 and (a) ω​/Δ​0 =​ 0.4, (b) ω​/Δ​0 =​ 0.6, (c) ω​/Δ​0 =​ 0.8, (d) ω​/Δ​0 =​ 1.0.  
(e) Zoom-in near E =​ 0 illustrating the transition from minigap to quasiparticle accumulation peak as ω​ is tuned 
to Emg. We set L/ξ​ =​ 0.33, yielding . ∆E 0 56mg 0. The black dashed line corresponds to the absence of light, 
A =​ 0.
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∂ + + α ± − α + ω + − ω =± ± ± ±D f E E i h f E f E f E( ) 2i( 2 ) ( ) 2 [ ( ) ( )] 0 (5)x
2

with f± =​ ft ±​ fs. In the regime where ∆h E{ , }0 , as is usually the case for ferromagnets, one can solve the above 
equation via Fourier-transformation. Introducing  ∫=± ±t dE f E( ) e ( )Eti , one obtains

∂ + α ± − α ω = .± ± ±D t i h t t t( ) 2i(2 ) ( ) 4 cos( ) ( ) 0x
2  

The solution is = +± ± ±
−± ±t A t B t( ) ( )e ( )ek x k xi i , where

= α ± − α ω±
−k i h t D[2i(2 ) 4 cos( )] , (6)1

while the coefficients {A±, B±} are determined via the boundary conditions. For an SF bilayer, the boundary con-
ditions read ∂ = ± ζ±f f L/x BCS  at the superconducting interface (x =​ 0), and ∂​xf± =​ 0 at the vacuum border 

Figure 2.  Proximity-induced density of states in the middle (x =​ L/2) of an SNS Josephson junction with 
L/ξ​ =​ 0.33, barrier strength ζ​ =​ 3, microwave field amplitude α​/Δ​0 =​ 0.1, and (a) φ​/π​ =​ 0.0, (b) φ​/π​ =​ 0.25,  
(c) φ​/π​ =​ 0.5, (d) φ​/π​ =​ 0.75.

Figure 3.  Proximity-induced density of states at the vacuum edge (x =​ L) of an SF bilayer with L/ξ​ =​ 0.23, 
barrier strength ζ​ =​ 3, microwave field amplitude α​/Δ​0 =​ 0.1, and (a) h/Δ​0 =​ 2 and (b) h/Δ​0 =​ 4.
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(x =​ L), where ζ​ =​ RB/R is the ratio between the interface barrier resistance and bulk resistance and fBCS(E) =​  
sinh{atanh[1/(E +​ iδ​)]}.

Introducing the auxiliary quantity ∫=D t dE f E( ) e ( )Eti
BCS , a straight-forward calculation leads to

=
ζ −

= .±
±

± ±
±

±
A t D t

L k
B t A t( ) ( )

i (1 e )
, ( ) ( )e

(7)k L
k L

2i
2i

Inserting this into our expression for ± t( )  and performing an inverse Fourier-transformation, we end up with 
the final expression for f±(E):

= ′ ′ .±
′−

± ∬f E dt dE f E p t( ) e ( ) ( ) (8)
E E ti ( )

BCS

where we introduced

= − ζ± ± ± ±
−p t k x L Lk k L( ) cos [ ( )][ sin( )] (9)

1

and k± =​ k±(t). We note that p±(t) is a periodic function in t, while fBCS →​ 0 when E →​ ±​∞​. In the absence of 
microwave radiation (α​ =​ 0), k± becomes independent of t, and the above simplifies to the usual result 

= ′ ′ =± ±
′−

± ∬f E p dt dE f E p f E( ) e ( ) ( )E E ti ( )
BCS BCS . To solve the integral Eq. (8) in the general case, we 

make use of the periodicity of p±(t). The period is T =​ 2π​/ω​, so we can write the Fourier series 
= ∑± ±

ωp t p( ) en n
n t

,
i , where ∫=± −

+
±

− ωp dt p en T T

T n t
,

1
/2

/2 i . Performing the integral over t in Eq. (8) then leads to a 
sum over δ​-functions, and one obtains:

∑= − ω .±
=−∞

=+∞

±f E p f E n( ) ( )
(10)n

n

n, BCS

Numerically, we find that it is usually sufficient with ~15 Fourier-coefficients pn,± to obtain a perfect rep-
resentation of p±(t). Using the same procedure as above, one can also find an expression for the anomalous Green 
function in a Josephson geometry consisting of a superconductor/ferromagnet/superconductor trilayer. The only 
difference is the expression for p±(t), which takes the form

= + − ζφ
± ± ± ± ±

−p t k x k x L Lk k L( ) {[cos( ) e cos [ ( )]}[ sin( )] , (11)
i 1

where φ​ is the phase difference between the superconductors.
From the analytical expression, it is clear that resonances should be expected whenever = ∆ ± ωE n0 , 

= …n 0, 1, 2,  since = ∆f E( )BCS 0  formally diverges, although this divergence is in practice diminished due to 
inelastic scattering. The weight of these resonances, i.e. the magnitude of their spectral peak, is in turn governed 
by the Fourier series coefficients pn which depends on the other system parameters. We note that, very recently, 
similar features were reported for a narrow and thin dirty superconducting strip subject to microwave radiation 
in ref. 13. In the present proximity-system, there is an additional minigap Emg in the system, and one might expect 
to have similar resonances at E =​ Emg ±​ nω​. The density of states plots in Fig. 2 [see for instance (a) for ω​/Δ​0 =​ 0.4] 
are consistent with this statement, demonstrating how additional spectral features, which are not present in the 
absence of light, occur at such excitation energies. It actually turns out that these resonances are the physical ori-
gin behind the transition from the minigap to the quasiparticle accumulation peak at E =​ 0. To be exact, the 
transition from fully gapped DOS to a strong zero-energy peak occurs precisely when ω​ =​ Emg. We show an exam-
ple of this behavior at the bottom of Fig. 1. It is intriguing that the light-interaction actually induces a second, 
inner minigap which upon closing generates this feature, whereas the outer minigap Emg remains [see e.g. Fig. 2(a) 
showing a particularly clear example of the inner and outer minigaps].

The fact that the microwave radiation induces a series of weak resonances shifted with ±​nω​ from the con-
ventional spectral peaks (E =​ Δ​ and E =​ Emg in the normal metal case) has interesting consequences when a 
finite magnetic field splits the density of states in the superconductor35, since the exchange field in the super-
conductor hS itself produces a similar shift in the spectral peaks from Δ​0 to Δ​0 ±​ hS. We show the corresponding 
proximity-induced density of states in Fig. 4, where the combined influence of the exchange field and the light 

Figure 4.  Proximity-induced density of states at the vacuum edge (x = L) of a Zeeman-split 
superconductor/normal-metal bilayer. We set ζ​ =​ 3, α​/Δ​0 =​ 0.1, L/ξ​ =​ 0.5, and hs/Δ​0 =​ 0.3, and considered 
several frequencies of the microwave radiation.
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interaction produce a very rich subgap structure in the density of states. Since the superconductor in this particu-
lar case, unlike the previous systems considered in this work, has to be sufficiently thin to permit the homogene-
ous penetration of a magnetic field, the microwave field is not completely shielded by the superconductor and we 
thus here assumed that (t) is applied only to the non-superconducting part.

The most remarkable feature is nevertheless the influence of the microwave field on the minigap in the SN 
case, controlling its magnitude and even transforming it into a quasiparticle accumulation peak at E =​ 0. These 
results may represent the first step toward a different way to control the superconducting proximity effect, and 
thus the available spin- and charge-carriers, in normal and magnetic metals, by using microwave radiation. One 
advantage of this is the fact that the control is in situ and that the length of the system (setting the Thouless 
energy scale), which normally changes the minigap, does not have to be altered, which would inevitably require 
fabrication of multiple samples. The zero-energy peak induced by the light-interaction resembles the type 
of spectral feature that is characteristically seeen in the density of states of conventional SF structures due to 
odd-frequency superconductivity36–38, but in this case it occurs without any such pairing at all. It could also be of 
interest to examine the consequences of the predictions made herein with regard to conductivity experiments39 
and non-equilibrium Josephson contacts40.

Concluding remarks
Building on these results, an interesting future direction to explore would be the influence of light on supercur-
rents and the critical temperature in magnetic proximity systems, to see if the microwave radiation may be used 
to manipulate these quantities as well, which we intend to explore in a future work. The interaction between light 
and Cooper pairs could in this way open a different route to active control of quantum coherent phenomena in 
superconducting proximity structures.

Methods
Derivation of the Usadel equation incorporating microwave radiation.  The time-dependent 
Usadel equation may be written as

∇ ∇ = − ρ  

ˆ ˆ ˆ ˆD g g i E g( ) [ , ], (12)3

where we defined the gauge-covariant derivative

∇ ≡ ∇ − ρ

ˆ ˆ ˆ ˆAg g e gi [ , ], (13)3

the commutator ≡ − 

a b a b b a[ , ] , and the associated product

≡ × .∂ ∂ −∂ ∂

= = = =


( )a b E T a E T b E T( )( , ) e ( , ) ( , )
(14)E E E T T T

i /2
1 1 2 2

,

E T E T1 2 2 1

1 2 1 2

Above, e is the electron charge, E is the quasiparticle energy, and A is the time-dependent vector potential 
which describes, in our case, an ac electric field E =​ −​∂​A/∂​t. We note that a useful property of the -product is 
that:

= − ω = + ω .ω ω ω ω
 a E T a E T a E T a E T( , ) e e ( /2, ), e ( , ) e ( /2, ) (15)i T i T i T i T

These relations are useful in the present context since we can write the gauge field as

= + .ω − ωA T A( ) (e e )/2 (16)i T i T
0

We set |e| =​ 1 in what follows for brevity of notation and also apply the electric field perpendicularly to the 
junction direction, so that

∇ ⋅ = ⋅ ∇ = .A A 0 (17)

In this case, the left hand side of Eq. (12) becomes

∇ ⋅ ∇ − ρ ρ − ρ .  

ˆ ˆ ˆ ˆ ˆ ˆ ˆA A AD g g D g g( ) [ , ] (18)3 3 3

Since A =​ A(T) is independent on E we have

ρ ρ = .ˆ ˆ ˆA A A 1 (19)3 3
2

Moreover, the Green function satisfies the normalization condition

= .
ˆ ˆ ˆg g 1 (20)

This brings us to

∇ ⋅ ∇ − ρ ρ .  

ˆ ˆ ˆ ˆ ˆ ˆA AD g g D g g( ) [ , ] (21)3 3

At this stage, we see that the contribution from the gauge field can be included as a self-energy
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Σ = ρ ρ 

ˆ ˆ ˆ ˆA AD gi (22)A 3 3

in the Usadel equation, which in its complete form reads:

∇ ⋅ ∇ + ρ + ρ ρ = .  

ˆ ˆ ˆ ˆ ˆ ˆ ˆA AD g g E D g g( ) i[ i , ] 0 (23)3 3 3

The next step is the obtain the Fourier-transformed version of the above equation in energy-space. To accom-
plish this, we make use of similar approximations as in ref. 13. In the presence of a driving field A(T), we take into 
account A up to second order by deriving an equation for the harmonic Green function at zero frequency (see 
Appendix of ref. 13) which is essentially the time-averaged Green function. Higher order harmonic 
time-dependent terms in ĝ  are induced by A and thus correspond to fourth order in A and higher. This approxi-
mation is valid when

ω.DA /4 (24)0
2

Computing the contribution from the self-energy term Σ̂A in the Usadel equation gives

Σ = − + ρ + ρ

− + ρ + ρ .

ω − ω ω − ω

ω − ω ω − ω

  

  

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

g DA g g

g g

i[ , ]
4

[(e e ) (e e )

(e e ) (e e ) ] (25)

A
i T i T i T i T

i T i T i T i T

0
2

3 3

3 3

We now average Eq. (25) over a period 2π​/ω​, which means that all terms that go like e±2iωT are removed since 
ĝ  is the time-averaged Green function. After laborious calculations, using for instance that







− ∂ ∂ +






 ∂ ∂ − …







ρ ± ω

× ρ ω .

=






ω ∂ +



ω 


 ∂ − …







×ρ ± ω ρ ω .

= ρ ± ω ρ .

= ρ ± ω ρ

∂ ∂ ± ω ω

= = = =

∂ ∂ ± ω

ω
= = = =

∂ ∂ ± ω ω
= = = =













ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

g E

g E

i

g E g E

g E g E

g E g E

e 1 i
2

1
2

i
2

( ) e ( /2) e

( /2)

e 1 i
2

( ) 1
2 2

( ) e

( /2) e ( /2)

e e e ( /2) ( )

( ) ( ) (26)

E T E T
i T i T

E E E T T T

E E
i T

i T
E E E T T T

i T i T
E E E T T T

i /2
2

2
3 1

3 2 ,

i /2
2

2

3 1 3 2 ,

i /2
3 1 3 2 ,

3 3

E T

E T

E T

1 2
2 1 2 1

1 2

1 2 1 2

1 2
2 2

1

2

1 2 1 2

1 2 1 2

1 2 1 2

via Eq. (15), the remaining terms take the form

∇ ⋅ ∇ + 
 ρ + αρ + ρ 

 =+ −ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆD g g E i g g g( ) i ( ) , 0, (27)3 3 3

where the -commutators are now replaced with regular matrix commutators, α ≡ DA /40
2 , =ˆ ˆg g x E( , ) is the 

quasiclassical Green function, while

≡ ± ω .±ˆ ˆg g x E( , /2) (28)

Derivation of the linearized Usadel equation (weak proximity effect).  Analytical progress can be 
made in the so-called weak proximity effect regime, where one assumes that the magnitude of the superconduct-
ing proximity effect is small in the sense that the anomalous Green function components f satisfy 

f 1. 
Physically, such a situation is realized either in the case of a low interface transparency between the superconduct-
ing and normal part or if the temperature is close to the critical temperature of the superconductor. This allows for 
a linearization of the Usadel equation in the anomalous Green functions in the following manner3. The total Green 
function matrix in Nambu-spin space may be written as the normal-state matrix ĝ0 and a small deviation f̂ :

+
ˆ ˆ ˆg g f , (29)0

where = ρˆ ˆg0 3 and the anomalous Green function matrix can be written as

=




−






.ˆ

̲̃
f

f

f

0

0 (30)

The 2 ×​ 2 matrix f  in spin space describes the four types of anomalous Green functions that can be present in 
the system: one describing spin-singlet Cooper pairs (fs) and three describing spin-triplet Cooper pairs 

↑↑ ↓↓f f f( , , )t . The ft component corresponds to the S =​ 1, Sz =​ 0 component of the triplets with spin-symmetry  
↑​↓​ +​ ↓​↑​ and the …∼ operation is defined in the main text. For the systems considered in our work, with homogene-
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ous exchange fields, we find that fσσ =​ 0 whereas fs and ft can be non-zero. Inserting Eq. (29) into Eq. (2) in the 
main manuscript produces the linearized equation

∂ + + α ± − α + ω + − ω =± ± ± ±D f E E i h f E f E f E( ) 2i( 2 ) ( ) 2 [ ( ) ( )] 0 (31)x
2

with f± =​ ft ±​ fs. This governs the behavior of the spinless fs and spin-polarized ft Cooper pairs induced in the 
normal metal.
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Analytically determined topological 
phase diagram of the proximity-
induced gap in diffusive n-terminal 
Josephson junctions
Morten Amundsen, Jabir Ali Ouassou & Jacob Linder

Multiterminal Josephson junctions have recently been proposed as a route to artificially mimic 
topological matter with the distinct advantage that its properties can be controlled via the 
superconducting phase difference, giving rise to Weyl points in 4-terminal geometries. A key goal is to 
accurately determine when the system makes a transition from a gapped to non-gapped state as a 
function of the phase differences in the system, the latter effectively playing the role of quasiparticle 
momenta in conventional topological matter. We here determine the proximity gap phase diagram of 
diffusive n-terminal Josephson junctions ( ∈ Nn ), both numerically and analytically, by identifying a 
class of solutions to the Usadel equation at zero energy in the full proximity effect regime. We present 
an analytical equation which provides the phase diagram for an arbitrary number of terminals n. After 
briefly demonstrating the validity of the analytical approach in the previously studied 2- and 3-terminal 
cases, we focus on the 4-terminal case and map out the regimes where the electronic excitations in the 
system are gapped and non-gapped, respectively, demonstrating also in this case full agreement 
between the analytical and numerical approach.

The interest in topological quantum phases of matter has grown steadily in recent years, and the fundamen-
tal importance of this topic in physics was recently recognized by Thouless, Haldane, and Kosterlitz being 
awarded the 2016 Nobel prize in physics for their contribution to this field. So far, specific material classes such 
as telluride-based quantum wells (HgTe, CdTe), bismuth antimony (Bi1−xSbx) and bismuth selenide (Bi2Se3) have 
received the most attention in the pursuit of symmetry-protected topological phases and excitations1–4. However, 
it was recently proposed5 that similar physics could be obtained using conventional superconducting materials. 
More specifically, by using multiterminal Josephson junctions, the authors of ref. 5 showed that it was possible to 
create an artificial topological material displaying Weyl singularities under appropriate conditions. In multiter-
minal Josephson junctions hosting well-defined Andreev bound states, the crossing of these states with the Fermi 
level has been shown to be analogous to Weyl points in 3D solids with the Andreev bound state taking on the role 
of energy bands and the superconducting phase differences corresponding to quasiparticle momenta. A consid-
erable advantage in utilizing multiterminal Josephson junctions rather than 3D solids to study exotic phenomena 
such as Weyl singularities and topologically different phases is that the phase differences are much more easily 
controlled experimentally than the quasiparticle momenta.

In order to probe electronic excitations with topological properties, a key goal is to map out the phase diagram 
of the system in terms of when it is gapped or not. A gapped system here means that there are no available excita-
tions in a finite interval around the Fermi level. The reason for why this is important is that transitions between 
topologically protected states can occur via gap closing, and so by identifying under which circumstances the 
system makes such a transition provides information about when the topological nature of the system’s quantum 
state changes.

The arguably easiest way to probe such a phase transition is via the readily available density of states measure-
ments, which pick up whether or not the system is gapped at a specific energy. The electronic density of states can 
be probed via conductance measurements, for instance in the form of tunneling between the system and a small 
metallic tip using so-called scanning tunneling microscopy. Recent previous works have considered the case of 
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3-terminal Josephson junctions, both in ballistic6,7 and diffusive systems8, and also the 4-terminal case in the case 
of chaotic cavities being connected to each other and the superconductors9. In particular the 4-terminal case is of 
interest due to the possibility of creating Weyl singularities5.

In terms of experimental realization, metallic diffusive systems are of high relevance as the conditions for 
realizing such systems are far less stringent than, for instance, the discrete Andreev bound states of quantum dots. 
However, the proximity-gap phase diagram has not yet been studied for the 4-terminal case involving diffusive 
normal metals.

Motivated by this, we here determine the proximity gap phase diagram of diffusive n-terminal Josephson 
junctions ( ∈n ), both numerically and analytically, by identifying a class of solutions to the Usadel equation10 
at zero energy in the full proximity effect regime. We present an analytical equation which provides the phase 
diagram for an arbitrary number of terminals n. After briefly demonstrating the validity of the analytical approach 
in the previously studied 2- and 3-terminal cases, we focus on the 4-terminal case and map out the regimes where 
the electronic excitations in the system are gapped and non-gapped, respectively, demonstrating also in this case 
full agreement between the analytical and numerical approach. Our results may serve as a guideline for exploring 
the interesting physics of multiterminal devices involving the experimentally prevalent and accessible scenario of 
diffusive metals connected to superconductors, which has a long history11.

Theory
We will use the quasiclassical theory of superconductivity which is known to yield good agreement with experi-
mental measurements on mesoscopic superconducting devices. As only non-magnetic structures will be consid-
ered here, only singlet Cooper pairs exist and it is possible to work in Nambu-space alone due to the spin 
degeneracy. Using a field operator basis ψ ψ ψ= ↑ ↓

†( , ), the 2 ×​ 2 quasiclassical Green function matrix g  describ-
ing the existence of superconductivity in the system via the anomalous correlation function f reads:

=



 −









g
g f
f g (1)

Here, {g, f} are complex scalars that depend on position r and quasiparticle energy E. In a bulk BCS superconduc-
tor with order parameter Δ​ =​ Δ​0eiφ, g  takes the form:

=



− −






φ

φ−
g c s

s c
e

e (2)BCS

i

i

where c ≡​ cosh(θ), s ≡​ sinh(θ), and θ =​ atanh[Δ​0/(E +​ iδ)]. Here, δ accounts for inelastic scattering processes and 
causes a smearing of the spectral density. In writing g

BCS
, we have used that =c̃ c and = −s̃ s. The above matrix 

may be Ricatti-parametrized12 in the same way as one would do in the case of non-degenerate spin (see e.g. ref. 13 
for a general Ricatti-parametrization in this case) with two differences: (i) we have to let γ γ→ −

 
, and (ii) treat 

γ γ


{ , } as scalars rather than matrices. More specifically, we write the Green function in the form

γγ γ

γ γγ
=





−

− −




∼ ∼



 

g
N N

N N
(1 ) 2

2 (1 ) (3)

with γγ= = +
∼ −


N N (1 ) 1. The Usadel equation in the normal wires, which governs the behavior of the Green 

function g , reads:

τ∂ ∂ + =D g g E g( ) i[ , ] 0, (4)x x z

where D is the diffusion coefficient, τz is the third Pauli matrix, and E is the quasiparticle energy. Since we are 
interested in mapping out the regime where the system is gapped, it suffices to consider the behavior of g  at the 
Fermi level (E =​ 0). In this case, we have γ γ=



⁎, and the Ricatti-parametrized Usadel equation [obtained by 
inserting Eq. (3) into Eq. (4)] determining γ takes the form

γ
γ γ
γ

∂ −
∂
+

= .
⁎2( )

1
0

(5)
x

x2
2

2

This equation has the following general and exact solution if γ ∈ :

γ = + .x c x c( ) tan( ) (6)1 2

Although a purely real γ might seem like a very particular case, this scenario in fact allows us to gain impor-
tant information about the proximity-gap phase diagram. To see this, consider the expression for the normalized 
(against its normal-state value) density of states   at zero energy:


γ
γ

=
−

+
.

1
1 (7)

2

2

The solution γ =​ 0 corresponds to the absence of superconducting correlations, i.e. completely closed gap, in 
which case the density of states resumes its normal-state value = 1 . The solutions γ =​ ±​1 correspond to the 
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fully gapped case = 0  where no available quasiparticle excitations exist at the Fermi level. The existence of such 
points can now be identified analytically by determining c1 and c2 in Eq. (6) via the boundary conditions in the 
N-terminal system. We later proceed to do so explicitly. It is also worth noting that Eq. (5) also has a general solu-
tion when γ is purely imaginary [ γ ∈ , Re(γ) =​ 0]:

γ = + .x c x c( ) i tan( ) (8)1 2

The solution Eq. (6) is of particular relevance in the case where the phase differences between the terminals is nπ, 
with n =​ 0, 1, 2, …​ The reason for this is that in such a scenario, one can choose a gauge where all superconducting 
order parameters are purely imaginary in the reservoirs (phases φj =​ π/2 or 3π/2), which renders the BCS anom-
alous correlation function = φf sei j to be purely real at zero energy since s(E =​ 0) =​ −​i. If one assumes ideal 
boundary conditions at the superconducting interfaces, meaning that f is continuous, there are no imaginary 
terms in the boundary conditions or in the equation of motion for γ itself, meaning that the solution γ can be 
taken as real. From Eq. (7), it is clear that the maximum value of the Fermi-level density of states in the presence 
of a superconducting proximity effect is = 1max . We can thus conclude that the analytical approach presented 
above is valid whenever the superconducting phase differences between the terminals are nπ.

The above class of exact solutions are useful since they are valid at specific phase differences and provide infor-
mation about whether or not the DOS is gapped there. However, we have identified an additional class of exact 
solutions which is useful because it is valid at any phase-differences where = 0 , which is precisely the regime of 
interest. By noting that = 0  only when |γ| =​ 1, a reasonable ansatz is:

γ = − ∈ .S xie , ( ) (9)S xi ( )

The prefactor −​i is just a convention that simplifies the boundary conditions for S. Insertion into Eq. (5) gives 
immediately

= +S x ax b( ) (10)

where a and b are real constants determined by the boundary conditions. Besides allowing us to analytically 
determine the region in phase-space where the system is gapped, this solution also allows us to analytically com-
pute the topological number associated with the gapped regime defined as14:

= ∇ ⋅∮m S dr r( ) (11)

where S(r) is interpreted as the phase of the superconducting correlations at E =​ 0. There are several ways to relate 
the Riccati parameter γ to the physical properties of the system. First of all, it can be related to the physically 
observable density of states using Eq. (7). Moreover, when the system is fully gapped so that the zero-energy den-
sity of states = 0 , γ is in fact just the anomalous Green function f, which quantifies the superconducting corre-
lations in the system. This can be seen by comparing Eqs (1) and (3): in general, the anomalous Green function is 
given by f =​ 2Nγ, but since γ =​ −​ieiS(r) for a fully gapped system, we find that N =​ [1 +​ e+iS(r)e−iS(r)]−1 =​ 1/2 using 
the definition given above. It is assumed that the Green functions in the superconductors may be approximated 
by bulk expressions, and that the interfaces to the normal metals are transparent. This leads to the boundary con-
ditions S(rj) =​ φj, where rj are the locations of the terminals in Fig. 1, and φj are the corresponding phases. This 
can be deduced by comparing with the anomalous Green function in a bulk superconductor, fBCS =​ −​ieiφ.

Although Eq. (9) is exact whenever the system is gapped ( = 0 ), it cannot be used carelessly because one still 
has to specify for which choices of the phases φj it is valid. It is clearly valid when all phases are equal in the sys-
tem, so that the phase-difference between all terminals is zero. As we will later show, it is also valid in large 
regimes of phase-space, and one needs a criterion for when Eq. (9) can be used. Such a criterion can be obtained 

Figure 1.  Multiterminal Josephson junctions. The density of states   at zero energy (Fermi level) is measured 
at the point indicated by a star, i.e. at the intersection of the diffusive normal wires. (a) 2-terminal, (b) 
3-terminal, and (c) 4-terminal setups. Since the wires are assumed to be diffusive, their precise geometrical 
orientation does not influence the topological properties of the system. For instance, the same 3-terminal 
topological phase diagram would have been obtained if the leads were connected in a Y-shape rather than a 
T-shape: only the physical properties of the wires (e.g. their Thouless energies) are of consequence.
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in a convenient way by noting that as soon as S(x) acquires a non-zero imaginary part, the consequence is that 
≠ 0 . Identifying the condition for when a complex S(x) becomes a possible solution is thus our strategy for 

describing analytically the topological phase diagram. By using Eq.  (9) with ∈S x( )  and writing 
S(x) =​ Sr(x) +​ iSi(x), Eq. (5) becomes

∂ + ∂





−
+






=S Si( ) 1 2

1 e
0

(12)x x S
2 2

2 i

It is observed that the solution of Eq. (12) reduces to Eq. (10) in the limit Si(x) →​ 0. This means that by allowing 
a small Si(x), it is possible to map out regions where Eq. (10) is not valid and the imaginary component begins to 
matter. To do so, we Taylor expand the square bracket of Eq. (12), and insert the perturbation expansion

λ λ= + + + …S x S x S x S x( ) ( ) i( ( ) ( ) ) (13)r i i1
2

2

where S x S x( ) ( )i r1  and + S Sik ik1 . The expansion parameter λ is a helper variable used to collect different 
orders of the expansion. This gives

λ ∂ =S: 0 (14)x r
0 2

λ ∂ + ∂ =S S S: ( ) 0 (15)x i x r i
1 2

1
2

1

and similarly for higher orders of λ. It is noticed in particular that Eq. (10) remains a solution for Sr(x). The first 
order correction Si1(x) is easily solved, giving

= +S x C ax C ax( ) cos( ) sin( ) (16)i1 1 2

In an n-terminal Josephson junction with transparent interface between superconductors and the normal 
metal, it is clear that |γ| =​ 1 at the interface regardless of the phase. The proper boundary conditions are therefore 
that Si1(xj) =​ 0, with xj being the position of superconducting interface j. In addition, current conservation at the 
intersection between the arms of the multiterminal junction requires continuity of the Green function as well as 
the following relation between derivatives:

∑ γ⋅ ∇ =
e 0

(17)j
j j

where γj is the solution of the Usadel equation in arm j, and e j is a unit vector pointing towards the intersection. 
Using these conditions, it is possible to formulate a criterion for when the purely real solution for S(x) is valid, 
namely: Any combination of boundary conditions for which the only solution for Si1(x) possible is one where 
C1 =​ C2 =​ 0. The curves where this is not satisfied may be found from the boundary conditions for an n-terminal 
Josephson junction as

∑
ψ

ψ
=

= tan
0

(18)j

n
j

j1

with ψj given as

∑ψ φ φ φ φ= − = −
=n

1
(19)j j j

k

n

k
1

Equations (18) and (19) represent a key analytical result in this manuscript as they provide the phase diagram 
for the proximity-induced gap for an arbitrary number of terminals n. It is emphasized that the curves satisfying 
Eq. (18) only determine when a small imaginary contribution to S(x) is possible and hence for which phases a 
transition between gapped and ungapped regimes in phase space occur. These curves are therefore referred to 
as transition curves. Higher order terms in the perturbation expansion are required in order to more accurately 
describe the ungapped regions. This is however not necessary when only interested in the gapped regions. It will 
be shown that it is possible to distinguish between the two regimes using only the first order correction.

To complement our analytical considerations, we also perform a fully numerical determination of the 
proximity-gap phase diagram by solving the Usadel equation numerically for any phase differences φj and without 
assuming ideal boundary conditions. In the following sections, we first provide a brief discussion of the already 
known 2-terminal and 3-terminal cases in order to prove the correctness of our novel analytical approach. Then, 
we proceed to discuss the less explored 4-terminal case in more detail.

We comment here that multiterminal geometries beyond effective 1D models can also be treated using the 
recently developed15 numerical solution of the full Usadel equation in 3D, allowing for the study of non-trivial 
geometrical effects. Moreover, previous works have considered analytical solutions of the Usadel equation using 
the so-called θ-parametrization in SN bilayers16–18 and also approximate solutions in the SNS case19–21, whereas in 
our work the analytical solution is exact for the key cases of (i) = 0  and (ii) for phase differences nπ between 
the terminals.
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Results: 2-terminal case
Assuming ideal boundary conditions at the superconducting interfaces x =​ −​L/2 and x =​ L/2 see Fig. 1(a), real 
solutions of γ must satisfy γ =​ tan(c1x +​ c2) where:

− + = − + = −φ φc L c c L ctan( /2 ) ie and tan( /2 ) ie (20)1 2
i

1 2
iL R

This restricts the superconducting phases to be φj =​ {π/2, 3π/2} in order to ensure γ ∈ . A number of solu-
tions can be obtained from this. If φL =​ π/2 and φR =​ 3π/2 or vice versa, the solution is c2 =​ 0 which gives a DOS 
in the center of the wire = =x( 0) 1 . This is the expected result for a phase difference of π between the super-
conducting terminals. If instead the phase difference is zero, meaning φ φ π π= = { /2, 3 /2}L R , then the solution 
is c2 =​ ±​π/4, providing  = =x( 0) 0. This is also consistent with the result that the DOS is allowed to be fully 
gapped when there is no phase difference. These results are in agreement with the condition given in Eq. (18), 
which identifies φL −​ φR =​ nπ, n =​ 1, 2, …​ as the only configurations for which a non-zero density of states is 
possible. The phase-dependent minigap in an SNS junction was originally considered in ref. 19.

Results: 3-terminal case
In the 3-terminal case, we consider the geometry of Fig.  1(b). The regions in phase space where 

= = =x y( 0, 0) 0  is mapped out using Eq. (18). Since only phase differences matter physically, we fix the 
phase of one superconducting terminal, φD =​ 0, without loss of generality. Transition curves indicating the tran-
sition between gapped and ungapped regions are shown in Fig. 2(a) for the extended phase space [−​2π, 2π] ×​  
[−​2π, 2π]. It can be seen that one such curve encircles the origin, with a near-elliptical shape, thereby splitting the 
plane into two regions. It is known that the origin resides in a gapped region, so that the outer region may be 
identified as ungapped. There also appears several open curves in the second and fourth quadrant. These curves 
are considered to be metastable solutions, corresponding to a higher phase-winding of the superconducting cor-
relations in the normal wires, and are not investigated further. Due to the 2π-periodicity of the superconducting 
phases, the physically relevant transition curves must be translated into [0, 2π] ×​ [0, 2π], as shown in Fig. 2(b).

The density of states may also be computed analytically in the select points where the boundary conditions are 
real. Using Eq. (6), the solutions in the left, down, and right arm are written as γL =​ tan(c1x +​ c2), γR =​ tan(c3x +​ c4), 
γD =​ tan(c5x +​ c6). For this particular calculation, it is necessary to set φD =​ π/2 in order to make 
γ = − =φie 1DBCS,

i D  real. At the intersection point (x, y) =​ (0, 0) continuity of the Green function and its deriva-
tive ensure continuity of the current. We assume here for simplicity equal lengths and normal-state conductances 
of the three normal wires, although the analytical treatment does not require this in general. In this case, we 
obtain the boundary conditions

− + = − − + =

+ = − + + − = .

φ

φ

c L c c L c

c L c c c c c

tan( ) ie , tan( ) 1,

tan( ) ie , (1 tan )( ) 0 (21)
L D

R

1 2
i

5 2

3 2
i 2

2 1 5 3

L

R

The values of {φL, φR} are restricted to π/2 and 3π/2 in order to ensure the validity of the solution for γ. Since 
∈ctan 2 , the last boundary condition is equivalent to c1 +​ c5 −​ c3 =​ 0. The above non-linear system of equations 

may be solved analytically, keeping the physically acceptable solution which gives  > 0. For instance, for (φL, 
φR) =​ (3π/2, 3π/2) one finds that = − ±ctan( ) 2 32 . The positive solution is the physically acceptable one since 
it provides > 0 . The Fermi-level DOS in the center of the system (x, y) =​ (0, 0) is given by

Figure 2.  Analytically calculated transition curves between gapped and ungapped regions in the 
3-terminal case. Plot of curves where the first order correction Si1(x) can have non-zero solutions. (a) Structure 
of the condition in the extended phase space, showing metastable solutions. (b) Translation of physically 
relevant curves into [0, 2π] ×​ [0, 2π].
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= = =
−

+
x y

c
c

( 0, 0)
1 tan( )
1 tan( )

,
(22)

2
2

2
2

and we find from the solution of c2 that:

φ φ π π
φ φ π π
φ φ π π
φ φ π π

= = =







=
. =
. =
. =

x y( 0, 0)

0, if ( , ) ( /2, /2)
0 866, if ( , ) ( /2, 3 /2)
0 866, if ( , ) (3 /2, /2)
0 866, if ( , ) (3 /2, 3 /2) (23)L R

L R

L R

L R


These solutions may be compared with the numerical solution of the full proximity-gap phase diagram in 
Fig. 3(a), where it can be seen that the analytically determined transition curves of Fig. 2(b) trace out exactly the 
regions where the density of states is non-zero. The excellent correspondance is explained by the rapid transition 
between the two regimes, as shown by the numerical solution. In addition, the four red circles are gauge-equivalent 
to the above phase-choices (note that in the figure we have set φD =​ 0). As seen, the analytical expressions match the 
numerical result. In order to model a more realistic setting with finite interface transparencies, we provide the phase 
diagram using the Kupriyanov-Lukcihev boundary conditions22 in Fig. 3(b). The interface transparency is quantified 
by the parameter ζ = R R/j B j N j, ,  where RB,j is the barrier resistance and RN,j is the normal-state resistance of wire j. As 
seen, the gapped region extends compared to the fully transparent case, in agreement with ref. 8.

Results: 4-terminal case
We now focus on the 4-terminal case and demonstrate both the robustness of the analytical approach developed 
above in addition to providing comprehensive numerical results. The transition surface in the, now three dimen-
sional, extended phase space is shown in Fig. 4(a), where φU has been fixed to zero and metastable solutions have 
been removed for clarity. It can be seen to have an ellipsoidal shape, which is an expected generalization of the 
3-terminal case. Figure 4(b–d) show slices of the surface after translation into the first quadrant for φD =​ 0, π

2
 and 

π, respectively. The resulting phase diagram displays a more complicated behavior than in the 3-terminal case. At 
φD =​ 0, the phase diagram is similar to the 3-terminal case, but as φD is increased toward π/2 one of the gapped 
regions expands greatly at the expense of the other gapped regions which are separated from each other by a 
“barrier” of finite DOS  ≠ 0. As φD is further increased toward π, the phase-diagram morphs into a qualitatively 
different shape than at φD =​ 0, and at φD =​ π two of the gapped regions have been almost completely expelled from 
the phase diagram whereas two gapped “valleys” remain, the latter again separated by a non-gapped region.

With purely real boundary conditions, and φ = π
U 2

, the solutions in the left, down, right, and up arm are  
written as γL =​ tan(c1x +​ c2), γD =​ tan(c3x +​ c4), γR =​ tan(c5x +​ c6), γU =​ tan(c7x +​ c8). As in the previous section, we 
assume here for simplicity equal lengths and normal-state conductances of the four normal wires. The resulting 
boundary conditions take the form:

− + = − − + = − + = −
+ = + − − = .

φ φ φc L c c L c c L c
c L c c c c c

tan( ) ie , tan( ) ie , tan( ) ie ,
tan( ) 1, ( ) 0 (24)

L D R

U

1 2
i

5 2
i

3 2
i

7 2 1 5 3 7

L D R

Figure 3.  Numerically calculated proximity-gap phase diagram for 3-terminal Josephson junctions. Plot of 
the Fermi level density of states   for a 3-terminal setup as a function of the phases φL and φR. For both plots, 
we set L/ξ =​ 0.67 and δ/Δ​0 =​ 5 ×​ 10−3. The phase of the ‘down’ superconducting terminal has been set to φD =​ 0. 
(a) Ideal boundary conditions. (b) Kupriyanov-Lukichev boundary conditions with finite interface resistance. 
We have set ζj =​ 2.5, j =​ {L, R, D}.
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This non-linear system of equations may be solved analytically. Due to the requirement that γ ∈ , we restrict our 
attention to {φL, φR, φU} taking the values π/2 and 3π/2. We provide the solutions in Table 1 which again match 
the values obtained from a fully numerical solution, thus indicating the correctness of our analytical approach.

We now proceed to present numerical results for the 4-terminal case when there exists a finite interface resist-
ance between the superconducting terminals and the normal wires, which is experimentally more realistic. We fix 
φU =​ 0 without loss of generality and plot the evolution of the proximity-gap phase diagram, quantified via the 
zero-energy DOS   at the intersection point (x, y) =​ (0, 0), as the remaining superconducting phases {φD, φL, φR} 
are varied in Fig. 5. Once again, the analytical transition curves correspond well with the regions where the 
numerically computed density of states differs from zero.

In an experimental setting, the phase-differences can be tuned by connecting the superconducting terminals 
and thus creating loops which a magnetic flux can pass through, the latter controlling φj. We consider in Fig. 6 the 
special case where the flux penetrating all loops is the same, meaning that the phase difference between each pair 
of terminals is equal to φ (except between the up and left terminal, see inset of Fig. 6). We set all wire lengths 
Lj =​ L and interface resistances to be equal for simplicity, and consider different sizes L. Regardless of L, the super-
conducting correlations vanish completely at φ =​ π/2 and φ =​ π, as indicated by   taking its normal state value 

Figure 4.  Analytically calculated transition curves between gapped and ungapped regions in the 
4-terminal case. The mapping of three-dimensional phase space was performed using Eq. (18), with φU =​ 0.  
(a) Transition surface in extended phase space. (b–d) Translation of physically relevant curves into the first 
quadrant for φD =​ 0, π

2
 and π, respectively.

(φL, φR) = (π/2, π/2) (φL, φR) = (3π/2, π/2) (φL, φR) = (π/2, 3π/2) (φL, φR) = (3π/2, 3π/2)

φD =​ π/2 = .0 00 = .0 71 = .0 71 = .1 00

φD =​ 3π/2  = .0 71 = .1 00  = .1 00  = .0 71

Table 1.   Analytically obtained values of   at special points in phase-space. The solution for the zero-
energy DOS   at the intersection point of the wires (x, y) =​ (0, 0) obtained through analytically solving the 
non-linear equations for γj assuming transparent interfaces to the superconducting terminals (in contrast to 
Figs 5 and 6 where a finite interface resistance is used). We fixed φU =​ π/2. At all points (φU, φD, φL, φR) shown in 
the table, the analytically obtained value of   matches the numerically obtained solution.
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( = 1). The gapped region at 0 <​ φ <​ π/2 for small lengths L/ξ ≪​ 1 starts to fill up with available electronic 
excitations as L increases.

Conclusion
The main new results in this work are the class of analytical solutions of the Ricatti-parametrized Usadel equa-
tion at E =​ 0 in the full proximity effect regime, the equations (18) and (19) providing the transition between 
the gapped and non-gapped regimes for an arbitrary number of terminals n, and the specific results for the 
4-terminal case. An interesting expansion of the present work would be to explore how magnetic interfaces23–25 
and spin-orbit coupling would influence the proximity-gap phase diagram and topological properties of multi-
terminal Josephson junctions, as recent works have demonstrated that in particular the latter of these can induce 
several novel effects in both diffusive and ballistic superconducting hybrids13,26–34.

Figure 5.  Numerically calculated density of states at E = 0 for a 4-terminal Josephson junction for different 
phase-configurations. Setting the upper superconducting phase to zero without loss of generality, φU =​ 0, we 
plot the evolution of the proximity-gap phase diagram, quantified via the zero-energy density of states   at the 
intersection between the wires, as the phases at the other superconducting terminals are varied. We have set the 
wire lengths equal to L/ξ =​ 0.67 and the interface contact with the superconductors parametrized by a finite 
interface resistance ratio to the bulk resistance ζ =​ 2.5. The blue regions correspond to the gapped regime where 
 = 0.

Figure 6.  Numerically calculated density of states at E = 0 for a 4-terminal Josephson junction for equal 
flux through the loops. Plot of the Fermi level density of states   for a 4-terminal setup as a function of φ 
where φR =​ φ, φD =​ 2φ, φL =​ 3φ, which corresponds to a scenario where the same flux Φ​ penetrates loops  
that connects the superconducting terminals (see inset). We have set φU =​ 0 without loss of generality,  
δ/Δ​0 =​ 3 ×​ 10−3, and ζj =​ 2.5, j =​ {L, R, D, U}.
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Spectroscopic evidence of odd 
frequency superconducting order
Avradeep Pal1, J. A. Ouassou2, M. Eschrig3, J. Linder2 & M. G. Blamire1

Spin filter superconducting S/I/N tunnel junctions (NbN/GdN/TiN) show a robust and pronounced Zero 
Bias Conductance Peak (ZBCP) at low temperatures, the magnitude of which is several times the normal 
state conductance of the junction. Such a conductance anomaly is representative of unconventional 
superconductivity and is interpreted as a direct signature of an odd frequency superconducting order.

In the context of paired electrons in superconductors (S), Pauli exclusion requires the electron pair to be odd 
in exchange in either spin, momentum, time (frequency) or across all three parameters. Spin singlet (odd spin) 
Cooper pairs are the standard carriers in conventional superconductors. Although much rarer, there is strong 
evidence for odd momentum (odd parity) superconductivity in Sr2RuO4 and in UPt1–3 and in artificially engi-
neered hybrid structures4. So far, only indirect5,6 or weak7 signatures of odd frequency superconductivity has been 
obtained at S/F interfaces.

It is now widely accepted that odd frequency Cooper pairs can be generated at the interface of superconductors 
and ferromagnets. Where there is a region of inhomogeneous magnetization8–10, such pairs acquire a net spin 
and hence are immune to pair breaking due to the internal exchange field of the ferromagnet and can traverse 
distances much longer than the relevant singlet coherence length. Strong, but indirect evidence for the existence 
of such superconductivity has mainly been obtained through indirect measurements such as a long-ranged super-
current5,6,11 or proximity effect12.

Odd frequency Cooper-pairing should also give rise to an unconventional (non-BCS like) density of states 
(DOS) in the superconductor with an enhanced DOS at the Fermi level13–15. Evidence for such a DOS has recently 
been obtained via scanning tunnelling measurements of the local DOS of a Nb film proximity-coupled to a dif-
fusive Ho layer7 but, because this has to be performed on an interface remote from that which is generating the 
odd-frequency pairing, only localized weak spectroscopic signatures of odd frequency pairing were detected.

In parallel with the work on diffusive ferromagnets, superconducting tunnel junctions with ferromagnetic 
insulator (FI) barriers have recently shown a range of intriguing effects, such as the appearance of a Josephson 
current with an unconventional pure second harmonic current-phase relation independent of a 0−​π​ transition16, 
and an interfacial exchange field in the S layer17, which suggest that odd-frequency pairing is also being generated 
at the S/FI interface. Indeed, it has been very recently suggested in a theoretical study18 that strong odd-frequency 
pairing exists in Meservey-Tedrow type experiments with FIs19 that show Zeeman split DOS.

In this work, we present differential conductance measurements of NbN/GdN/TiN tunnel junctions, where 
GdN serves the purpose of both a spin active interface as well as a tunnel barrier - enabling direct measurement of 
the spatially averaged tunnelling DOS at the S/FI interface. The measured ZBCPs in such differential conductance 
measurements are larger by at least an order of magnitude than reported for diffusive systems, and hence provide 
definitive evidence for an odd frequency superconductivity at S/FI interfaces.

TiN was chosen as the metallic layer because an all nitride stack is required for the stability of GdN. Moreover, 
as stated later in this paper, one of the theoretical requirements for the observation of ZBCPs necessitates the 
choice of a metal, which has a Fermi vector largely different from superconducting NbN. Other possible metallic 
candidates like Au, Al and Cu have comparable Fermi vector as that of NbN.

Results and Discussion
Expreimental.  In Fig. 1, we show the temperature dependence of resistance of a 3 nm GdN junction. The 
spin-filter effect is clearly visible from the decrease in junction resistance below 33 K as exchange splitting of the 
conduction band lowers the transmission probability of one spin channel in comparison to the other20. A sharp 
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drop in resistance is observed below 14 K due to the superconducting transition of the NbN layer. Below 14 K, the 
observed rise in low bias resistance is due to the opening of the NbN gap and freezing out of sub-gap conduct-
ance. This rise of resistance below 14 K is reflective of a decreasing sub-gap resistance RS to normal state resistance 
Rn ratio at low temperatures, and is therefore a signature of good quality junctions21. The drop in resistance below 
4 K is due to the evolution of a zero bias conductance peak. To confirm the non-superconducting nature of the 
TiN used in these experiments, the temperature dependence of the resistance of un-patterned films of TiN/GdN 
grown in the same deposition run as that of the junctions, is shown in the bottom inset to Fig. 1. This shows no 
detectable superconducting transition above 1.6 K (the temperature limit of the cryostat used for Resistance vs 
Temperature (RT) measurements).

We observed that a wide range of properties can be obtained in TiN films by altering the nitrogen concen-
tration. In order to obtain non-superconducting TiN, we have tuned the nitrogen concentration (8%) in the 
sputtering gas mixture.

In Fig. 2, we show the differential conductance curves of a junction with a 3 nm GdN barrier. The curves 
clearly show the emergence of a strong ZBCP as the junction is cooled to low temperatures. Identical character-
istics have been found in all eight junctions on the same chip, and similar characteristics have also been found 
in all 8 junctions on the same chip of a thinner 2 nm GdN thickness tunnel junction which has spin-polarization 

Figure 1.  Temperature dependence of junction resistance. A 3 nm GdN junction measured at low bias. Top 
inset shows the Resistance vs Temperature (RT) dependence below superconducting transition of the NbN layer 
for junctions of 3 thicknesses – 1, 2, 3 nms. Bottom inset shows the RT dependence of a bilayer film of GdN and 
TiN to demonstrate the absence of superconducting transition in TiN films used in this work.

Figure 2.  Evolution of Zero Bias Conductance Peak (ZBCP) with temperature. Differential conductance 
(dI/dV) measurements normalised to the normal state conductance of an 100 nm NbN/3 nm GdN/30 nm 
TiN tunnel junction showing evolution of a ZBCP with decreasing temperature. Inset to the figure shows the 
temperature dependence of the intensity of the ZBCP.
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(P)~65% at 4 K. The ZBCP in all junctions is extremely robust, reproducible, and independent of magnetic field 
history. The behaviour of these S/I/N junctions at temperatures above which the ZBCP disappears (>​3 K), is well 
understood and has been addressed in detail in a previous publication17.

It has been theoretically predicted that for spin active interfaces, in the tunnelling limit, a subgap state appears 
due to spin-dependent phase-shifts22. This interface state is manifested via strong conductance peaks at a voltages 
eV =​ ±​ Δ​0cos(ϑ/2) where ϑ is the spin-dependent phase shift that is present due to the FI. For ϑ =​ π the state is 
pinned to the Fermi level (zero bias). The appearance of this interface state is intimately linked to odd-frequency 
pairing13.

ZBCPs are known to occur in several superconducting systems and for a variety of underlying physical mech-
anisms4,23–25. A ZBCP analogous to our experiment observation is the case of d-wave superconductors24, which 
occurs due to the sign change of the order parameter at regions in the a–b plane.

For s-wave superconductors, analogous phenomenon can be observed for sign change of the spin dependent 
phase shift due to the FI which translates to a phase shift of π. Such strong phase shifts26,27 can be obtained when 
(a) quasiparticles normal to the interface are the major contributors to the transport process, (b) when spin 
polarization by the barrier is high, (c) when the barrier profile is not sharp. All the above conditions are met by an 
NbN/GdN/TiN tunnel junction system, especially that of high spin polarization. An order of magnitude differ-
ence between Fermi vectors of NbN28 and TiN29 results in quasiparticles normal to the interface being the major 
contributors to the transport. A previous study has shown that NbN/GdN barrier is different from a conventional 
box type potential barrier, as a Schottky barrier forms at the NbN/GdN interface20. The fact that all the conditions 
for obtaining a large spin-dependent phase-shift at the interface are met, taken in conjunction with the fact that 
the conductance spectra demonstrate a ZBCP is a clear indication that this phase-shift is likely to have a value 
very close to π.

Theoretical model.  The experimental data in Fig. 2 can be modelled by the theoretical conductance of an  
S/FI/N structure with a spin-dependent phase-shift close to π, as shown in Fig. 3. The conductance for a ballistic 
S/FI/N structure has been studied previously22, and we have followed their analysis when fitting our experimental 
data. In the tunneling limit, we neglect the suppression of the superconducting order parameter and use the fol-
lowing expression for the current density across the junction
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where T (E) =​ tanh[β(E +​ eV)/2] − tanh[β(E − ​eV)/2].
The following quantities have been defined in Eq. (1): D = D↑ +​ D↓, JN is the current density when the super-

conductor is in its normal state (JN ∝​ D), Dσ and Rσ are the probability coefficients for transmission and reflection 
of spin σ​ carriers, respectively, β =​ (kBT)−1, V is the applied voltage, T is the temperature, E is the quasiparticle 
energy, ∆​ is the superconducting gap, ϑ​ is the spin-dependent phase-shift due to the magnetic barrier, and

Figure 3.  Theoretical dI/dV curves for an S/FI/N junction as a function of applied voltage eV. Following the 
framework of ref. 22, we have used transmission probabilities D↑ =​ 0.20 and D↓ =​ 0.015 for each spin species, a 
spin-mixing angle of 0.98π​, and set the Dynes parameter to 0.05Δ​0. Inset: the formation of a zero-energy bound 
state at the interface due to spin-active Andreev reflection (AR) by the gap Δ​0 (indicated by red circles) where 
an additional phase-shift close to π​ is picked up by the quasiparticles.
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For the theoretically simulated conductance plots, we have differentiated Eq. (1) with respect to voltage and 
normalized the conductance against the normal-state conductance obtained at large voltages eV  ≫ ∆​. To model 
inelastic scattering, we have incorporated a Dynes parameter via the relation E → E +​ iΓ​ where Γ​ provides the 
quasiparticles with a finite lifetime. The model also accounts for the large difference in tunnelling probability for 
majority and minority carriers, as expected for a strongly polarized FI.

The temperature-evolution of the conductance spectra matches only qualitatively: the ZBCP vanishes exper-
imentally more rapidly with temperature than in the theory, the reason for this is unclear. However, it must be 
noted that the temperature dependence of ZBCP is consistent with previous experimental observations of qual-
itatively similar origins of ZBCP. STM measurements of LDOS in Nb/Ho systems (due to odd frequency triplet 
superconductivity) observed the ZBCP disappearing at 660 mk7 – far below the superconducting transition of Nb 
used in the experiment (Tc,Nb~6.6 K, please refer to supplementary information section of ref. 7), while ZBCPs in 
YBCO (originating due to sign change of order parameter in d-wave superconductors) were only observed until 
40 K and 60 K (Tc,YBCO~90 K) in refs 24 and 30 respectively. We therefore assume that the temperature dependence 
arises due to aspects of theory which have not been fully understood.

Conclusions
We have not seen oscillatory behaviour in the intensity of ZBCPs with the application of magnetic field, thus 
ruling out the possibility of attributing the observed ZBCP to possible Majorana bound states4. ZBCPs occurring 
due to Kondo effects, on application of an external magnetic field, should separate out to a double peak struc-
tures31. The strong intensity of the ZBCP (3.5 times the normal state conductance) rules out other possibilities 
like de Gennes-Saint-James resonances23 or a pin hole mediated junction which in accordance to the BTK the-
ory32 should give rise to a maximum ZBCP intensity of twice the normal state conductance. ZBCPs could also 
occur due to the TiN layer turning superconducting thus facilitating a critical current. However, the monotonic 
field-suppression and the observation of the ZBCP at high magnetic fields clearly indicate that Josephson effects 
do not cause the ZBCPs. Moreover, the top inset to Fig. 1 – shows that the ZBCPs start to evolve at 2.8 K, 3.8 K 
and 3.6 K for 3 nm, 2 nm and 1 nm barrier thicknesses respectively. Since the TiN layer for all these films were 
grown without breaking the vacuum and with the same plasma, this non-monotonic behaviour cannot be related 
to any possible superconductivity in TiN. However, such temperature dependence again points to an incomplete 
understanding of theoretical origins for ZBCPs for unconventional superconducting orders. For a more detailed 
analysis - which rules out superconductivity in TiN layer – please refer to the supplementary information section. 
Hence, none of the above possibilities are suitable in explaining the observed ZBCPs in our experiment.

The ZBCPs in NbN/GdN/TiN tunnel junctions therefore clearly establish an unconventional non-BCS type 
DOS indicating odd frequency superconductivity evolving at NbN/GdN interfaces. The current discovery of odd 
frequency pairing is not only relevant in understanding superconductivity beyond the conventional scope of BCS 
theory; but also firmly establishes FIs as important material systems for developing active devices for supercon-
ducting spintronics33.

Methods
The trilayered films of NbN/GdN/TiN are grown without breaking the vacuum in an ultra high vacuum chamber, 
by means of reactive dc magnetron sputtering in an atmosphere of Argon and Nitrogen. TiN is here grown as a 
(non-superconducting) metallic layer. Mesa type tunnel junctions were fabricated from sputtered tri-layered films 
by means of a fabrication procedure described elsewhere21. The only difference was that instead of plasma etch-
ing, TiN had to be Ar ion milled controllably. Measurements were performed using a 3He dip probe in a closed 
cycle liquid helium cooled variable temperature insert capable of cooling down to 0.3 K. Spin polarization was 
calculated from resistance vs temperature measurements using a procedure described in a previous publication16.
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We provide the following evidence to rule out superconductivity in the TiN layer and establish 

conclusively that the ZBCP is due to SIN junctions and therefore represents an enhancement in DOS 

around the Fermi level in NbN: 

a) Variation of gap edge with temperature 

If TiN turned superconducting at 3 K ( ), and assuming that TiN behaves like an ideal BCS 

superconductor, .  

At 1.6 K:   = 0.42mV. 
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Supplementary Figure 1 – Differential conductance curves at temperatures from 4.5K to 1.6K demonstrating 

that there is no observation in enhancement of gap edge due to possible superconductivity of TiN layer.  

Hence, we would expect the gap edge in NbN/GdN/TiN junctions to increase by ~0.5 mV as the 

junction is cooled. The figure below and the inset to it, clearly indicates that no such increase is 

observed. In fact, no increase is observed even at 0.3 K (Refer to Fig. 2 of the main manuscript). This 

is a clear demonstration that NbN is the only superconducting layer in the tri-layer stack. Owing to 

high transition temperature of NbN ( ~13.5 K), the magnitude of its gap edge feature saturates 

below approximately 7 K. Thus, these junctions are SIN junctions throughout the entire temperature 

range below 13.5 K.  



b) Discussion on a potential Josephson effect 

Josephson junctions with two superconducting NbN electrodes [1] with exactly identical junction 

dimensions to the devices reported here exhibit Ic(H) Fraunhofer patterns with an oscillation period or 

lobe width of of 1.5-3.5 mT. If we assume that, despite the arguments above, that the TiN is 

superconducting then we can take its penetration depth ( , and therefore should 

have lobe width: 

 

where and  is the universal flux 

quantum. As per the above expression, the Fraunhofer patterns should have critical current oscillation 

periods as approximately 4.4mT. Taking the standard decay envelope of the Fraunhofer pattern, we 

can therefore say that any Josephson effects should die out at high fields (>45mT; i.e. beyond the 

supposed 10th Fraunhofer lobe). However, the ZBCPs in our samples are only suppressed slowly and 

monotonically and remain visible even till 1 T, thus ruling out ZBCPs due to critical currents 

(conductance maxima) at low bias due to Josephson effects.  
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Supplementary Figure 2 – Differential conductance measurements of the ZBCP at different values of externally 

applied in-plane magnetic fields. 



c) Comparison of IV curves of SIS and SIN junctions 

Supplementary Figure 3 – IV curves (including forward and backward traces) of two junctions, one with a 

superconducting NbN counter-electrode (red), while the other has non-superconducting TiN electrode (blue). IV curves 

are measured at zero field and well below the supposed superconducting Tc of NbN (13.5 K) and TiN (either 5.4 K or  

3 K as suggested by referee). Inset to figure shows the comparison of respective differential conductance curves 

measured with an in-plane magnetic field of 10 mT.  

 

The most noticeable features in Figure 3 are that for the (SIN) junction with the TiN counter-electrode (blue 

curve), the high conductance region around zero bias is not vertical and that switching away from this  

region (which occurs at roughly the same magnitude of current ( ) as the critical current of the 

NbN/GdN/NbN SIS junction) shows no sign of hysteresis – a feature that is expected in underdamped SIS 

Josephson junctions and clearly present in the NbN/GdN/NbN device. However, for the junction with NbN 

counter-electrode, we see clear hysteresis (Switching current  Re-trapping current ).  

We have reported in a prior publication [2] that our GdN junctions are in the underdamped regime, and 

hence the above IV traces clearly demonstrate that the high conductance region in TiN junctions is not a 

feature caused by critical currents, but rather, represents an enhancement in the DOS around the Fermi level 

of the NbN superconductor for the NbN/GdN/TiN device. 

 

The inset shows the previously discussed effect of magnetic field on the supercurrent due to the Josephson 

effect (Fraunhofer pattern). While the critical current in NbN/GdN/NbN junction is completely suppressed 

due to the 10 mT in-plane magnetic field, an identical in-plane field has no effect on the magnitude of the 

ZBCP.  
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Triplet Cooper pairs induced in 
diffusive s-wave superconductors 
interfaced with strongly spin-
polarized magnetic insulators or 
half-metallic ferromagnets
Jabir Ali Ouassou   1, Avradeep Pal2, Mark Blamire2, Matthias Eschrig3 & Jacob Linder1

Interfacing superconductors with strongly spin-polarized magnetic materials opens the possibility to 
discover new spintronic devices in which spin-triplet Cooper pairs play a key role. Motivated by the 
recent derivation of spin-polarized quasiclassical boundary conditions capable of describing such a 
scenario in the diffusive limit, we consider the emergent physics in hybrid structures comprised of a 
conventional s-wave superconductor (e.g. Nb, Al) and either strongly spin-polarized ferromagnetic 
insulators (e.g. EuO, GdN) or halfmetallic ferromagnets (e.g. CrO2, LCMO). In contrast to most previous 
works, we focus on how the superconductor itself is influenced by the proximity effect, and how the 
generated triplet Cooper pairs manifest themselves in the self-consistently computed density of states 
(DOS) and the superconducting critical temperature Tc. We provide a comprehensive treatment of how 
the superconductor and its properties are affected by the triplet pairs, demonstrating that our theory 
can reproduce the recent observation of an unusually large zero-energy peak in a superconductor 
interfaced with a half-metal, which even exceeds the normal-state DOS. We also discuss the recent 
observation of a large superconducting spin-valve effect with a Tc change ~1 K in superconductor/half-
metal structures, in which case our results indicate that the experiment cannot be explained fully by a 
long-ranged triplet proximity effect.

Combining materials with different types of quantum order can result in new quantum phenomena at their 
interface. One example is the interaction between superconducting and magnetic materials1, 2, which besides its 
interesting fundamental physics has spawned the field of superconducting spintronics3, and could lead to novel 
cryogenic spin-based applications.

Recently, several experimental works have been carried out on superconductors interfaced to strongly 
spin-polarized magnetic materials. The latter include both ferromagnetic insulators such as EuO or GdN4, 5, 
with spin-polarizations ranging up to 90%, and half-metallic ferromagnets such as CrO2 and La2/3Ca1/3MnO3 
(LCMO)6–8. In ref. 8, STM-measurements were performed on the superconducting side of a NbN/LCMO bilayer, 
and revealed an unusually large zero-energy peak in the density of states (DOS) which, surprisingly, exceeded 
even the normal-state DOS. Such a peak, often taken as a hallmark signature of odd-frequency pairing9, 10, was 
also observed recently in Nb/Ho bilayers in ref. 11, albeit with a reduced magnitude. Moreover, resistance meas-
urements probing the superconducting critical temperature Tc in MoGe/Ni/Cu/CrO2 multilayers revealed a 
change in Tc of up to 1 K; this was attributed to the generation of long-ranged triplet pairs when the relative 
magnetization between ferromagnetic Ni and half-metallic CrO2 was changed from parallel to perpendicular7. 
It would be of high interest to understand and model the findings in these experiments, yet such an endeavour 
is complicated by the fact that there up to recently has existed no convenient framework allowing for the study 
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of strongly spin-polarized magnetic materials in contact with superconductors in the experimentally relevant 
diffusive regime of transport.

Motivated by this, we here present a solution of the quasiclassical Usadel equation12 with arbitrarily strongly 
spin-polarized magnetic regions and obtain the DOS and Tc, using the generally valid spin-dependent bound-
ary conditions derived in ref. 13. We have applied this framework on superconductors interfaced to strongly 
spin-polarized ferromagnetic insulators and half-metallic ferromagnets, solving the equations selfconsistently 
in order to study the manifestation of triplet Cooper pairs induced in the superconductor. While previous works 
have considered the case of strong spin-polarization in the ballistic limit14–24, we here present results valid for 
the diffusive regime of transport. We show that our theory is able to reproduce an unusually strong zero-energy 
peak, exceeding the normal-state value, induced in a superconductor as seen experimentally in ref. 8. Moreover, 
we compute the Tc shift when the magnetization in a spin-valve S/F/N/HM multilayer is rotated, and discuss the 
results in the context of the experiment described in ref. 7. Our results indicate that the experimental measure-
ments cannot be fully explained by a long-ranged triplet proximity effect, suggesting that some different physical 
mechanism may also be at play. We clarify the difference in length-scale for the inverse proximity effect in a 
superconductor and the length-scale for which a spin-valve effect occurs.

Theory
Quasiclassical theory.  In this paper, we employ the quasiclassical theory of superconductivity12, 25, 26 to 
describe diffusive hybrid structures in equilibrium. With this approach, the main objective is to calculate the 
quasiclassical retarded propagator ĝ  as a function of quasiparticle energy  and position z, where the z-axis is 
along the junction direction. The propagator may then be used to calculate various physical observables of inter-
est, such as the density of states, tunneling currents, and superconducting critical temperature. We use a hat to 
denote that the propagator has a 2 × 2 matrix structure in Nambu space, an underline to indicate a 2 × 2 matrix 
structure in spin space, and that we use the normalization convention =ĝ 12 . The quasiclassical propagator can 
be calculated from the Usadel diffusion equation12,

∂ ∂ =ˆ ˆ ˆiD g g U( ) , (1)z z

where D is the diffusion constant, and Û  is a material-dependent matrix potential that incorporates the effects of 
various self-energies and scattering processes. We will later generalize eq. (1) to strong ferromagnets, where the 
diffusion constants become spin-dependent. In superconductor/normal-metal hybrid structures, the matrix 
potential takes the form12, 26

η τ= + + Δˆ ˆ ˆ ˆU i g[( ) , ], (2)3

where  is the quasiparticle energy, η mimics an inelastic scattering rate, τ̂3 = diag(+1, −1) is the third Pauli matrix 
in Nambu space, and the superconducting order parameter Δ(z) is embedded in the antidiagonal matrix 
Δ̂ = antidiag(+Δ, −Δ, +Δ*, −Δ*). Note that we follow the convention where sums and products of dimension-
ally incompatible matrices should be resolved by taking Kronecker products with identity matrices. For instance, 
in the above equation, τ̂3 lacks an explicit structure in spin space, and should therefore implicitly be interpreted as 
τ σ⊗3̂ 0, where σ0 = diag(+1, +1) is the identity matrix in spin space.

The above equations must also be accompanied by the appropriate boundary conditions,

∂ = ∂ =ˆ ˆ ˆ ˆ ˆ( ) ( )G L g g G L g g I , (3)z zL L L L R R R R

where the subscripts indicate whether the quantities correspond the left or right side of the interface, Gj = σjA/Lj 
is the bulk conductance of material j, Lj is the material length, A is the cross-sectional area of the interface, σj is the 
intrinsic conductivity in the non-superconducting state, and Î  is the matrix current27–29 at the interface. In gen-
eral, the matrix current depends on the propagators at both sides of the interface, as well as the physical properties 
of the interface itself. The simplest case is when the interface has a relatively low transparency and no spin-active 
properties, in which case the matrix current is given by the Kuprianov–Lukichev tunneling equation30

= 





ˆ ˆ ˆI G g g2 , , (4)0 L R

where ĝ
L
 and ĝ

R
 are the propagators at the left and right sides of the interface, respectively, and G G0  is the 

conductance of the interface. How to calculate the matrix current at spin-active interfaces will be discussed in the 
following sections.

In practice, when solving the equations above, it is convenient to use the Riccati parametrization of the prop-
agator14, 31–33,

γ γ γ
γ γ γ

=



 −











+
+






∼

∼

∼ ∼ĝ N
N

1 2
2 1 ,

(5)

where tilde conjugation  γ γ= −


⁎z z( , ) ( , ) is defined as a combination of complex conjugation −i i and 
energy − , and the normalization matrices are defined as γγ= − −∼N (1 ) 1 and γ γ= − −∼ ∼N̲ (1 ) 1. 
Mathematically, this parametrization automatically satisfies the normalization condition =ĝ 12 , and enforces the 
particle-hole symmetries of the propagator. The Riccati parameters γ  and γ∼ are also single-valued and bounded, 
and the parametrization is numerically stable relative to alternatives like e.g. the θ-parametrization. Using the 
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definitions of N  and ∼N  in terms of γ and γ∼, as well as the easily derivable identities γ γ=
∼N N  and γ γ=

∼ ∼ ∼N N , 
it can be shown that eqs (1) and (3) can be Riccati parametrized as

γ γ γ γ γ∂ = − − ∂ ∂− ∼ ∼̲ ̲ ̲ ̲iDN U U N(2 ) ( ) 2( ) ( ), (6)z z z
2 1

12 11

γ γ∂ = −−GLN I I(2 ) ( ), (7)z
1

12 11

where the notation ττ ′U  and ττ ′I  refer to the (τ, τ′) components in Nambu space of the matrix potential Û  and 
matrix current Î . The corresponding equations for γ∼ can be found by tilde conjugation of the equations above. 
Together, the differential equations for γ and γ∼ form a boundary value problem that can be solved numerically as 
long as we know the matrix potential and current.

While the equations above are sufficient to solve for the propagator of the system, these equations implicitly 
depend on the superconducting order parameter Δ(z) through eq. (2). We therefore need an equation which 
relates this order parameter to the propagator in order to find a selfconsistent solution. In equilibrium, the appro-
priate selfconsistency equation can be written34

   ∫λΔ = − −
λΔ

z N f z f z T( ) 1
2

d [ ( , ) ( , )]tanh( /2 ), (8)
N

s s0
0

cosh(1/ )0 0

where = −f f f( )/2s 12 21  is the singlet component of the anomalous propagator = ˆf g[ ]
12

, N0 is the density of states 
per spin at the Fermi level, λ is the BCS coupling constant, is the zero-temperature gap of a bulk superconductor, T is 
the temperature of the superconductor, and Tc is the critical temperature of a bulk superconductor. The above equation 
can be written in terms of the Riccati parameters using the equations γ=f N2  and − = 

⁎
f f( ) ( )s s  . If we further-

more divide the equation by Δ0, and use the approximations λ λ≅N Ncosh (1/ ) exp(1/ )/20 0  and πΔ ≅T e/ /c
c

0  where 
c is the Euler–Mascheroni constant, we obtain

∫λ γ γ γ γ

π

Δ Δ = Δ − − +

×





Δ 




λ ∼ ∼ ∼ ∼⁎ ⁎z N N N N N

e
/

T T

( )/ 1
2

d( / )[( ) ( ) ( ) ( ) ]

tanh
2 /

,
(9)

N

c
c

0 0
0

exp(1/ )/2
0 12 21 12 21

0

0




where all the Riccati matrices γ γ
∼ ∼N N, , ,  are functions of position z and quasiparticle energy . Note that the 

approximations above are only valid in the weak-coupling regime λ N 10 . In practice, λ ≤N 1/40  is sufficient to 
make the results insensitive to the cutoff, and we set λ =N 1/50 . This result is expressed in terms of only the 
Riccati matrices γ γ

∼ ∼N N, , ,  and dimensionless quantities λΔ Δ Δ T T N/ , / , / ,c0 0 0 , making this version of the 
equation better suited for numerics than the equivalent eq. (8).

Spin-active tunneling interfaces (1st order in ϕn and Tn).  In the case of low-transparency spin-active 
junctions where the spin-mixing is weak, the matrix current may be written13, 35, 36

= 





+ 





+ 





− 



ϕ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ{ }I G g g G g mg m G g g m iG g m2 , , , , , , (10)0 L R 1 L R MR L R L L

where the magnetization matrix σ σ= ⋅ ⋅ˆ ⁎m mm diag( , ), m is a unit vector that describes the interface mag-
netization, σ is the Pauli vector, and ĝ

L
 and ĝ

R
 are the propagator at the left and right sides of the interface, 

respectively. Note this version of the matrix current equation is for the left side of the interface; a similar equation 
for the other side of the interface can be found by letting −

ˆ ˆI I  and ↔L R. Note that there are two different 
magnetization matrices ˆ ˆm m, L in the equation: m̂  refers to the average magnetization felt by a quasiparticle trans-
mitted through the interface, while m̂L refers to the magnetization felt by a reflected quasiparticle. If there is an 
interfacial magnetic misalignment, these two magnetizations will in general be different, and this may cause 
long-range triplet generation. The interface conductances in the equation above can be written13

∑ ∑ ∑ ∑ ϕ=


 + −



 =



 − −



 = =ϕ

= = = =
G G T P G G T P G G T P G G1 1 , 1 1 , , 2 ,

(11)n

N

n n
n

N

n n
n

N

n n
n

N

n0 Q
1

2
1 Q

1

2
MR Q

1
Q

1

where Tn, Pn, ϕn are respectively the transmission probability, spin-polarization, and spin-mixing angle associated 
with each scattering channel n. The quantity GQ in the equations above is the conductance quantum e2/π (in units 
with  = 1), while we interpret G0 as the tunneling conductance, G1 as a depairing term, GMR as a magnetoresis-
tive term, and ϕG  as the spin-mixing term. Note that in this context, the polarization is defined as 

≡ − +↑ ↓ ↑ ↓P T T T T[ ]/[ ]n n n n n , where σTn  are the spin-dependent transmission probabilities, and σ is the spin of a 
quasiparticle as measured along the quantization axis m. In other words, the polarization determines how many 
spin-up vs. spin-down particles are transmitted through the spin-active interface for each transmissive conduct-
ance channel n. Note that these equations can be used with arbitrary interface polarizations ∈ − +P [ 1, 1], but 
only remain valid as long as the transmission probabilities Tn and spin-mixing angles ϕn are small. In general, the 
number of channels contributing to Gϕ can be different from the number of channels contributing to 
G G G{ , , }0 1 MR  since channels that are purely reflecting can contribute to the former. If we assume that all  
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scattering channels have the same polarization P, then G1 and GMR can be calculated straight from the polariza-
tion P and tunneling conductance G0,

=
− −

+ −
=

+ −

G
G

P

P

G
G

P

P

1 1

1 1
,

1 1
,

(12)
1

0

2

2
MR

0 2

where the common prefactors ∑G Tn nQ  cancel. However, this cancellation does not occur for the ratio Gϕ/G0, 
where we get a factor [∑nϕn]/[∑nTn] that can become arbitrarily small or large depending on the spin-mixing 
angles and transmission probabilities. Thus, Gϕ/G0 can for the purpose of comparing with experimental data be 
regarded as a fitting parameter.

Spin-active tunneling interfaces (2nd order in ϕn and Tn).  To 2nd order in the transmission probabil-
ities and spin-mixing angles, the interfacial matrix current may be written:
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0 L R 2 R L R L L 2 L L L L

L L R L L L L R R L R R R R

where the matrix function ˆ ˆF g( ) is the contents of the commutator in the 1st order boundary conditions divided 
by G0:

= +
+ −

+
− −

+ −
.ˆ̲ ˆ̲ ˆ̲ ˆ̲ ˆ̲ ˆ̲ ˆ̲ ˆ̲F g g P

P
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P
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1 1
{ , } 1 1

1 1 (14)2

2

2

In other words, the 2nd order boundary conditions may be written concisely as a function of the 1st order boundary 
conditions. This is a new result compared to ref. 13 where the 2nd order contribution was originally derived, sub-
stantially simplifying and speeding up the numerical implementation of these boundary conditions and the solu-
tion of the Usadel equation utilizing them. We use the notation m̂  for the magnetization experienced by 
transmitted particles, and m̂ L and m̂R for particles reflected on the left and right sides of the interface, respectively. 
As for the new conductances that appear above, these are defined as13
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These conductances can be connected through ≅ ≅χ ϕ ϕ ϕG G G G G G G/ / /20 2 2 0
2 if we can assume that the mean 

spin-mixing angle and transmission probability T  are much smaller than their standard deviations Δϕ and ΔT. 
Furthermore, it can be shown that Gχ/G0 ≅ 〈ϕ〉; since we need less than approximately to be able to stop at a 2nd 
order expansion in ϕ, we should therefore assume that Gχ/G0 < 0.3. Finally, note that there are two different Gχ in 
the boundary condition: one χG L for the left side of the interface, and one χG R for the right side of the interface. 
For the rest of this paper, we will assume that these two conductances are equal. With all of these assumptions, we 
are left with a single new parameter Gχ to include in our model.

To derive the equations above, one may start with the 2nd order boundary conditions in ref. 13, and make the 
approximations of (i) channel-diagonal scattering =′T Tnn n, and (ii) channel-independent polarization =P Pn . 
We will not show the derivation itself here, as the derivation is relatively straight-forward but quite lengthy.

Spin-active reflecting interfaces (all orders in ϕn).  For a completely reflecting spin-active interface, the 
matrix current for arbitrarily large spin-mixing angles ϕn can be written13
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2

2
1

where N is the number of scattering channels at the interface. To leading order in the spin-mixing angles ϕn, the 
second bracket ϕ ϕ− − + → − −

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆi mg g m i mg g m[ sin( )( ) ] ( )( )nn , while the first and third brackets 
− →−
[1 ] 11 , so the equation for the matrix current linearizes to ϕ= ∑ˆ ˆ ˆI iG m g[ , ]n nQ . For comparison, the 

spin-mixing term in eq. (10) has the form = − ϕ
ˆ ˆ ˆI iG g m2 [ , ], and eq. (11) specifies that ϕ= ∑ϕG G2 n nQ , so this 

can be written ϕ= − ∑ˆ ˆ ˆI iG g m[ , ]n nQ . Thus, we see that the eqs (10) and (16) converge in the combined limit of 
zero transmission →T 0n  and weak spin-mixing ϕn ≪ 1.

For simplicity, we will assume that all scattering channels have the same spin-mixing angle ϕ, so that 
∑ =  Nn

N
1  in the equation above. Such an approximation is e.g. justified when there is a strong Fermi vector 

mismatch between the superconductor and ferromagnetic insulator15. The above equation is formulated at the left 
side of an interface; the corresponding equation at the other side of the interface is found by dropping the initial 
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minus-sign. Using the normalization conditions = =ˆ ˆm g 12 2 , it is also possible to reformulate the equation above 
in the more economical form

ϕ ϕ

ϕ ϕ

ϕ ϕ

= −






− +






× − +

×






− +






−

−

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

I NG i a am

i g a m a

i a ma

1
4

sin( ) 1
2

sin ( /2)

[ sin( ) sin ( /2)[ , ]]

1
4

sin( ) 1
2

sin ( /2)
(17)

Q
2

1

2

2
1

where we have defined the auxiliary matrix = −ˆ ˆ ˆ ˆ ˆa g m g m . Using this form of the equation, it is possible to 
reduce the number of matrix multiplications from 18 to 5 by reusing matrix products, which results in a more 
efficient numerical implementation.

Strongly polarized ferromagnets.  In general, the propagator ĝ  has a 2 × 2 matrix structure in both 
Nambu space and spin space. For normal metals and singlet superconductors, the spin structure of the normal 
component is diagonal, while the spin structure of the anomalous component is antidiagonal. Explicitly written 
out in matrix form, this means that these materials have propagators with the 4 × 4 structure

=







− −

− −







.

↑↑ ↑↓

↓↓ ↓↑

↑↓ ↑↑

↓↑ ↓↓









ĝ

g f

g f

f g

f g

0 0

0 0

0 0

0 0 (18)

On the other hand, in the presence of magnetic elements and spin-dependent scattering, we also need to account 
for triplet superconductivity and spin-flip processes in materials, and this forces us to use the most general 4 × 4 
form for the propagator,

=







− − − −

− − − −
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↑↑ ↑↓ ↑↑ ↑↓

↓↑ ↓↓ ↓↑ ↓↓
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↓↑ ↓↓ ↓↑ ↓↓

 

 

 

 

ĝ

g g f f

g g f f

f f g g

f f g g (19)

However, for the case of very strong ferromagnets, the spin-splitting of the energy bands can be so severe that 
there is effectively no interaction between quasiparticles from different spin bands. The spin structure of the 
propagator will then become diagonal,

=







− −

− −




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↓↓ ↓↓
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







ĝ

g f

g f

f g

f g

0 0

0 0

0 0

0 0

,

(20)

which means the only kind of superconductivity possible will be spin-triplet (
↑↑f  and 

↓↓f ). Since the propagator is 
diagonal in spin space for such materials, its components can also be represented as simply two decoupled prop-
agators in Nambu space,

=




− −






↑↑

↑↑ ↑↑

↑↑ ↑↑


ĝ
g f

f g
,

(21)

=




− −






.↓↓

↓↓ ↓↓

↓↓ ↓↓


ĝ
g f

f g (22)

If we assume that the two spin-bands in the ferromagnet individually behave as normal metals, it should be rea-
sonable to assume that the two sets of quasiparticles follow two separate metallic diffusion equations. Introducing 
the spin-dependent diffusion constants ↑D  and ↓D , these diffusion equations may be written

η τ∂ ∂ = 


+ 
↑ ↑↑ ↑↑ ↑↑ˆ ˆ ˆ ˆ( )iD g g i g( ) , , (23)z z 3
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η τ∂ ∂ = 


+ 
↑ ↓↓ ↓↓ ↓↓ˆ ˆ ˆ ˆ( )iD g g i g( ) , , (24)z z 3

We will also define the spin-independent diffusion constant = +↑ ↓D D D  and spin-polarization 
Π = − +↑ ↓ ↑ ↓D D D D( )/( ), where we note that σ= + ΠσD D(1 )/2. By dividing each of the above equations by 
its polarization factor ± Π(1 )/2, we get

 η τ∂ ∂ = 


+ Π + 
↑↑ ↑↑

−
↑↑ˆ ˆ ˆ ˆ( )iD g g i g2(1 ) ( ) , , (25)z z

1
3

 η τ∂ ∂ = 


− Π + 
↓↓ ↓↓

−
↓↓ˆ ˆ ˆ ˆ( )iD g g i g2(1 ) ( ) , , (26)z z

1
3

or if we restore the matrix notation for the spin structure,

 η τ∂ ∂ = + Πˆ ˆ ˆ ˆiD g g i g( ) [( ) , ], (27)z z 3

where we have defined the polarization matrix

Π =





+ Π
− Π




 .

2/(1 ) 0
0 2/(1 ) (28)

This equation follows the pattern in eq. (1) if we define the matrix potential  η τ= + Πˆ ˆ ˆU i g[( ) , ]3 , which written 
out becomes

η γ

η γ
=






+ Π

+ Π





.∼ ∼

Û
i N

i N
0 4( )

4( ) 0 (29)





We then extract the components =U 011  and  η γ= + ΠU i N4( )12 , and invoke eq. (6) to find an equation for 
γ∂z

2 , which reads

γ γ γ γ η γ∂ + ∂ ∂ = + Π .
∼ ∼iD N i[ 2( ) ( )] 2( ) (30)z z z

2 

Thus, the only difference between Riccati parametrized diffusion equation for a normal metal and a strong ferro-
magnet is the occurence of the polarization matrix Π . However, it should be stressed that the above equation was 
derived under the assumption that the propagator ĝ  has a diagonal structure in spin space, which implies that the 
Riccati parameters γ  and γ∼  must be diagonal as well. Thus, when implementing the equation above numerically, 
one must ensure that the off-diagonal terms of γ  and γ∼  are treated as constants and not variables; deviations from 
this procedure could produce numerical artifacts that violate these initial assumptions. The main motivation for 
writing the equation for γ  in matrix form, is that it can now be used in a boundary condition like eq. (7) at both 
sides of the interface, without requiring modification. Note that the interface to a strong ferromagnet is bound to 
be strongly magnetized, which means that we should use eqs (10) or (17) as boundary conditions. In the limit of 
full polarization Π → 1, the matrix Π → ∞diag(1, ). The infinite element will essentially just force the condition 
γ =↓↓ 0 for the spin-down component, while we get a normal metallic diffusion equation for the spin-up 
component,

γ γ γ γ η γ∂ + ∂ ∂ = + .↑↑ ↑↑ ↑↑ ↑↑ ↑↑ ↑↑
∼ ∼iD N i[ 2( ) ( )] 2( ) (31)z z z

2 

Physically, what happens in this limit is that the spin-splitting of the energy bands is strong enough to make the 
spin-up band metallic and the spin-down band insulating, which results in a so-called half-metal. Thus, we are left 
with two different ways to model a half-metallic ferromagnet: we can either use eq. (30), and implement a strong 
ferromagnet with e.g. Π = ± .0 999, thus taking the limit Π → 1 numerically; or we can take the limit Π → 1 
analytically, and implement a scalar diffusion equation for γ↑↑ like eq. (31). We chose the first approach, since the 
resulting code may then be reused to model strong ferromagnets as well.

Results and Discussion
Density of states in S/FI/N multilayers.  To begin with, we consider the DOS in a normal metal (N) con-
nected to a superconductor (S) via a ferromagnetic insulator (FI), which becomes modified by the existence of 
triplet Cooper pairs. The FI in this setup is modelled as a spin-active interface with zero spatial extent, but a finite 
tunneling conductance G0, spin-mixing conductance Gϕ, and spin-polarization P. Assuming no spatial extent 
means that the FI must have a thickness comparable to atomic length scales, which is much smaller than all the 
superconducting length scales in the problem. In reality, the properties of the FI would of course scale with its 
length, which in our model would be described by choosing a smaller tunneling conductance and larger spin-po-
larization at the interface. The special case of P = 0 was considered in refs 37 and 38 where it was shown that for a 
critical value of Gϕ, pure odd-frequency pairing was induced at the Fermi level  = 0. This is manifested as a large 
zero-energy peak in the DOS. In Fig. 1, we now show how this effect is modified when taking into account an 
interface polarization P.

For these simulations, we set the tunneling conductance to G0/G = 0.3, where G is the normal-state con-
ductance of each material. If we increase G0 while keeping Gϕ/G0 and P fixed, we increase the magnitude of the 
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proximity effect, but we do not change whether it is dominated by singlets or triplets. In other words, increasing 
G0 makes the blue regions darker and the yellow regions brighter, but does not alter the shape of the plot. Note 
that for zero polarization, this reproduces the well-known result that a peak suddenly appears for Gϕ/G0 = 137, 
while the value of Gϕ necessary to get a zero-energy peak gradually decreases to zero as the polarization tends 
to one. These results suggest that the spin-dependent transmission probabilities facilitate the conversion from 
singlet to triplet superconducting correlations in such a fashion that smaller spin-dependent mixing angles are 
required for this purpose. However, spin-dependent transmissions by themselves only weaken the singlet proxim-
ity effect: if Gϕ = 0, there is no generation of triplet Cooper pairs as seen in Fig. 1 (fully gapped DOS for Gϕ = 0).

In the above example, the superconductor was treated as a reservoir, meaning that the bulk propagator was 
used in that region. The main purpose of this paper is to determine how the superconducting region is influenced 
by the magnetic proximity effect, which generates triplet Cooper pairs in the superconductor. In what follows, we 
therefore only present self-consistent results where the superconducting order parameter and propagator are both 
obtained in an iterative manner. This allows us to explore how triplet Cooper pairs manifest in the superconduct-
ing region, as recently experimentally seen in refs 8 and 11.

We thus show results for a self-consistently solved DOS in both the superconducting and normal region of an 
S/FI/N system in Figs 2 and 3, setting the length of the superconducting region to LS = 3 ξS and LS = ξS in the fig-
ures, respectively, where ξS is the diffusive coherence length of a bulk superconductor at zero temperature. In all 
cases, we use the value = .G G/ 0 30  for the tunneling conductance. In both cases, we keep the length of the normal 
layer fixed at LN = ξS. The DOS in the N region is very similar in both cases, illustrating the zero-bias peak char-
acteristic of odd-frequency triplet pairs. It is worth to underline that although such a peak is often taken to be a 
signature of odd-frequency pairing, recent work has demonstrated that a system with fully gapped DOS can still 
exhibit strong odd-frequency pairing39. The DOS in the superconductor, on the other hand, changes substantially 
when going from LS = 3 ξS to LS = ξS. In the former case, the DOS only weakly deviates from the gapped bulk 
behavior of an s-wave superconductor. In the latter case, however, the gap is not only strongly smeared out, but a 
noticable zero-energy peak emerges in the superconductor as well due to the appearance of odd-frequency triplet 
pairs there.

Note that in Figs 1–3, we use the definition ϕ= ∑ ∑ϕG G T/ [ ]/[ ]n n n n0 , which differs by a factor + − P[1 1 ]/22  
from the definitions used in the rest of this paper. This does not change any conclusions, as this affects Gϕ/G0 by a 
factor 2 at most, while Fig. 1 shows that Gϕ/G0 needs to change by more than a factor 10 in order to produce a 
zero-energy peak at high polarizations.

It is interesting to note that one can obtain a very large zero-energy enhancement of the DOS in the super-
conductor, even exceeding its normal-state value, if the FI barrier itself is magnetically inhomogeneous. This 
is included in our model using the interfacial magnetic misalignment in the boundary conditions described 
previously. For a very high polarization P, we show how the DOS depends on the spin-mixing conductance Gφ 
in the left panel of Fig. 4. For large Gϕ, the combination of a strongly suppressed superconducting gap Δ near 
the interface and the generation of triplet Cooper pairs with all spin projections (due to the interfacial magnetic 
misalignment) permits the DOS to completely shed its gapped character and instead develop a large zero-energy 
peak typical of odd-frequency pairing40. In the right panel, we show how the DOS develops for a fixed Gϕ when 
P is increased, from which one infers that while a broad enhancement takes place even for P = 0, a sharp peak is 
only obtained when the spin-filtering effect of the interface is incorporated.

Density of states in S/FI bilayers.  If the normal metal is removed, so that the superconductor is ter-
minated by vacuum on one side and a fully reflecting magnetic insulator on the other, we have an S/FI bilayer 
with zero transmission of quasiparticles from S and into the FI. This can be modelled as a superconductor with 
boundary conditions given by eq. (17). We then find that the proximity-induced DOS in the superconductor 

Figure 1.  Plot of the zero-energy DOS D(0) as function of interface polarization P and spin-mixing 
conductance Gϕ. The DOS was calculated in the center of the normal metal in an S/FI/N structure, where we 
used the BCS solution for the superconductor, treated the ferromagnetic insulator as a spin-active interface, and 
the normal metal was taken to have the length ξS.
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depends strongly on both the spin-mixing angle ϕ and the conductivity of the superconductor relative the num-
ber of reflective channels, parametrized by G/NGQ. This is shown in Fig. 5. Moreover, the spin-mixing angle ϕ 
strongly influences the size of the superconducting gap, as demonstrated in Fig. 6. For a thin superconductor 
LS = ξS, the gap is suppressed to around 20% of its bulk value for a FI with a spin-mixing angle ϕ/π = 0.9. A larger 
superconductor LS = 3 ξS is able to recover the bulk value of the order parameter at its vacuum interface, but the 

Figure 2.  Plots of the DOS for an S/FI/N junction with LS = 3 ξS and LN = ξS as function of energy. The left 
column shows the results on the superconducting side of the interface, and the right column on the normal-
metal side. The spin-mixing conductance Gϕ/G0 is 0.75 in the top row and 1.25 in the bottom row, while the 
interface polarization P is written in the legend.

Figure 3.  Plots of the DOS for an S/FI/N junction with LS = LN = ξS as function of energy. The left column 
shows the results on the superconducting side of the interface, and the right column on the normal-metal side. 
The spin-mixing conductance Gϕ/G0 is 0.75 in the top row and 1.25 in the bottom row, while the interface 
polarization P is written in the legend.
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suppression of Δ is nevertheless substantial near the FI interface for large spin-mixing angles. The reduced gap 
edge is manifested in Fig. 5.

Figure 4.  Plots of the DOS at the superconducting side of the interface in an S/FI/N junction with LS = 3 ξS and 
LN = 10 ξS as function of energy. The ferromagnetic insulator was modelled as a spin-active interface with very 
strong spin-mixing and polarization: in the left plot, we set the polarization P = 0.999 and vary Gϕ, in the right 
plot we set Gϕ/G0 = 10 and vary P. In contrast to Figs 2 and 3, we also included a magnetic inhomogeneity in 
the model, which was incorporated by using two different magnetizations mL = ex and m = mR = ez in the spin-
active boundary conditions.

Figure 5.  Plots of the DOS of an S/FI bilayer, measured at the superconducting side of the interface. The 
ferromagnetic insulator is modelled as a fully reflecting spin-active interface, and the superconductor has length 
LS = ξS in the left column and LS = 3 ξS in the right one. The junction has GLS/NGQξS ∈ {300, 30, 3}, decreasing 
downward. The different curves correspond to different values for the spin-dependent interfacial phase shifts 
ϕ/π, as shown in the legends above the plots.
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We emphasize that, as shown in the Theory section, the S/FI results would be identical to the S/FI/N results in 
the limit of zero tunneling conductance and weak spin-mixing. However, we used a finite tunneling conductance 
in the previous subsection, and spin-mixing angles all the way up to π.0 9  in this subsection, which is why the 
results are quite different.

Density of states in S/HM bilayers.  A recent experiment by Kalcheim et al.8 reported an unexpected 
result for STM-measurements on the superconducting side of a NbN/LCMO bilayer, which is precisely a S/HM 
structure. They found that the DOS in the superconductor could be so strongly modified by the proximity to the 
half-metal that all signs of gapped behavior would vanish and be replaced by a zero-energy peak that exceeded 
even the normal-state value. This is in stark contrast to the results we showed above for a ferromagnetic insulator, 
where the zero-energy peak in the superconductor always appeared inside a gapped region and whose mag-
nitude did not exceed the normal-state value. Such a remarkably strong inverse proximity effect as seen in the 
experiment8 can in fact be modelled by our theory, as we now demonstrate. For the plots below (Figs 7 and 8), 
we consider a S/HM bilayer and assume a π/2 magnetic misalignment at the interface. The LS = 3 ξS case shown 
in the top left figure of Fig. 8 shows good agreement with the experimental data: a zero-bias peak which exceeds 
even the normal-state DOS. With increasing thickness LS, a usual gapped structure is recovered. The results do, 
however, depend on the misalignment angle: when it is reduced to zero, the distinct zero-energy peak morphs 
into a weaker and more diffuse subgap plateau. This enhancement can still be larger than the normal-state DOS 
in some cases; e.g. when LS = 2 ξS, LH = 10 ξS, and Gϕ/G0 = 10, D(0) is reduced from 1.30 with π/2 misalignment 
to 1.10 with no misalignment. Note also the similarity between the results in Figs 4 and 8 on the superconducting 
side of the interface: for similar interface parameters, we obtain nearly identical results in the S/HM and S/FI/N 
structures.

The generation of triplet Cooper pairs on the superconducting side has an interesting non-monotonic depend-
ence on the length LS of the superconductor (see bottom left panel of Fig. 8), unlike the triplet proximity effect 
on the half-metal which decays monotonically with increasing LH (see bottom right panel of Fig. 8). For thin 
superconducting layers LS ≅ ξS, the superconducting gap is fully suppressed at the interface, as shown in Fig. 7. As 
a result, the normal-state DOS D(0) = 1 is obtained in the superconductor near the interface as the superconduct-
ing correlations are fully suppressed there. As LS increases, a finite value of the order parameter Δ is permitted, 
and around LS ≅ 3 ξS the largest triplet proximity effect is obtained. This is the regime where the unusually strong 
zero-energy peak is observed. Increasing LS even further, D(0) starts to fall off rapidly and one recovers the stand-
ard BCS behavior of the superconducting DOS with a gap at low energies. We also note that as one moves away 
from the superconducting interface, the zero-energy peak shown in the top left figure of Fig. 8 also decreases and 
drops below the normal-state value D(0) = 1. Our theory is thus able to partially explain the experimental result 

Figure 6.  Plots of the superconducting gap in an S/FI bilayer. The superconductor has length LS = ξS in the left 
plot and LS = 3 ξS in the right one. In both cases, we chose GLS/NGQξS = 3, and the spin-mixing angle ϕ/π is 
shown in the legend.

Figure 7.  Plots of the superconducting gap at the interfaces of an S/HM bilayer. Both the plots are for a long 
halfmetal LH = 10 ξS; the difference is that we fix Gϕ/G0 = 10 but vary LS in the left plot, while we fix LS = 10 ξS 
and vary Gϕ in the right.
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of ref. 8, where the peak was observed even at the vacuum interface of the superconductor. Finally, we note that 
we have also solved for the DOS selfconsistently when taking into account the 2nd order boundary conditions, 
finding no no qualitative difference and only a very weakly suppressed magnitude of the spectral features, thus 
justifying the usage of the 1st order boundary conditions.

Critical temperature in F/S/F trilayers.  Before presenting new results for the critical temperature in 
half-metal/superconductor hybrids, we assess how well our theory agrees with known previous spin-valve exper-
iments. We will first consider the critical temperature of a Py/Nb/Py spin-valve structure as investigated in ref. 41.  
The permalloy layers were treated as homogeneous ferromagnets with an exchange field h = 100Δ0, in line with 
the estimate h ≅ 135 meV for permalloy41 and Δ0 ≅ 1.4 meV for niobium. The S/F interfaces were modelled using 
spin-active boundary conditions with a high interface conductance G0/G = 1 and spin-mixing conductance 
Gϕ/G0 = 12, and an experimentally realistic polarization P = 0.3842. As in the experiment, we fixed the thickness 
of each permalloy layer to 8 nm, varied the thickness d of the niobium layer, and used a superconducting coher-
ence length ξS = 6 nm. For each thickness of the niobium layer, we then calculated the critical temperatures Tc(P) 
and Tc(AP) for parallel and antiparallel orientations of the permalloy magnetization directions, respectively. The 
results are shown in Fig. 9 below.

First of all, the results show that the proximity effect in such a trilayer can be significant even for a sev-
eral coherence lengths long superconductor. Superconductivity is entirely suppressed until the superconductor 

Figure 8.  Plots of the DOS at an S/HM interface with Gϕ/G0 = 10. The left plots show how the DOS DS on 
the superconducting side changes with the length LS of the superconductor, when we fix the halfmetal length 
LH = 10 ξS. Conversely, the right plots show how the DOS DH on the halfmetallic side changes with LH when we 
set LH = 10 ξS. The top plots display the energy dependence of the DOS, while the bottom plots highlight the 
zero-energy peak.

Figure 9.  The left plot shows how the critical temperature in the parallel configuration Tc(P) varies with the 
thickness of the superconductor. The right plot shows the critical temperature difference between the parallel 
and antiparallel configurations. The inset shows how this spin-valve effect decays on a logarithmic scale.
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thickness d ≥ 21.5 nm ≅ 3.6 ξS. After that, the critical temperature converges towards the bulk value Tcs, but is 
reduced by more than 1% compared to this value even for d = 140 nm ≅ 23 ξS. Both these results are quantita-
tively consistent with the results reported by Moraru et al. in ref. 41, where they found no superconductivity for 
d < 20.5 nm, and the critical temperature curve closely matches Fig. 9.

The right panel of Fig. 9 shows how the spin-valve effect Tc(AP) − Tc(P) in the system varies with the super-
conductor thickness. Using a critical temperature Tcs = 9.2 K for niobium, we see that the spin-valve effect 
abruptly rises from 0 to 0.9 K when d = 21.3 nm, i.e. the thickness at which Tc(AP) becomes nonzero. However, 
the spin-valve effect decays exponentially fast as d is increased; it drops to about 0.1 K for d = 22.7 nm, and 
decreases below 1 mK for d = 33.5 nm. For comparison, Moraru et al. observed a lower spin-valve effect of about 
20 mK for their best sample41. However, combining observations in their Figs 1 and 3, they find that the spin-valve 
effect drops below 1 mK for d ≥ 33 nm, which fits very well with our results. The discrepancy in the spin-valve 
amplitude could e.g. be explained by wrong estimates for the interface parameters, or by the experimental diffi-
culty manufacturing an ideal sample given the sensitivity of the spin-valve effect to the niobium thickness. The 
key observation here is nevertheless that the spin-valve effect is completely absent for a large range of thicknesses 
where an inverse proximity effect exists, i.e. the regime d ≥ 33 nm in the plot.

The results for the proximity effect are remarkably robust: even if we use extreme values such as Gϕ/G0 = 500 
for the spin-mixing (while keeping the other parameters as above), or a giant tunneling conductance G0/G = 100 
(with non-magnetic boundary conditions), the critical superconductor thickness required for Tc ≥ 0 remains in 
the region 20–24 nm. This can be explained as follows. Once the properties of the interfaces become sufficiently 
extreme that they force the gap Δ → 0 there, then making the interface properties even more extreme cannot 
further suppress the gap at the interface. The strength of the spin-valve effect, on the other hand, remains more 
sensitive to the values of Gϕ and G0.

The most notable conclusion one can draw from these results, is the extreme discrepancy that can exist 
between having a significant proximity effect and spin-valve effect. While the former remains visible for super-
conductors that are longer than 20 coherence lengths, the latter becomes negligible after just 6 coherence lengths. 
This is for an F/S/F spin-valve setup; for an S/F/F setup one would expect both these length scales to be reduced 
by at least a factor two, due to the reduced coupling between the superconductor and the second ferromagnet in 
the structure.

Critical temperature in S/HM bilayers.  Inspired by the experiment by Keizer et al.43, we wanted to check 
how an interfacial magnetic misalignment affects the critical temperature of an S/HM bilayer. This was modelled  
by setting m = ez and mL = cos αez + sin αex in eq. (10); i.e. m was oriented along the magnetization of the 
half-metal, while mL differs from it by an angle α. First, we assumed that the superconductor was 0.7–1.5 ξS long, 
that the half-metal was 12 ξS long, that the conductance ratio was G0/G = 0.4, and varied the spin-mixing conduct-
ance Gϕ/G0 in the range 0–12. Then, we fixed the length of the superconductor to ξS, and investigated the effect 
of varying the length of the half-metal, and the effect of including the 2nd order contributions in the boundary 
conditions. For each set of parameters described above, we computed the critical temperature Tc for the interfacial 
magnetic misalignments α = 0 and α = π/2, and calculated the difference Tc(0) − Tc(π/2) between these results 
as a measure of the critical temperature shift due to magnetic misalignments. The results are shown in Fig. 10.

Several noteworthy features appear. Consider first the difference between Tc in the parallel and perpendicular 
alignment shown in the top left panel. The perpendicular configuration Tc(π/2) is always smaller than Tc(0). 
This can be explained physically by the fact that in the perpendicular configuration, the long-ranged proximity 
effect channel is opened up, allowing Cooper pairs to be converted into triplets with spin-polarization along the 
magnetization of the halfmetallic region and thus leak out of the superconductor. The panel also shows that for a 
given length LS of the superconductor, the range of spin-mixing conductance Gϕ where the device can work as a 
superconducting switch [Tc(0) finite while Tc(π/2) = 0] is quite narrow. This is shown explicitly for a fixed length 
LS in the top right panel of Fig. 10. Thicker superconducting layers LS require larger spin-mixing conductance Gϕ 
in order to obtain the switching effect. This is physically reasonable since a larger inverse proximity effect, and 
thus Gϕ, is required to alter the Tc as the superconductor becomes bigger and acts more as a reservoir.

It is also interesting to determine how the difference in Tc between the parallel and perpendicular configu-
rations of the interface and bulk moments depend on the length LH of the half-metallic region. This is shown in 
the bottom left panel, where we have plotted [Tc(0) − Tc(π/2)]/Tcs vs. both LH and the spin-mixing conductance 
Gϕ. The first thing to notice is that upper horizontal line, denoting the value of Gϕ where Tc(0) → 0, is completely 
independent on LH. This is understood physically by the fact that in the parallel alignment, there is no supercon-
ducting proximity effect in the half-metal. Thus, the critical temperature of the superconductor is determined 
uniquely by the inverse proximity effect generated by the full reflection taking place at the interface which natu-
rally does not depend on LH.

A more surprising feature is the fact that as LH is reduced, a smaller and smaller spin-mixing conductance Gϕ 
is required to suppress superconductivity in the perpendicular configuration, i.e. Tc(π/2) → 0. For a fixed value of 
Gϕ, one might expect that Tc is suppressed more the larger the half-metal thickness LH is. The fact that this does 
not occur can be explained physically as follows. For large LH, the half-metal behaves essentially as a normal metal 
with a very weak superconducting proximity effect. This fact is corroborated by e.g. the behavior of the DOS in 
the upper right panel of Fig. 8. As LH is reduced, however, the half-metal starts to act more and more like a triplet 
superconductor since the only types of Cooper pairs that can exist in the half-metal are odd-frequency triplets. 
In other words, there is no singlet proximity effect at all in the half-metal, unlike the case in e.g. S/N bilayers. The 
key point is that the triplet superconductivity behavior is more harmful toward the host superconductor than the 
normal metal behavior, because in the former case there is not only a suppression of Cooper pairs but additionally 
a conversion from singlets to triplets. This reduces Tc even further compared to when the half-metal acts as an 
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effective one spin-band normal metal in the limit LH ≫ ξS. As a result, steadily smaller are Gϕ required to suppress 
Tc(π/2) as LH is reduced.

Finally, we have also determined the influence of including the 2nd order boundary conditions in the cal-
culation of Tc. This is shown in the lower right panel of Fig. 10, revealing that there is only a small quantitative 
correction to the value of Gϕ providing the superconducting transition by including these additional terms par-
ametrized by Gχ. The conclusion that 2nd order terms have the same effect as a quantitative shift in Gϕ was also 
corroborated by DOS calculations for this setup (not shown).

Critical temperature in S/F/N/HM multilayers.  Motivated by the recent experiment by Singh et al.7, we 
have calculated Tc for a superconductor/ferromagnet/normal-metal/half-metal multilayer. In accordance with the 
experiment, we set the superconductor thickness to 10 ξS, the half-metal thickness to 20 ξS, set the ferromagnet 
thickness to 0.3 ξS, and set the normal metal thickness to 1.0 ξS. For the ferromagnet, we used an exchange field of 
magnitude h = 50Δ in the bulk (essentially as large as quasiclassical theory permits to model the relatively strong 
exchange field of Ni), and set the polarization P = 0.20 and spin-mixing Gϕ/G0 = 0.5 at its interfaces. The super-
conductor used in the experiment (MoGe) had an extremely short mean free path ξ� � s, firmly placing it in the 
diffusive limit of transport as modelled here. For the halfmetallic interfaces, we used a polarization P = 0.999 and 
spin-mixing Gϕ/G0 in the range 0–10. At all interfaces, we chose a relatively large ratio between the barrier and 
bulk conductances G0/G = 0.4. We then calculated the critical temperature Tc(α), where α is the angle between 
the magnetizations of the ferromagnet and the half-metal, and used this to calculate the critical temperature shift 
Tc(0) − Tc(π/2).

The result was zero critical temperature shift (with a precision of 0.0002 in Tc/Tcs). In fact, we find that both the 
critical temperature Tc(0) with no magnetic inhomogeneity, and Tc(π/2) with maximum magnetic noncollinear-
ity, are essentially equal to the bulk critical temperature Tcs for a 10 ξS long superconductor. We therefore tried to 
reduce the superconductor size to below 1.0 ξS in order to check whether that would help. In this case, both Tc(0) 
and Tc(π/2) were significantly reduced compared to the bulk critical temperature, with the result Tc/Tcs ≅ 0.7. 
However, the values of Tc(0) and Tc(π/2) still ended up being equal, so that we could not find any appreciable 
spin-valve effect Tc(0) − Tc(π/2). The lack of spin-valve effect indicates that the only proximity effect we find 
numerically is caused by the regular ferromagnet, with the halfmetallic layer being inconsequential. We therefore 
tried to remove the halfmetal from the system entirely, and redo the calculations for a similar superconductor/

Figure 10.  Plots of [Tc(0) − Tc(π/2)]/Tcs, where Tc(α) is the critical temperature of an S/HM bilayer with an 
interfacial magnetic misalignment α, and Tcs is the critical temperature of a bulk superconductor. Top left: 
We fixed the halfmetal length to 12 ξS, and varied the superconductor length and spin-mixing conductance. 
Above the black region, i.e. for small superconductors or strong spin-mixing, we see both Tc(π/2) and Tc(0) go 
to zero. Below the black region, i.e. for large superconductors and weak spin-mixing, both Tc(π/2) and Tc(0) 
converge to the same finite value. The black curve delineates a critical region where Tc(π/2) drops to zero while 
Tc(0) remains finite, leading to a very large difference. Top right: We fixed the halfmetal length to 12 ξS and the 
superconductor length to 1 ξS, and highlight how Tc(0) and Tc(π/2) behave. This illustrates why the top-left 
curve looks like it does. Bottom left: We fixed the superconductor length to 1 ξS, and varied the halfmetal length 
and spin-mixing conductance. We also checked lengths LH up to 12 ξS and find that the halfmetal length is 
essentially irrelevant for LH > 2 ξS. Bottom right: We fixed the superconductor length to 1 ξS and halfmetal length 
to 12 ξS, and varied the 2nd order conductance Gχ and spin-mixing conductance Gϕ. We see that the 2nd order 
terms basically produce a quantitative shift of the transition region towards higher values of Gϕ, but does not 
appear to qualitatively change anything.
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ferromagnet/normal-metal multilayer, and got precisely the same critical temperature results. This indicates that 
the inverse proximity effect on the superconductor was dominated by the ferromagnet and not the half-metal, 
and that the Cooper pairs leaking from the superconductor and into the ferromagnet likely substantially decay 
before even reaching the normal metal. We tried checking some different lengths for the superconductor and 
ferromagnet, and different strengths for the spin-mixing. The highest critical temperature shift we found was for a 
superconductor length LS = 0.7 ξS and ferromagnet length LF = 0.1 ξS, using Gϕ/G0 = 10 for the halfmetal interface. 
But even in that case, the critical temperature shift was only [Tc(0) − Tc(π/2)]/Tcs = 0.001. In other words, the larg-
est simulation result we managed to achieve is two orders of magnitude smaller than the experimental result by 
Singh et al., even after reducing the superconductor length by a factor 14 relative to the experiment, and tweaking 
the ferromagnet length as much as possible while remaining within the quasiclassical limits. It should however 
be noted that the present theory does not permit inclusion of highly transparent interfaces, in contrast to e.g. 
Nazarov’s boundary conditions for non-magnetic interfaces28, but is restricted to the limit of tunneling interfaces. 
For further details about our modelling of the experiment by Singh et al., as well as a quantitative comparison of 
Tc(0) and Tc(π/2) for both S/F/N/HM and S/F/N systems with various parameters, the reader may consult the 
Supplementary Information.

Our results for the S/HM bilayer also show that even if the superconducting gap is strongly suppressed at 
the interface, it still recovers a few coherence lengths away from the interface. To investigate whether the same 
happens in the S/F/N/HM setup, we also performed zero-temperature calculations of the superconducting gap 
in this structure, as shown in Fig. 11. In all cases, we found that the proximity effect remains significant only for 
the first 2–3 coherence lengths away from the magnetic interface, while the spin-valve effect is insignificant for all 
positions and conductances. These results further support our hypothesis that the standard long-ranged proxim-
ity effect interpretation cannot fully explain the results of Singh et al.7.

Previous works have considered the critical temperature of S/HM layers in the diffusive44 and ballistic24 limit, 
but cannot be compared to the measurements by Singh et al.7 since these works considered a thin supercon-
ducting layer with size LS comparable to or smaller than the superconducting coherence length ξS rather than 
LS = 10 ξS ≫ ξS as in the experiment. Note that in contrast to ref. 44, where it was assumed that all interfaces in the 
junction were transparent, we used a finite interface transparency at each interface of the S/F/N/HM junction, 
as this should be experimentally more realistic, and we also chose a larger magnitude of the exchange field. Since 
there are three such interfaces between S and HM in the junction, our structure has a much lower net transpar-
ency than in ref. 44, so that the Tc variation in our case is small even for very thin superconductors LS < Tc. This 
may explain why the Tc results herein were much weaker than the one found in ref. 44 when LS < ξS.

Conclusion
Summarizing, we have developed a framework for studying the interaction between diffusive superconduct-
ing and strongly polarized magnetic materials and half-metals using quasiclassical theory. We have applied this 
framework on superconductors interfaced to strongly polarized ferromagnetic insulators and half-metallic ferro-
magnets, solving the equations selfconsistently in order to study the manifestation of triplet Cooper pairs induced 
in the superconductor. We have computed the density of states and critical temperature in the abovementioned 
systems. Recent experimental work have measured precisely these quantities in via STM in S/HM bilayers (DOS)8 
and resistance measurements in S/F/N/HM layers (Tc)7. We have shown that our theory is able to reproduce an 
unusually strong zero-energy peak in the S/HM bilayer, exceeding the normal-state value, induced in a super-
conductor as seen experimentally in ref. 8. We also predicted a strong spin-valve effect in such bilayers, as shown 
in Fig. 10. Moreover, we computed the Tc shift upon 90° rotation of the magnetization in a spin-valve S/F/N/
HM multilayer and discussed this result in the context of the experiment of ref. 7 and clarified the difference in 
length-scale for the inverse proximity effect in a superconductor and the length-scale for which a spin-valve effect 
occurs.

Figure 11.  Plot of the superconducting gap Δ as a function of position inside the superconductor in the 
S/F/N/HM setup. The left plot shows the result for a 0° misalignment between the magnetizations of the F and 
HM, which is a measure of the proximity effect in the system. The right plot shows the difference between the 
results for 0° and 90° misalignment, which is a measure of the spin-valve effect. The inset shows how this spin-
valve effect decays on a logarithmic scale. As indicated in the legends, we repeated the calculations for various 
interface conductances G0.
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Modelling the Singh experiment
As discussed in the main article, we modelled the experiment by Singh et al. as a diffusive S/F/N/HM multilayer with spin-
dependent tunneling boundary conditions. We set the tunneling conductance at each interface to G0/G = 0.4, where G is the
normal-state conductance of each material. At the S/F and F/N interfaces, we chose the modest spin-mixing conductance
Gϕ/G0 = 0.5 and polarization P = 0.2. At the N/HM interface, however, we chose the much larger values Gϕ/G0 = 10 and
P = 0.999. As for the magnetization directions, we assume that the magnetization of the HM is oriented along the z-axis, while
the magnetization of F is along the direction sinαex + cosαez in the xz-plane, so that α is the magnetic misalignment in the
structure. In accordance with the experiment, we set the length of S to 10ξS , F to 0.3ξS , N to 1.0ξS , and HM to 20ξS , where
ξS = 5 nm is the coherence length of the superconductor MoGe. However, we found no spin-valve effect Tc(0)−Tc(π/2) for
this set of parameters, where Tc(α) is the critical temperature for a structure with a misalignment α as defined above.

In figs. 1 to 4 below, we show that this conclusion is very robust to changes in model parameters. All plots show the critical
temperature Tc measured relative to the bulk superconductor critical temperature Tcs. The four subfigures in each figure show
the critical temperatures Tc(0) and Tc(π/2) for different magnetic configurations, as well as results for both an S/F/N/HM and
S/F/N junction with the same parameters. In fact, not only do we find that Tc(π/2) is nearly identical to Tc(0) for a very wide
parameter span, but we also see that the results for an S/F/N/HM and S/F/N junction look the same as well. From this, we draw
the conclusion that although there is a large proximity effect in these structures – as evidenced by Tc(0) and Tc(π/2) being much
smaller than Tcs – there is only a negligible spin-valve effect Tc(0)−Tc(π/2). The comparison between the S/F/N/HM and
S/F/N junctions show that in all cases, the observed proximity effect can be attributed solely to the F layer and not the HM layer.

The reason for this lack of spin-valve effect, seems to be that there are too many interfaces inbetween the S and HM in the
S/F/N/HM junction. Since we assume that each interface in this junction is a tunneling barrier, this leads to a very low effective
transparency between the S and HM layers. In other words, if all the Cooper pairs leaking out of S are either reflected at one of
these interfaces, or decay inside the F, then they do not reach the HM. This, of course, means that the properties of the HM
become irrelevant for the physical state of S. Thus, we end up with an effective S/F bilayer and not a spin-valve.

We therefore conclude that the the experiment by Singh et al. is likely to have a different mechanism than a triplet spin-valve.
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Figure 1. Critical temperature as a function of the superconductor length LS . The other parameters were set to the experimental
estimates described in the text. To see a significant proximity effect, we need the superconductor to be shorter than ∼2ξS ,
which is much smaller than the ∼10ξS used in the experiment. This result is consistent with the conventional wisdom that the
coherence length is the “healing length” of a superconductor, over which the superconducting gap is restored to nearly its bulk
value: even if ∆→ 0 at one end, ∆→ ∆0 at the other end if LS � ξS , resulting in a high Tc. Note that even for a superconductor
as short as 1ξS , we see no evidence of a spin-valve effect since the curves for Tc(0) and Tc(π/2) behave in the same way. We
also see no evidence of the HM having any effect on the superconductor, since removing it produces the same Tc curves.
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Figure 2. Critical temperature as a function of the ferromagnet length LF . In order to see any proximity effect at all, we have
chosen a superconductor length LS = ξS for this simulation, which is much smaller than the experimental value 10ξS . The other
parameters are as close to the experimental estimates as possible, as described in the text. Even with these changes, we see no
evidence of a spin-valve effect even with an F length significantly different from the experimental value 0.3ξS .
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Figure 3. Critical temperature as a function of the exchange field h. In order to see any proximity effect at all, we have chosen
a superconductor length LS = ξS . The other parameters are as close to the experimental estimates as possible, as described in
the text. Even if we decrease the exchange field with more than an order of magnitude compared to the value h = 50∆0, which
is already low compared to the experiment, we do not find any spin-valve effect. Increasing the exchange field would not help
either, since that would cause even more Cooper pairs to decay inside the F, further reducing the number that reaches the HM.
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Figure 4. Critical temperature as a function of the tunneling conductance G0/G at each interface in the junction. We chose a
superconductor length LS = ξS for this simulation to obtain a reasonable proximity effect, but kept the other parameters as close
to the experimental estimates as possible, as described in the text. Even using a relatively high tunneling conductance G0 = G
does not produce any evidence of a spin-valve effect in our numerical simulations.
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We demonstrate that spin supercurrents are conserved upon transmission through a conventional supercon-
ductor, even in the presence of spin-dependent scattering by impurities with magnetic moments or spin-orbit
coupling. This is fundamentally different from conventional spin currents, which decay in the presence of such
scattering, and has important implications for the usage of superconducting materials in spintronics.
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I. INTRODUCTION

Superconducting spintronics marries the dissipationless
currents of superconductors with nanoscopic hardware in
which both charge and spin degrees of freedom are ma-
nipulated [1–4]. Recent experiments have demonstrated that
such devices offer significant improvements over their non-
superconducting counterparts, showcasing, e.g., enhanced spin
lifetimes [5], relaxation lengths [6], spin Hall effects [7], and
infinite magnetoresistance [8].

Magnetic and spin-orbit impurities usually act as antag-
onists to spintronics as they cause a rapid spatial decay of
conventional spin currents, which remain polarized only up
to the spin relaxation length [9,10]. Realistic superconductors
also contain magnetic and spin-orbit impurities that randomize
the electron spins. Taken in combination with the fact that
Cooper pairs in the bulk of a conventional superconductor
are spinless, one might expect such impurities to also cause a
decay of spin supercurrents in a superconductor. However, it
has recently been shown that spin supercurrents do not decay
in homogeneous magnets with spin-dependent scattering [11].
Here, we find the surprising result that the spin supercurrent
is also conserved in superconductors, and we analyze the
underlying physical mechanism. The result has significant
implications for the use of superconductors in spintronic
architectures, the experimental implementation of which is
just starting to flourish [1–8].

II. PHYSICAL SYSTEM

We consider theoretically the spin supercurrents in a
Sn/Ho/Co/Sn/Co/Ho/Sn multilayer stack, as shown in Fig. 1.
This structure is inspired by the Nb/Ho/Co/Ho/Nb system
investigated experimentally in Ref. [12]; however, we insert a
superconductor within the central magnetic layer to investigate
how spin currents behave in superconductors. A related model
was considered in Ref. [13], which however focused on
the behavior of the charge and not spin supercurrents. In
contrast to their model, we also treat the central superconductor
self-consistently in order to ensure charge conservation.

Tin (Sn) is a conventional superconductor with a zero-
temperature gap �0 ≈ 1.15 meV, coherence length ξ ≈
30 nm, and density of states N0 ≈ 66 eV−1 nm−3 at the
Fermi level [14]. Note that the value for the density of states
corresponds to white tin at room temperature, but we will
use it as an order-of-magnitude estimate also at cryogenic
temperatures. The source and drain are bulk superconductors

with gaps �0e
±iϕ/2, where ϕ is their phase-difference, while

the gap is determined self-consistently in the central Sn [15].
Holmium (Ho) is a conical antiferromagnet below ∼20 K
[16], having a spatially rotating in-plane magnetization with
a constant out-of-plane component. We therefore model the
exchange field in the Ho layer as

h = 5�0[sin(γ ) cos(z/ζ ), sin(γ ) sin(z/ζ ), cos(γ )], (1)

where the cone angle γ = 0.45π [16], and the spiral length
ζ = 3.34 nm [17]. We set the Ho layer lengths to 1.5ζ = 5 nm,
since the spin current in the central layer is maximal for
nonintegral numbers of Ho spirals [12]. Lastly, we model
the relatively strong exchange fields of both Cobalt (Co)
layers as h = 50�0ey , assuming that their magnetizations are
homogeneous, parallel, and in-plane. The lengths of each Co
layer was set to 0.1ξ = 3 nm. Note, however, that the results are
qualitatively unaffected by these specific parameter choices.

The outer Sn layers in Fig. 1 are superconducting reservoirs,
and act as sources for singlet Cooper pairs |↑↓〉 − |↓↑〉.
These singlet pairs leak into the neighboring Ho layers,
where the inhomogeneous magnetic order converts them into
a mixture of all possible triplet pairs: |↑↓〉 + |↓↑〉, |↑↑〉,
and |↓↓〉, with spin projections measured relative to the Co
magnetization. The |↑↓〉 + |↓↑〉 contributions rapidly decay
inside Co, because the constituent electrons belong to different
spin bands. Furthermore, the interfacial spin polarization leads
to a slight increase in the number of |↑↑〉 pairs compared to
|↓↓〉 pairs. Thus the central Sn layer obtains a proximity-
induced repository of triplet pairs, which is dominated by
the |↑↑〉 component, but also contains traces of other triplet
components. In addition, this Sn layer has its own condensate
of singlet pairs, which may be converted into |↑↓〉 + |↓↑〉
triplets at the Co interfaces. This leads to a complex mixture
of Cooper pairs throughout the junction, which may partake
in the transmission of a completely general spin supercurrent.
In the rest of the manuscript, we analyze the properties and
behavior of this current.

III. THEORY

For the numerical analysis, we employ the quasiclassical
theory of superconductivity, taking the whole junction to be
diffusive and in equilibrium. Specifically, we solve simulta-
neously the Usadel diffusion equation in each layer [18–22],

ih̄D∂z(ĝ∂zĝ) = [	̂,ĝ], (2)

2469-9950/2017/96(9)/094505(6) 094505-1 ©2017 American Physical Society
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FIG. 1. The thin-film stack considered in this paper. The insets
on the right show the magnetization textures in the Co and Ho layers.

and the gap equation in the central superconductor [15],

�(z) = 1

2
N0λ

∫ +�

−�

dε fs(z,ε) tanh(ε/2T ), (3)

yielding self-consistent results. Equation (2) is solved for
the 4 × 4 matrix ĝ(z,ε), which contains the spin-resolved
normal and anomalous retarded propagators as functions of the
quasiparticle energy ε and position z. The other matrices are

	̂ = ετ̂3 + �̂ + hσ̂ + αsf σ̂ ĝσ̂ + αso τ̂3σ̂ ĝσ̂ τ̂3, (4)

τ̂3 = diag(+1,+1,−1,−1), (5)

�̂ = antidiag(+�,−�,+�∗,−�∗), (6)

σ̂ = diag(σ ,σ ∗), (7)

where σ is the Pauli vector. In addition, the equations involve
the local superconducting gap �, exchange field h, spin-flip
scattering rate αsf, spin-orbit scattering rate αso, normal-state
density of states at the Fermi level N0, BCS coupling constant
λ, diffusion coefficient D = �0ξ

2/h̄, temperature T , Debye
cutoff � = �0 cosh(1/N0λ), and Planck’s reduced constant h̄.
Inelastic scattering is approximated by a complex quasiparticle
energy, i.e., ε → ε + 0.01�0i. Only the singlet component
fs of the propagator matrix ĝ enters Eq. (3). For more details
about the numerical solution of these equations, see Ref. [23].

We use Kupriyanov–Lukichev boundary conditions for
Sn/Ho interfaces [24], and general spin-active boundary
conditions for Ho/Co and Co/Sn interfaces [25–29]. To
model experimentally realistic interfaces with low to moderate
transparency, we set the ratio of tunneling to bulk conductance
to be GT /G0 = 0.3 at each interface. We set Gϕ/GT = 0.3 at
each Co interface, where Gϕ is the spin-mixing conductance.
The interfacial spin polarization of Co was set to P = 0.12,
based on estimates for the polarization of the conductivity [30].

Once the equations above are solved, the charge current Je

and spin current Js are found via

Je(z) = 2Je0

∫ +∞

−∞
dε Re Tr[τ̂3ĝ(z,ε) ∂z ĝ(z,ε)] tanh(ε/2T ),

(8)

Js(z) = 2Js0

∫ +∞

−∞
dε Re Tr[σ̂ τ̂3ĝ(z,ε) ∂z ĝ(z,ε)] tanh(ε/2T ),

(9)

where Je0 = eN0�
2
0ξ

2A/4h̄L, Js0 = h̄Je0/2e, e is the electron
charge, L is the length of the central superconductor, and
A is the cross-sectional area of the junction. Using the
previously specified material parameters for Sn, and assuming
a superconductor length L ≈ ξ , the current density unit can
be estimated as Je0/A ≈ 16 MA/cm2. The charge and spin
currents are measured relative to this unit throughout the
manuscript, and are typically 1–4 orders of magnitude smaller.

The spin current above may be decomposed into an
exchange current Js+ and polarization current Js−:

Js±(ϕ) ≡ [ Js(+ϕ) ± Js(−ϕ)]/2. (10)

By construction, these currents Js± are symmetric and an-
tisymmetric under ϕ → −ϕ, respectively. The polarization
current is just the spin-polarized component of the charge
current, and vanishes at ϕ = 0 as expected. Note that a
polarization current can only be obtained if one includes
the interfacial polarization of Co in the model, to act as a
spin filter by providing different tunneling amplitudes for
|↑↑〉 and |↓↓〉 Cooper pairs, where the spin-directions are
measured relative to the Co magnetization. Otherwise, the
electric current will be transported by an equal number of |↑↑〉
and |↓↓〉 pairs, resulting in no net spin transfer. On the other
hand, the exchange current mediates the exchange interaction
between ferromagnetic layers [31], and can be finite even
for ϕ = 0, i.e., without any charge current. These quantities
behave quite differently as functions of the superconducting
phase-difference [11]. Herein, we focus on the magnitudes
Js± = |J s±| of these spin currents, and not their polarization
directions.

In Josephson junctions [32], the supercurrent depends
on the phase-difference ϕ between the superconductors as
well as the properties of the barrier [33]. Whereas it takes
a sin(ϕ) form for normal tunneling barriers, it can take a
sin(ϕ + π ) form when the barrier is magnetic [33–35], and
an even more exotic sin(ϕ + ϕ0) form in the presence of
spin-orbit coupling [36–40]. Herein, we are interested in
studying supercurrents inside a superconductor, which is why
we focus on double-barrier junctions with a superconductor
sandwiched in the middle. Depending on the system pa-
rameters, the supercurrent can also take a more complex
sin(ϕ/2) sgn[cos(ϕ/2)] form in such junctions [41–46]. This
sin(ϕ/2) behavior can intuitively be understood if one thinks of
the double-barrier junction as a concatenation of two regular
Josephson junctions, where a total phase-difference ϕ over
the double-barrier junction is distributed evenly between the
subjunctions. In this manuscript, we will briefly discuss the
charge supercurrent for completeness, but the main focus will
however be the spin supercurrents.

IV. ANALYTICAL ARGUMENT

We will now prove analytically that the spin supercurrent
is conserved in superconductors with spin-flip and spin-
orbit scattering within a self-consistent Born approximation
framework, where conventional spin currents typically decay
[47,48]. First, let us rewrite the spin current in Eq. (9) as

Js(z) = 2Js0

∫ +∞

−∞
dε Re[ j s(z,ε)] tanh(ε/2T ), (11)

094505-2
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where we define a spectral spin current

j s ≡ Tr[σ̂ τ̂3ĝ∂zĝ]. (12)

The easiest way to satisfy the conservation of spin current
Js would be if the spectral spin current j s is conserved as
well. Mathematically, this can be checked by differentiating
Eq. (12), and investigating whether the resulting expression
vanishes:

∂z j s = Tr[σ̂ τ̂3∂z(ĝ∂zĝ)] = 0. (13)

Note that ∂z(ĝ∂zĝ) is just the left-hand side of the Usadel
equation [Eq. (2)], such that the condition simplifies to

Tr{σ̂ τ̂3[	̂,ĝ]} = 0. (14)

This condition can be checked by inserting the most general
form for ĝ, containing all allowed symmetry components
of the normal and anomalous propagators, and explicitly
evaluating the trace [11]. The process is straightforward but
tedious, and therefore omitted here. The result is that the
condition holds in the presence of a superconducting gap
�, spin-flip scattering αsf , and spin-orbit scattering αso. This
constitutes an analytical proof that spin currents are conserved
in superconductors with spin-flip and spin-orbit scattering.

However, the quasiclassical approach also allows one to go
further, permitting a self-consistent numerical investigation
to expose the underlying physical mechanisms behind this
conservation of the spin supercurrent in superconductors. We
focus on this topic in the remainder of the paper.

V. NUMERICAL RESULTS

In Fig. 2, we see how the charge and spin currents
vary as functions of position in a junction with scattering
rates αsf = αso = 0.01�0 and a phase-difference ϕ = π/2.
For comparison, these scattering rates α are related to the
scattering lengths � by α = �0ξ

2/8�2. Using the spin-flip
lengths reported in Ref. [9], we find that αsf/�0 varies
in the range 10−4−10−1 for typical nonmagnetic metals at

FIG. 2. Charge current Je and spin currents Js± as functions
of position z. The dotted vertical lines indicate interfaces between
materials in the junction. In this case, the phase-difference between
the outer superconductors is ϕ = π/2, the central superconductor has
length L = ξ , and the scattering rates are αsf = αso = 0.01�0. Note
that the charge current is conserved throughout the junction, while
the spin current is only conserved inside the central superconductor.

FIG. 3. Plots of the (a) superconducting gap, (b) charge current,
(c) exchange current, and (d) polarization current as functions of
the superconductor length L. The shape of the charge current-phase
relation is shown below for a superconductor length (e) L/ξ = 0.500,
(f) L/ξ = 0.635, and (g) L/ξ = 1.000. The currents were calculated
for αsf = αso = 0, and a phase-difference ϕ = π/2 between source
and drain. The lengths in (e)–(g) are indicated by coloured markers
in (b).

cryogenic temperatures, but it can be further increased by
doping with magnetic atoms. We see that the charge current
is preserved as expected, and since Js− is interpreted as the
spin-polarization of the charge current, this must necessarily
also be dissipationless. To consider the exchange current,
we note that the spin current is carried by triplet pairs,
and randomization by scattering merely alters the number
of singlet/triplet states available, via the introduction of an
imaginary energy term. Since the impurities provide no means
of conversion from triplet to singlet states, or rotation to
another triplet state, the magnitude of the conserved current is
governed by the size of the junction (Fig. 3) and the scattering
strength (Fig. 4), as discussed below.

The effect of the superconductor length is investigated in
Fig. 3 for the ideal case without spin-dependent scattering.
From Fig. 3(a), we see that as the length is increased, the
superconducting gap � increases from zero to the bulk gap
�0. During this transition from a normal to superconducting
state, the charge current (b) switches sign, indicating that
we have a 0–π transition in the junction. We also note that
the charge current is significantly increased when the central
layer is in a superconducting rather than normal state, as
one should expect. Investigating the current-phase relation
around the 0–π transition [between (e) and (g) as indicated
in (b)], reveals that the junction simultaneously switches from a
sin(ϕ) to sin(ϕ/2) sgn[cos(ϕ/2)] current-phase relation during
the transition [41–46]. Exactly at the 0–π transition (f), the

094505-3



JABIR ALI OUASSOU, SOL H. JACOBSEN, AND JACOB LINDER PHYSICAL REVIEW B 96, 094505 (2017)

FIG. 4. Plots of the (a) superconducting gap, (b) charge current,
(c) exchange current and (d) polarization current as functions of
the scattering rate α. The black curves include both spin-flip and
spin-orbit scattering; the orange curves show pure spin-flip scattering;
the purple curves show pure spin-orbit scattering. Note that in (a) and
(b), the black and orange curves overlap almost completely.

current-phase relation is dominated by a higher-order sin(2ϕ)
contribution.

As the superconductor length increases, the exchange (c)
and polarization (d) currents decay. This can be explained as
follows. The concentration of triplet pairs decays exponentially
away from the interfaces, meaning that the triplet concentration
at the center of the junction decreases exponentially with the
superconductor length. Since the spin currents are conserved,
the triplet concentration at the center acts as a “bottleneck”
for the spin currents. Thus, the spin currents also decay
exponentially with the system length. One notable exception
to this monotonic decay occurs precisely at the 0–π transition
point, where the spin currents suddenly fluctuate. This happens
because the charge current drops abruptly near the transition
point, which causes the polarization current to decrease while
the exchange current increases.

In Fig. 4(a), we see how the scattering rates affect the gap.
Since singlet pairs are resistant to spin-orbit scattering but
destroyed by spin-flip scattering, the gap is only significantly
suppressed by the spin-flip impurities. The majority of the
charge current in a superconductor is of course transported by
the condensate of singlet pairs, so the charge current (b) is also
hindered by spin-flip but not spin-orbit scattering. Just like we
found in Fig. 3, the system undergoes a 0–π transition when
the superconducting gap becomes nonzero, and the charge
current-phase relation (not shown) changes from a sin(ϕ) to
sin(ϕ/2) sgn[cos(ϕ/2)] shape during this phase-transition.

Looking at the spin currents [(c) and (d)], we note that
an increasing spin-orbit scattering causes a weak monotonic
decrease. This is because the scattering suppresses the triplet
population throughout the junction, limiting the size of the spin
currents. In the case of spin-flip scattering, however, the picture
becomes more complex. Small increases in the scattering rate
decrease the polarization current—but further increasing it

leads to a resurgence. In fact, it reaches a value that is even
higher than for zero spin-flip scattering, leading to the counter-
intuitive conclusion that a moderate spin-flip scattering can
actually increase the spin current. For the exchange current,
we see the opposite trend: it initially increases with the spin-flip
scattering, but then decays rapidly afterwards.

The reason for this behavior is as follows. There are
two triplet sources for the central superconductor: (i) singlet
pairs from the central superconductor that are converted
to triplets at the Co-interface; (ii) singlet pairs from the
outer superconductors that are converted to triplets as they
diffuse through the Ho and Co layers. The first kind of
triplet dominates the transport when the central gap is strong
(� → �0), but only the second kind contributes when it
is weak (� → 0). It can be shown that for our junction
parameters, the first kind results in a positive contribution to the
charge current and the second a negative, explaining the 0–π

transition as a function of any parameter that modulates the
gap. The 0–π transition in the triplet current occurs slightly
earlier than the corresponding transition in the total charge
current, but the transition regime matches the nonmonotonic
regimes in Figs. 4(c) and 4(d) very well. Furthermore, the first
kind of triplet is less spin-polarized than the second kind since
it did not have to pass through the Co spin filters, explaining the
increase of the polarization current in Fig. 4(d) as the dominant
triplet source changes.

VI. DISCUSSION

We have shown analytically and numerically that spin
supercurrents are conserved in superconductors, even when we
include spin-flip and spin-orbit scattering processes. We pro-
ceeded to analyze how the results varied with sample size and
scattering rates in Figs. 3 and 4, and identified a combination of
a 0–π transition, sin(ϕ) → sin(ϕ/2) sgn[cos(ϕ/2)] transition,
and a complex modulation of the spin current. Increasing the
interface transparencies would have increased all currents in
the junction, and choosing a material with higher polarization
than Co should enhance the polarization current.

The conservation of spin currents can intuitively be under-
stood as follows. The polarization current physically corre-
sponds to the spin-polarized part of the charge current. Since
Cooper pairs that participate in charge transport are protected
against resistive scattering, the same protection applies to the
polarization current as well, resulting in it being conserved.
The exchange current, on the other hand, can be shown to be
conserved even in non-superconducting F/N/F systems [31].
If both the polarization and exchange currents are conserved
separately, the total spin current is conserved as well.

It was noted in Ref. [49] that an equilibrium spin current is
conserved in a superconductor free from magnetic impurities.
The conservation of the spin current is consistent with the
angular momentum conservation law since spatial variations
in the current must generate a torque on a magnetic order
parameter, and no such torque is present in a superconductor.
However, this argument breaks down in the presence of
magnetic impurities: in this case, the spatial variations in
the current could generate a torque on the impurity spin
orientations. Since we still find that the spin supercurrent
is conserved in the presence of such impurities, the spin
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supercurrents must behave in a fundamentally different way
from their dissipative counterparts.

As shown in Figs. 3(c) and 3(d), the spin supercurrents
are small if the central superconductor becomes much larger
than the coherence length, which in our proposed junction
is ξ ≈ 30 nm. Since the spin-relaxation length can exceed
0.5 μm in e.g. Al, the conservation of spin supercurrents over
∼30 nm may not seem that significant. However, we expect
the spin supercurrent to have a conserved component also
in ballistic junctions. Since the superconducting coherence
length in e.g. Al can reach 1.6 μm in the ballistic case,
this entails a conservation over remarkable length scales.
Moreover, spin supercurrents are fundamentally different from
conventional spin currents since they may be manipulated
using phase-coherent circuits in equilibrium, which may lead
to entirely new kinds of spintronic device design. While we
do not propose any device that supersedes its conventional
equivalents here, a thorough understanding of the properties
of spin supercurrents will be vital for the future development
of such devices.

Our numerical results show that the charge currents are
typically below 10−1Je0 ≈ 1 MA/cm2, which is reasonable
for a supercurrent inside a superconductor. However, the spin
currents are typically of order 10−4Js0 ≈ (h̄/2e) × 1 kA/cm2,
which is small compared to what is routinely produced
in nonsuperconducting spintronics circuits.1 The purpose
of the junction studied in this paper was however not to
maximize the spin currents, but to investigate the fundamental
physics and demonstrate that spin currents are conserved
for a completely general structure with both exchange and
polarization currents. It would, however, be straightforward
to enhance the spin currents by a few orders of magnitude.
For instance, one could increase the tunneling conductance
towards G0, reduce the thickness of the Ho layers to ζ/2,
and remove the Co spin filters. The spin current is conserved
also in these more optimized junctions, which may be of more
interest for applications. Moreover, in our structure we used

1For instance, charge current densities up to 120 MA/cm2 have been
achieved in permalloy [50], which has a spin polarization of 0.38 [30],
thus yielding spin current densities of (h̄/2e) × 46 MA/cm2.

magnetically inhomogeneous Ho layers to generate the |↑↑〉
and |↓↓〉 triplet components, which are long-ranged in the
Co spin filters. However, intrinsic spin-orbit coupling can also
perform this function [15,51,52]. In that case, homogeneous
ferromagnets would be sufficient [11], and it could be
instructive to include such systems in further investigations
of current maximization.

A numerical treatment of a ballistic S/F/S/F/S system in
equilibrium was considered in Ref. [53]. In such a system,
the current magnitude decreases with layer length because
it decreases the ferromagnetic coupling. In our case, we
have demonstrated the surprising result that spin currents
are immune to magnetic and spin-orbit impurities, inevitably
present in real materials, which rapidly destroy spin currents in
nonsuperconducting systems. Furthermore, we have shown the
counterintuitive result that the magnitude of the spin currents
can actually increase with impurity concentration.

VII. CONCLUSION

Using a combination of both analytical arguments and
numerical simulations, we have shown that spin supercurrents
are conserved in superconductors, even in the presence of spin-
dependent scattering processes. Furthermore, we have shown
that the charge and spin supercurrents have a nonmonotonic
dependence on the various junction parameters, and that the
current-phase relation also changes its shape as these are
varied. The result that spin supercurrents do not decay in
superconductors has profound consequences with regard to
potential applications based on spintronics, since it implies
that information carried by the spin degree of freedom
can be transmitted without loss or decoherence through a
superconductor.
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With a combination of simple analytical arguments and extensive numerical simulations, we theoretically
propose a Josephson junction with n + 1 superconductors where the current-phase relation can be toggled in situ
between a sin(δϕ) and sin(δϕ/n) shape using an applied magnetic field. Focusing in particular on the case n = 2,
we show that by using realistic system parameters such as unequal interface transparencies, the sin(δϕ/2)-shaped
solution retains its 2π periodicity due to discontinuities at δϕ = ±π . Moreover, we demonstrate that as one
toggles between the sin(δϕ)- and sin(δϕ/2)-shaped solutions, the system acts as an on-off switch, and can
achieve more than two orders of magnitude difference between the supercurrent in the on and off states. Finally,
we argue that the same approach can be generalized to switchable sin(δϕ/n) junctions for arbitrary integers n,
which we motivate by analytically solving the Josephson equations for double- and triple-barrier junctions.

DOI: 10.1103/PhysRevB.96.064516

I. INTRODUCTION

In a Josephson junction, two superconductors are prox-
imity coupled through a nonsuperconducting region, such
as a normal metal or insulator. In conventional Josephson
junctions, it can be shown that the current flowing between
the superconductors in the tunneling limit is proportional
to sin(δϕ), where δϕ is the phase difference between the
superconductors [1]. These are also known as 0 junctions,
as the ground state is δϕ = 0. In recent years, there has
been a lot of interest in developing Josephson junctions with
unconventional current-phase relations. One of the first was
the experimental realization of π junctions using magnetic
elements between the superconductors [2,3], where the current
is proportional to sin(δϕ + π ), i.e., it flows in the opposite
direction to a 0 junction for the same phase difference δϕ.
This work was then extended to ϕ junctions with two ground
states δϕ = ±ϕ by combining 0 and π junctions [4,5]. Another
important development was the very recent construction [6] of
a ϕ0 junction using spin-orbit interactions [7–11], where the
current was found to be proportional to sin(δϕ + ϕ0), with an
electrically controllable phase bias ϕ0.

In this paper, we focus on a different scenario, namely,
a sin(δϕ/n) junction. The special case of sin(δϕ/2) has
previously been discussed in Refs. [12–15], and has recently
been subject of rekindled interest as a possible signature
for a Majorana-mediated supercurrent [16–19]. Here, we
demonstrate theoretically a Josephson junction where the
current-phase relation can be toggled in situ between a sin(δϕ)
and sin(δϕ/2) shape by changing the configuration of a
spin valve via a magnetic field. The current-phase relation
nevertheless retains its 2π periodicity due to discontinuities
at δϕ = ±π . Moreover, we show that when toggling between
the two current-phase relations, the system acts as an on-off
switch: the supercurrent magnitude can differ by more than
two orders of magnitude in the two states. We further argue
that the same approach can be used to construct more general
junctions with sin(δϕ/n) shapes, where n is an arbitrary and
magnetically tunable integer. In addition to being interesting

*jabir.a.ouassou@ntnu.no

from a fundamental physics point of view, discovering novel
kinds of Josephson junctions may also find applications in both
digital and quantum computing [20].

II. ANALYTICAL ARGUMENT

A. Double-barrier junction

From here on, we use the notation S for superconductors and
X for nonsuperconductors, where X can be any combination
of ferromagnets (F), insulators (I), and normal metals (N). It
is well known that in the tunneling limit, the current-phase
relation for a single-barrier S/X/S Josephson junction is [1]

J = Jc sin(δϕ), (1)

FIG. 1. Schematic of the proposed device. (a) If the ferromagnets
are aligned in parallel, the effective exchange fields experienced by
the conduction electrons add up inside the superconductor, resulting
in a strong net field there. This net exchange field suppresses
superconductivity, making the central layer act as a normal metal. We
therefore get an effective S/X/S junction with a conventional sin(δϕ)
current-phase relation. (b) If the ferromagnets have an antiparallel
alignment, their fields cancel near the center of the superconductor.
The central layer thus acts as a superconductor, and we get an
S/X/S/X/S junction with a more exotic sin(δϕ/2) shape for the
current-phase relation instead. (c) In principle, the same idea can be
extended to a junction that consists of m superconductors sandwiched
in-between ferromagnets. This should result in a junction with a
general sin(δϕ/n) shape for the current-phase relation, where n ∈
[1, m + 1] is magnetically tunable. For instance, an S/X/S/X/S/X/S
system could support n = 1 for an ↑↑↑ configuration of the magnetic
layers, n = 2 for ↑↑↓, and n = 3 for ↑↓↑.

2469-9950/2017/96(6)/064516(7) 064516-1 ©2017 American Physical Society
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FIG. 2. Analytical plot of (a) the supercurrent and (b) the free
energy as functions of the phase difference in a sin(δϕ/2) junction.
For every value of the phase difference δϕ, there are two solutions: the
low-energy state (dark blue line) and high-energy state (transparent).

where Jc is the critical charge current, and δϕ is the net phase
difference across the junction. Under certain conditions, this
result can be generalized to junctions with multiple supercon-
ducting elements. Let us first assume that the superconducting
phase changes slowly as function of position inside each
superconducting layer, i.e., that the supercurrent is relatively
small. In this limit, we can treat an S/X/S/X/S junction (see
Fig. 1) as a concatenation of two S/X/S subjunctions, where
the subjunctions are described by the current-phase relations

J12 = Jc sin(ϕ2 − ϕ1), J23 = Jc sin(ϕ3 − ϕ2), (2)

where Jij is the current from superconductor number i to j , ϕi

is the phase of superconductor number i, and we have assumed
that the critical current of each subjunction is equal. In any real
physical system, these critical currents will not be identical,
and we later discuss in detail how this influences the result.
We have some freedom when choosing these phases ϕi since
only phase differences affect the physics of the system. We
may therefore define ϕ1 ≡ −δϕ/2 and ϕ3 ≡ +δϕ/2, such that
the net phase difference across the junction is ϕ3 − ϕ1 = δϕ:

J12 = Jc sin(δϕ/2 + ϕ2), J23 = Jc sin(δϕ/2 − ϕ2). (3)

Since the current has to be conserved through the junction,
we have the constraint J12 = J23 ≡ J . The resulting equations
have two distinct solutions ϕ2 = 0 and π , yielding the currents

J = ±Jc sin(δϕ/2). (4)

Adding up the energies Eij = Ec[1 − cos(ϕj − ϕi)] of each
subjunction, where Ec = h̄Jc/2e is the Josephson energy, we
also find the corresponding junction energies

E = Ec[2 ∓ 2 cos(δϕ/2)]. (5)

Similarly, one can show that an S/X/S/X/S/X/S junction results
in a sin(δϕ/3) current-phase relation shape (see Sec. II B), and
that adding more superconductors and barriers in this way may
lead to more general sin(δϕ/n) shapes (see Sec. II C).

For each external phase difference δϕ, there is a low-energy
and a high-energy solution, as illustrated in Fig. 2. Each of
these branches are 2π periodic. From here on, we will focus
on the low-energy branch, which can be written succinctly [15]

J = Jc sin(δϕ/2) sgn[cos(δϕ/2)] . (6)

Throughout this paper, we will for brevity refer to this current-
phase relation as having a sin(δϕ/2) shape, even though it is
2π periodic due to discontinuities at δϕ = ±π .

With this in mind, let us consider S/F/S/F/S double-barrier
junctions, where the central F/S/F acts as a superconducting
spin valve (see Fig. 1). Switching the orientation of only one
F in such a structure can, e.g., be achieved using materials
with intrinsically different coercivities [21], or using different
thicknesses for the ferromagnets, where the latter affects both
coercivities and anisotropies. Depending on whether the two F
layers have a parallel (P) or antiparallel (AP) orientation, their
effective magnetic exchange fields induced in the central S will
either add or cancel. The stability of the superconducting con-
densate depends on the net exchange field felt by the Cooper
pairs there, which means that one can toggle superconductivity
on and off in the central region [22,23], effectively switching
between an S/X/S and S/X/S/X/S junction. Since the S/X/S
junction always has a sin(δϕ)-shaped current-phase relation,
while an S/X/S/X/S junction also supports sin(δϕ/2)-shaped
solutions, the result is that one should be able to magnetically
switch between these current-phase relations. In Sec. III,
we show the results of extensive self-consistent numerical
simulations which confirm this prediction.

B. Triple-barrier junction

Let us now move on to a slightly more complicated case,
namely, S/X/S/X/S/X/S junctions. In other words, we now have
three concatenated S/X/S junctions, which we can describe
using three currents J12, . . . ,J34 and four phases ϕ1, . . . ,ϕ4:

J12 = Jc sin(ϕ2 − ϕ1), (7)

J23 = Jc sin(ϕ3 − ϕ2), (8)

J34 = Jc sin(ϕ4 − ϕ3). (9)

To simplify the derivations, we parametrize the superconductor
phases ϕ1, . . . ,ϕ4 in terms of their averages and differences:

ϕ1 ≡ a − d/2, ϕ2 ≡ b − c/2, (10)

ϕ4 ≡ a + d/2, ϕ3 ≡ b + c/2. (11)

In other words, the outer superconductors are described by
their average a and difference d, while the inner ones are
described by the corresponding parameters b and c. Since the
overall phase of the system has no physical significance, we
can set a = 0 without loss of generality. Thus, we obtain

J12 = Jc sin(+b − c/2 + d/2), (12)

J23 = Jc sin(c), (13)

J34 = Jc sin(−b − c/2 + d/2). (14)

To determine the current-phase relation of the junction,
we need to solve the current conservation equation J12 =
J23 = J34 for a fixed external phase difference δϕ ≡ d ≡
ϕ4 − ϕ1. Let us first consider the part J12 = J34. Invok-
ing the trigonometric identity sin(u ± v) = sin(u) cos(v) ±
cos(u) sin(v) on both sides of the equation, this can be rewritten
as sin(b) cos(d/2 − c/2) = 0. This has three distinct solutions:
b = 0, b = π , and c = d + π . We will first address the
solution branches b = 0 and π . If we substitute these solutions
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FIG. 3. Analytical plot of (a) the supercurrent and (b) the free
energy as functions of the phase difference in a sin(δϕ/3) junction.
There are multiple solutions: the sin(δϕ/3)-shaped low-energy state
(dark blue), sin(δϕ/3)-shaped excited states (transparent blue), and
sin(δϕ)-shaped excited state (transparent red). Note that the low-
energy state is 2π periodic due to discontinuities at δϕ = ±π, ± 3π .

into J12 = J23, we obtain

sin(c) = ± sin(d/2 − c/2). (15)

This equation admits four distinct solutions: b = 0, c = d/3;
b = π , c = (d − 2π )/3; b = π , c = (d + 2π )/3; b = π ,
c = −d . Let us first consider the first three solutions. Substi-
tuting these into the currents and energies of each subjunction,
restoring the notation δϕ ≡ d, and defining k ∈ {−1,0,+1},
we find the current-phase and energy-phase relations

J = Jc sin[(δϕ + 2πk)/3],

E = Ec{3 − 3 cos[(δϕ + 2πk)/3]}. (16)

In other words, we do indeed find three solutions where the
current-phase relation has the shape sin(δϕ/3), as expected.

During the derivation above, we pointed out two alternative
ways to satisfy the equations. Substituting these into the current
conservation equation, we identify three additional solutions:
b = π , c = −d; b = d + π/2, c = d + π ; b = d − π/2,
c = d + π . The currents and energies of these solutions are:

J = −Jc sin(δϕ), E = Ec[3 + cos(δϕ)]. (17)

In other words, the alternative solutions correspond to sin(δϕ)-
shaped current-phase relations in the π phase. However, as
shown in Fig. 3, these are all excited states. The reason is that
these alternative solution branches have two subjunctions with
the energy-phase relation E = Ec[1 + cos(δϕ)] and one with
E = Ec[1 − cos(δϕ)], meaning that minimizing the energy of
one subjunction will simultaneously maximize the energy of
another. This is different from the sin(δϕ/3)-shaped solutions
above, where the energy minima of each subjunction coincide.

C. Generalization

Let us now consider a general n-barrier junction, i.e.,
a system of n + 1 identical superconductors separated by
n identical low-transparency barriers. As in the previous
subsections, we can associate one phase ϕ0, . . . ,ϕn with each
superconductor, and write the currents and energies of the n

subjunctions as

Jm,m+1 = Jc sin(ϕm+1 − ϕm), (18)

Em,m+1 = Ec[1 − cos(ϕm+1 − ϕm)]. (19)

We fix the phase of the first superconductor ϕ0 = 0, and the
last one ϕn = δϕ, so that δϕ is the phase difference between the
outer superconductors. It is then straightforward to verify that
the following phase distribution satisfies these requirements
(modulo 2π ), while also ensuring current conservation:

ϕm = (m/n)(δϕ + 2πk), (20)

where m ∈ {0,1, . . . ,n} identifies each superconductor, and
k ∈ {0,1, . . . ,n − 1} identifies each solution branch. Substi-
tuted into the current-phase and energy-phase relations, we
get the following equations for the entire junction:

J = Jc sin[(δϕ + 2πk)/n], (21)

E = Ec{n − n cos[(δϕ + 2πk)/n]}. (22)

Each of these solutions has to contribute to the lowest-energy
branch of the current-phase relation, as each of them provides
a global energy minimum E = 0 for some phase difference δϕ.
The lowest-energy branch is again manifestly 2π periodic.

III. NUMERICAL RESULTS

To investigate the ideas outlined in the previous sections, we
numerically investigated the simplest possible structure of this
kind, namely, an S/F/S/F/S structure where the ferromagnetic
layers are atomically thin insulators. The superconductors
at the ends of the junction are assumed to be much larger
than the superconducting coherence length ξ , so that we can
treat them as bulk superconductors with order parameters
�0e

±iδϕ/2, where �0 and δϕ are real numbers. The central
superconductor is assumed to have the length L = ξ/2. To
describe the superconducting correlations there properly, we
had to simultaneously solve the Usadel diffusion equation [24]

ih̄D∂z(ĝ∂zĝ) = [(ε + iδ)τ̂3 + �̂,ĝ], (23)

and the gap equation

�(z) = 1

2
N0λ

∫ +�

−�

dε fs(z,ε) tanh(ε/2T ), (24)

yielding self-consistent results. Above, � = �0 cosh(1/N0λ)
is the Debye cutoff, ε the quasiparticle energy, δ the inelastic
scattering rate, N0 the normal-state density of states at the
Fermi level, λ the BCS coupling constant, D = �0ξ

2/h̄ the
diffusion coefficient, T the temperature of the system, and h̄

Planck’s reduced constant. The 4 × 4 matrix ĝ(z,ε) contains
the spin-resolved normal and anomalous retarded Green
functions in the system, �̂ = antidiag(+�,−�,+�∗,−�∗)
contains the superconducting order parameter �(z), and
τ̂3 = diag(+1,+1,−1,−1). Only the spin-singlet part fs of the
anomalous Green function enters the gap equation above. For
more details about the numerical solution of these equations,
see Refs. [25,26].

The ferromagnetic insulators are approximated as spin-
active interfaces between the superconducting layers, which
we describe using the recently derived spin-dependent bound-
ary conditions for strongly polarized interfaces [27]. The
boundary conditions can be written in terms of the tun-
neling conductance GT , which depends on the number of
transmission channels and their transparencies: a spin-mixing
conductance Gϕ , which describes the difference in phase
shift between spin-up and spin-down electrons reflected off
the interface; and a spin-polarization P , which describes the
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different interface transparencies perceived by spin-up and
spin-down electrons. See Refs. [26,27] for more details about
these parameters. We assumed a strong interface polarization
P = 0.90, a small tunneling conductance GT = 0.02G0, and
a spin-mixing conductance Gϕ = 0.3G0, where G0 is the
normal-state conductance of the central superconductor. Such
a parameter choice is likely suitable for strongly polarized
ferromagnetic insulators such as GdN or EuS, where polariza-
tions of 90% and upward have been experimentally reported
[28,29]. Finally, we calculated the supercurrent throughout the
junction via the equation

J (z) = 2J0

∫ +�

−�

dε Re Tr[τ̂3 ĝ(z,ε) ∂z ĝ(z,ε)] tanh(ε/2T ),

(25)

where J0 = eN0�
2
0ξ

2A/4h̄L, e is the electron charge, and A

is the cross-sectional area of the central superconductor.

A. Ideal case: Symmetric junction

We will start by considering the lowest-energy current-
phase relation of a perfectly symmetric S/F/S/F/S structure,
where the symmetry implies that the critical currents of
the constituent S/F/S subjunctions are equal. In this section,
we restrict our attention to the regime −π < δϕ < +π since
the lowest-energy state is known to be 2π periodic. The numer-
ical results are shown in Figs. 4 and 5. In Fig. 4, we see that it
is indeed possible to magnetically switch between a very clean
sin(δϕ)- and sin(δϕ/2)-shaped current-phase relation. The
transition between a conventional and unconventional Joseph-
son effect obtained in this manner is sensitive to the parameters
of the junction. In a regular spin valve, achieving an absolute
spin-valve effect in the junction requires that the supercon-
ductor length is short enough and the ferromagnetic properties
strong enough to vanquish the superconducting condensate in
the P configuration. In the system under consideration here, an
additional complication is that one simultaneously requires a

FIG. 4. Numerical results for the current-phase relation of an
S/F/S/F/S junction. When we flip the magnetization direction of
one magnet, we clearly switch between a J = Jc sin(δϕ/2) and
J = Jc sin(δϕ) current-phase relation. Note that the the magnitude of
the critical current Jc is roughly 50 times larger in the AP orientation
compared to the P orientation, as indicated in the figure legend.
Since the current-phase relation is 2π periodic, while J → ±Jc

as δϕ → ±π , the sin(δϕ/2)-shaped solution is discontinuous at
δϕ → ±π .

FIG. 5. Numerical results for the superconducting order parame-
ter �(z) eiϕ(z), where � and ϕ are real-valued functions of the position
z in the central superconductor. The dashed lines correspond to a
phase difference δϕ = π/2, and the solid lines to δϕ → π . In the
AP case, the gap �(z) is close to the bulk gap �0. We have a finite
phase winding for both δϕ = π/2 and δϕ → π , but it is larger in the
latter case. In the P case, however, the gap is one to two orders of
magnitude smaller, and even drops to zero at the center for δϕ → π .
Note the discontinuity in the phase for δϕ → π and z = 0, which
is where the order parameter �eiϕ changes sign. The gap plots are
consistent with a spin-valve effect since � is suppressed in the P
but not AP configuration. The phase plots are consistent with Fig. 4
since the current J is proportional to the phase winding ∂zϕ at every
point.

sufficiently low conductance through the ferromagnetic insula-
tors to turn superconductivity off in the central superconductor.
Otherwise, the bulk superconductors are able to supply enough
Cooper pairs via the proximity effect to keep the central layer
superconducting regardless of the magnetic configuration.
However, making the conductance too low would limit the
supercurrents that we are interested in. Therefore, in an
experiment, some trial and error might be required to obtain
ideal thicknesses for the material layers.

We proceed to discuss the physics underlying the transition
between the conventional and unconventional Josephson ef-
fects. From Fig. 5, we see that the gap is close to the bulk value
�0 in the AP configuration, while it drops below 0.04�0 in
the P configuration. In other words, we have the desired spin-
valve effect, where the magnetic configuration of the junction
alone is enough to change the self-consistently calculated gap
in the central superconductor by orders of magnitude. Note
that in all cases where a current is flowing, the phase winding
in the central superconductor is relatively small, which means
that a large part of the phase winding must be happening in
the ferromagnetic insulators in-between the superconductors.
In the P configuration with δϕ = π , the order parameter
�(z)eiϕ(z) changes linearly through the junction, and drops
to zero at the center. This is the same result as one would
obtain for the proximity-induced minigap in a short π -biased
S/N/S junction, meaning that this system indeed does act as
such a junction.
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B. Realistic case: Asymmetric junction

It is impossible to construct a perfectly symmetric
S/X/S/X/S junction in reality, and it is therefore prudent to
check how sensitive the proposed setup is to asymmetries. We
have done so by setting the tunneling conductance to GT =
0.02G0(1 ± a) at the left and right interface, respectively.
Here, a parametrizes the asymmetry in the junction. It is
easy to see that in the limit a → 0 we regain the symmetric
case, while a → 1 would decouple the central superconductor
entirely from one of the electrodes. As we see from the results
in Fig. 6, the main effect of the asymmetry is to soften the
discontinuities at δϕ = ±π .

For perfectly symmetric junctions a = 0 with a high
phase difference |δϕ| > π , the numerics converged to the
high-energy branch J = −Jc sin(δϕ/2) sgn[cos(δϕ/2)] in-
stead of the low-energy J = +Jc sin(δϕ/2) sgn[cos(δϕ/2)],
apparently producing a 4π -periodic current-phase relation.
However, introducing even a tiny asymmetry a = 0.0005
results in the numerics correctly converging towards the
2π -periodic low-energy state regardless of the external phase
difference. This state is characterized by abrupt discontinuities
for δϕ = ±π [Fig. 6(a)], accompanied by equally abrupt
changes in the phase of the central superconductor from
ϕ2 = 0 to ±π [Fig. 6(b)]. As the asymmetry a increases, the
discontinuities become smoother.

If we take the superconductors in the junction to be Nb, then
the density of states at the Fermi level N0 ≈ 80 eV−1 nm−3

[30], the zero-temperature gap �0 ≈ 1.4 meV, and a typical
value for the coherence length ξ ≈ 15 nm. We assumed that
the junction is at a temperature much lower than the critical
temperature T/Tc = 0.01, and has an inelastic scattering
rate δ/�0 = 0.01. The Debye cutoff was set to � = 30�0,
which is high enough for the results to be independent of
the cutoff. Furthermore, we assumed that the length of the
central superconductor was L = ξ/2 ≈ 7.5 nm. Putting these
values together, and dividing by the cross-sectional area A

of the junction, we find that the current density unit J0/A ≈
3 × 107 A/cm2. Since we in Fig. 4 found critical currents
between J0/4 (AP) and J0/200 (P), this translates to current
densities of ∼107 A/cm2 and ∼105 A/cm2, respectively. Note
that this likely overestimates the current densities one would
observe experimentally since we treat the superconductors at

FIG. 6. Numerical results for (a) the current-phase relation and
(b) the central phase ϕ2 as functions of the external phase difference
δϕ. Both plots are for asymmetric junctions with interface conduc-
tances GT = 0.02G0(1 ± a), with a set to 0 (dashed), 0.0005 (blue),
0.1 (red). The physical current-phase relation in the lowest-energy
state is always 2π periodic due to discontinuities at δϕ = ±π , but
asymmetries in realistic junctions smooth these discontinuities.

the end of the junction as bulk superconductors. In reality,
one might expect the order parameter to be suppressed near
the interface to a strongly polarized magnetic insulator [26],
which would throttle the current.

Using the the Fermi wavelength λ ≈ 0.533 nm of Nb [31]
and the parameters above, one may also estimate the interface
transparency (average quasiparticle transmission probability):

〈T 〉 ≈ N0 �0 ξ 2λ2

1 + √
1 − P 2

GT

LG0
. (26)

This gives the result 〈T 〉 ≈ 2GT /3G0, which means that our
parameter choice GT /G0 = 0.02 corresponds to an interface
transparency of about 1.3%. This should be a reasonable value
for the case of quasiparticles tunneling through an insulator.

C. Application: Spin-switch junction

A possible application of the proposed device, which works
well in both the ideal and realistic regimes discussed in
the previous sections, is as a junction with a magnetically
controlled on-off switch for the supercurrent. Figure 4 shows
that using the interface conductance GT = 0.02G0, spin-
mixing conductance Gϕ = 0.3G0, and superconductor length
L = ξ/2, one can already obtain a factor ∼50 difference
between the critical current in the P and AP configurations.
To further investigate this prospect, we varied one of these
parameters at a time while keeping the others fixed. For each
parameter set, we calculated the ratio J AP/J P between the
charge current in the AP and P configurations, and the results
are shown in Fig. 7. These calculations were done for a phase
difference δϕ = π/2, which means that J AP/J P is not strictly
equal to the critical current ratio J AP

c /J P
c , but they should be

the same order of magnitude.
In Fig. 7(a), we see that for large interface conductances,

the current ratio tends to one and, conversely, for very small
interface conductances, the ratio diverges. Thus, with respect
to the on-off ratio, low-interface conductances are the ideal
choice. On the other hand, a low-interface conductance also
means that the current is throttled even when the junction is
turned on. In practice, there will therefore be a tradeoff between
having a large on-off ratio (small conductance) and having a
large current magnitude in the on state (large conductance).

In Fig. 7(b), we see that for small spin-mixing conductances
Gϕ , the on-off ratio tends to one. This is because in this
limit, the spin-active properties are too weak to suppress
superconductivity in either the P or AP states, leading to a
large supercurrent in both the P and AP configurations. After
Gϕ ≈ 0.15G0, the gap in the central superconductor is strongly
suppressed in the P configuration but not the AP configuration,
resulting in very high on-off ratios. For very high spin-mixing
conductances Gϕ ≈ 0.9G0 (not shown), we also found a 0-π
transition with a sin(2δϕ) current-phase relation in the AP
configuration, resulting in an even higher on-off ratio.

In Fig. 7(c), we see that for superconductors larger than
about 0.7ξ , the on-off ratio tends to one. This is because in
this limit, the superconductor is large enough to sustain a
significant gap in both the P and AP configurations, enabling
large supercurrents to in both configurations. On the other
hand, for thin superconductors, the gap is strongly suppressed
in the P but not AP configuration, yielding high on-off ratios.
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FIG. 7. Numerical results for the on-off ratio J AP/J P as function
of (a) the tunneling conductance GT , (b) the spin-mixing conductance
Gϕ , and (c) the length of the central superconductor L.

IV. DISCUSSION

The results in Fig. 4 confirm that it should be possible to
toggle between current-phase relations with clear sin(δϕ) and
sin(δϕ/2) shapes magnetically using experimentally realistic
parameters. The current-phase relation remains 2π periodic in
the low-energy state due to discontinuities at δϕ = ±π , which
are smoothed out as the junctions become more asymmetric.

Note that there is a factor 50 difference between the
critical current in the P and AP states of Fig. 4. For potential
applications where it is mainly the shape and not size of the
current-phase relation that matters, this is of course not an
obstacle. For applications where the size of the supercurrent
is important as well, the setup we propose may instead be
considered as a sin(δϕ/2) junction with a magnetic on-off
switch, similar to the ideas in Refs. [32–34]. As shown in
Fig. 7, we find that this kind of setup can produce very high
on-off ratios of 100–1000, as long as the superconductor is
short enough and the spin mixing high enough, in line with
conventional wisdom regarding optimal spin-valve design.
The tunneling conductance was found to be the limiting
ingredient, with lower conductances consistently resulting in

higher on-off ratios. However, at the same time, lower interface
conductances mean lower currents in both the on and off states.
Thus, there is a tradeoff between achieving high on-off ratios
and high current densities in the on state.

In principle, it might be possible to create a similar device
using magnetic metals instead of insulators since it has
been experimentally demonstrated that superconducting spin
valves can be constructed out of metals too [35]. However,
it is then critical that the net tunneling conductance between
each superconducting layer is small enough. If the tunneling
conductance is too high, then one would end up with
both sin(δϕ)- and sin(δϕ/2)-shaped contributions in the AP
configuration instead of a pure sin(δϕ/2)-shaped current-phase
relation.

Although we have focused on using a magnetic field to
toggle between a sin(δϕ)- and sin(δϕ/2)-shaped current-phase
relation so far, the same basic idea can be extended to other
physical setups as well. For instance, consider an S/I/S′/I/S
structure, where S is a superconductor with a particular critical
temperature (e.g., Nb with Tc ≈ 9.2 K), S′ a superconductor
with a lower critical temperature (e.g., Al with T ′

c ≈ 1.2 K),
and the I are thin layers of nonmagnetic insulators. This
junction should act as an S/X/S system with a sin(δϕ) relation
above T ′

c , but as an S/X/S/X/S system with a sin(δϕ/2)
relation below T ′

c when the interface conductance is low
enough to permit most of the phase winding to occur at the
interfaces (as in Fig. 5). In other words, it should also be
possible to thermally toggle between these sin(δϕ/n)-shaped
current-phase relations [14].

V. CONCLUSION

We have demonstrated theoretically that by changing the
magnetic configuration from a P to AP alignment in a
spin-valve Josephson junction (S/F/S/F/S), it is possible to
toggle between a sin(δϕ)- and sin(δϕ/2)-shaped current-phase
relation, which retains a 2π periodicity due to discontinuities
at δϕ = ±π . The same mechanism may be used to construct
a Josephson junction with an on-off switch, achieving two to
three orders of magnitude difference between the on and off
states. We have also argued that the same procedure can be
generalized to create arbitrary sin(δϕ/n) junctions where n

is a magnetically tunable integer. This way to exert control
over superconductivity in nanoscale structures may spur new
fundamental research in superconducting spintronics [36] and
find practical applications in future cryogenic technology.
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the spatial distribution of supercurrent. Here we demonstrate the tailoring of distinct

supercurrent pathways in the ferromagnetic barrier of a Josephson junction. We combine

micromagnetic simulations with three-dimensional supercurrent calculations to design a disk-

shaped structure with a ferromagnetic vortex which induces two transport channels across

the junction. By using superconducting quantum interferometry, we show the existence of

two channels. Moreover, we show how the supercurrent can be controlled by moving the

vortex with a magnetic field. This approach paves the way for supercurrent paths to be
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The conversion of spin-singlet Cooper pairs to the equal-
spin triplets which are needed in superconducting spin-
tronics1,2 requires carefully designed interfaces between a

conventional superconductor (S) and a ferromagnet (F). The
process entails both spin-mixing and spin-rotation, and can be
brought about by magnetic inhomogeneities at the interface3.
One method to realize this is to place a thin ferromagnet F′ at the
S/F interface, and make the magnetization of F and F′ non-
collinear4. This technique was recently implemented in Josephson
junctions described by 1D geometries, where the supercurrent
amplitude was controlled by varying degrees of magnetic non-
collinearity (MNC)5–7. The present letter establishes a different
direction. Here, the central goal is to exert dynamic control over
the triplet generator and thereby to determine where the super-
current spatially flows.

We demonstrate how distinct supercurrent paths in a device
can be tailored entirely by spin texture, and altered in a dynamic
fashion. Such behavior is intrinsically higher-dimensional and
can pave the way for novel hybrid devices in superconducting
electronics.

Results
Micromagnetic simulations. The device consists of a disk-shaped
planar Josephson junction involving a multilayer of
Co/Cu/Ni/Nb, as shown in Fig. 1a. A central trench cuts the top
superconducting Cu/Ni/Nb layers in two halves, here connected
via a Co weak link. The disk design combines two crucial ele-
ments. First, the magnetic moments in Co are arranged in plane
and orthogonal to the trench between the superconducting

electrodes, while the moments in Ni lie also in plane but parallel
to the trench. Micromagnetic simulations show that this geo-
metry results in a well-defined magnetic ground state with a high
degree of MNC, a condition optimal for generating triplets
(Fig. 1c–e). An equally important element is that the disk shape
creates a magnetic vortex state in the Co. This vortex produces a
distinct suppression of MNC at the centre of the disk (Fig. 1e),
which will be used to distribute the supercurrent in Co over two
channels. The MNC suppression is due to the local out-of-plane
magnetization at the vortex core, which turns the magnetic
moments in the Ni also out-of-plane and, hence, collinear to the
Co moments. Incidentally, the in-plane exchange field gradient of
a magnetic vortex, without a second ferromagnet, has also been
proposed to generate long-ranged triplets8,9.

Supercurrent calculations. To investigate whether a supercurrent
can be expected, we numerically simulate the critical current
density passing through the Josephson junction by solving the
quasiclassical Usadel equation10 in 3D using the magnetization
texture obtained from the micromagnetic simulations. We do this
by means of the finite element method, using the finite element
library libMesh11 in a similar fashion as in ref. 12 (for details, see
Supplementary Note 1, Supplementary Fig. 3). The super-
conductors are modeled as bulk, with a phase difference of
Δϕ ¼ π

2. In Fig. 2a the discretized model is shown. To reduce the
calculation time we truncated the otherwise circular geometry to
a width of 40% of the disk diameter, as the currents farther away
from the trench are negligible. The results are shown in Fig. 2b, c,
where it can be seen that the critical current is suppressed at the
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Fig. 1 Micromagnetic simulations and device layout. a Schematic of the device layout. b False-color scanning electron microscope image of a device.
The scale bar corresponds to 250 nm. The disk is structured with Ga+ focused ion beam (FIB) milling. The junction is formed by opening up a gap in the top
Nb/Ni/Cu layers, leaving only Co in the weak link (see Methods section for more details). c Plane view of the magnetic states of Co and Ni layers in the
disk (from 3D OOMMF simulations). The pixel color scheme, red-white-blue, scales with the magnetization along y. Magnetic moments in Ni tend to align
with the gap which defines the junction, while the vortex configuration in Co arranges the magnetic moments perpendicular to it. This provides a high
degree of magnetic non-collinearity (MNC) for triplet generation. The curled magnetic structure of the vortex is also highly effective in minimizing the stray
fields from Co, which otherwise would dominate the Ni magnetization, hence compromising our control of MNC. d Representation of our method to obtain
the MNC profile. For each cell at the top of the Co layer, we determine the angle θ between its magnetization vector and that of the Ni cell above.
e Spatially resolved MNC profile calculated from the simulation results shown in c. The observed suppression of MNC (the blue region) at the centre of the
junction is a result of interlayer dipole coupling at the vortex core
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centre of the disk, thereby effectively creating two separate cur-
rent channels.

Basic transport properties. As shown in Fig. 3, our junctions
show zero resistance and finite critical currents Ic below 3 K. The
magnetic state of the sample was conditioned by applying a 2.5 T
out-of-plane field at 10 K. This is to reduce the stochastic mag-
netization introduced by FIB milling when structuring the junc-
tion. Figure 3 shows there is a strong difference with data taken
before and after conditioning the sample, which is a first indi-
cation that MNC and a triplet supercurrent are involved (also see
Supplementary Note 2). For instance, conditioning allows the
magnetic moments in Ni to rearrange more freely, and align with
the gap opened by the FIB. This process increases the MNC in the
vicinity of the barrier which, in turn, results in an enhancement of
triplet supercurrent at zero field. A consequence of this can be

found in the pronounced contrast between the I−V traces mea-
sured before and after conditioning the magnetization, as shown
in Fig. 3b, c.

Superconducting quantum interferometry. To examine the
spatial distribution of current density across our junctions, we
apply an out-of-plane magnetic field Bz, and analyze the resulting
supercurrent interference pattern. As demonstrated by Dynes and
Fulton13, the shape of such a superconducting quantum inter-
ference (SQI) pattern is given by the Fourier transform of the
position-dependent critical current density across a junction Jc(x)
through

Ic Bzð Þ ¼
ZR

�R

dx JcðxÞ e2πiLBzxΦ0

������

������; ð1Þ

a b

c
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Fig. 2 Numerical simulation of the critical current. a The discretized model (or mesh) used in the numerical simulation of the critical current. Since the
triplet current is mostly concentrated in the immediate vicinity of the trench, the mesh density (and hence the accuracy) is set to be higher for this region.
For the same reason, the regions farthest away from the trench have been removed to reduce the calculation time. b The critical current density divided by
a factor J0 ¼ N0eDΔ

2ξ , where N0 is the density of states at the Fermi level, D is the diffusion constant, Δ is the superconducting gap and ξ is the
superconducting coherence length. For clarity, currents lower than 10−7J0 are not shown. c A slice through the centre of the trench, showing how the
current passes across the Co barrier in two separate channels, on either side of the vortex core
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where L is the effective length of the junction, 2R is its lateral
width (here the disk diameter), and Φ0 = h/2e is the super-
conducting flux quantum. In a typical junction, the uniform
distribution of supercurrent density (Jc(x) = constant) leads to the
well-known Fraunhofer interference pattern with a sinusoidal
current-phase relation given by Ic(Bz)/Ic(0) ~ |sin(πΦ/Φ0)/(πΦ/
Φ0)|. Characteristic for the Fraunhofer pattern is a central lobe
that is twice as wide as the side lobes (as in Fig. 4c). These
oscillations decay with a 1/B dependence. Different device con-
figurations may introduce deviations from the standard pattern,
but the described relative widths of the lobes persist as a common
feature in all Josephson junctions, since it represents a single-slit
interference pattern. In contrast, we expect our disk to exhibit a
double-slit interference pattern. This is characterized by slowly
decaying sinusoidal oscillations with Φ0-periodicity, where all
lobes have the same width. These patterns are typical for super-
conducting quantum interference devices (SQUIDs) which,
contrary to our device, consist of two individual junctions oper-
ated in parallel.

As shown in Fig. 4a, b, the period of the oscillations in our
disk device is 7.8 mT (i.e., fluxoid quantization over an effective
area of 2.65 × 10−13 m2), and appears to be temperature-
independent. Qualitatively, the SQI patterns in Fig. 4a, b already
foretell the presence of two supercurrent channels: the width of
the central lobe is comparable to that of the side lobes, and
the oscillations decay far more gradually in field than as 1/B.
Two-channel interference patterns were recently observed in
junctions with topological weak links14–16, where the two-slit
interference is a result of edge-dominated transport caused
by band bending. In our junction however, this is due to the
suppression of triplet supercurrent by the (controllable) magnetic
vortex core.

To illustrate the contrast with single-slit interference in a
similar device configuration, we prepared a disk junction without
the Ni layer, and retaining a thin layer of Cu/Nb at the bottom of
the trench. This provides a non-magnetic path in the barrier,
allowing singlet correlations to contribute to junction transport.
Indeed, we observe a typical Fraunhofer-like interference pattern
with a two times wider central lobe, shown in Fig. 4c. Provided
that singlet current can dominate the transport, similar results
can also be produced in presence of the Ni layer (Supplementary
Fig. 5).

Figure 4d shows the supercurrent density profiles extracted
from Fourier analysis of the measured interference patterns. A
description of this method can be found in the Supplementary
Note 3, Supplementary Fig. 4 but it should be mentioned that
there is some arbitrariness in choosing the position of the sample
edge if the effective junction length L is not known. We put the
edge at the position where the current density goes to zero, which
leads to a value for L of 170 nm. This is a reasonable number. For
a homogeneous junction where L = 2λL + d, with d the gap
between the electrodes and λL the London penetration depth,
taking 100 nm for λL of the Nb, would yield L to be of the order of
200 nm. There is no reason however to expect very close
agreement as discussed in Supplementary Note 3. Important is
that for any choice of the edge position, two distinct transport
channels are clearly visible in the extracted profiles. Comparing
these results with the simulations, the supercurrents appear to
follow narrower paths, located near the centre of the disk. We
attribute this to current crowding effects, in which the neck-
shaped contacts and their sharp corners lead to a forward
orientation of the currents.

It is important to note that the origin of the two-channel
transport in our junction cannot be explained by singlet
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supercurrents in a doubly connected path. Direct evidence for this
can be found in the SQI measurements taken before conditioning
the sample (the virgin state). If two separate current paths had
formed unintentionally during fabrication, and allowed singlet

correlations to bypass the Co layer via two symmetric channels,
then those channels would have already been present before the
magnetic state conditioning, and the device would have behaved
as a SQUID from the beginning. In contrast, despite several
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attempts, no sign of a double-slit interference was found in the
virgin state (Supplementary Fig. 1). The SQUID pattern only
appeared when the magnetic state was properly conditioned to
produce the intended MNC, designed specifically to generate two
symmetric triplet channels. More details about the SQI measure-
ments from the virgin state can be found in Supplementary
Note 2.

Magnetotransport measurements with an in-plane field. Hav-
ing established the principal role of MNC in shaping the super-
current, we also examine the possibility of controlling them by
altering the MNC profiles using an in-plane field By which moves
the vortex along the trench. Figure 5a shows the measured cur-
rents Ic(By) together with the micromagnetic MNC calculations
for various stages during the (zero to positive) field sweep. In the
first regime (below 28 mT, shaded yellow), we modify the MNC
profile by moving the vortex core along +x toward the side of the
disk. As the field is raised beyond 30 mT, we remove the vortex,
thereby suppressing the supercurrent. The suppression of Ic in
this regime (above 34 mT, shaded blue) is caused by the anti-
parallel configuration of the ferromagnets, which occurs through
the increase of stray fields from Co (now magnetized along +y)
when the vortex leaves the disk. In the third regime (above 46
mT, shaded green), Ni magnetization begins to reverse from
negative to positive y direction, while Co remains magnetized
along +y. At first, this process recovers Ic as a MNC re-emerges
over the entire disk. As we increase the field however, the MNC
begins to fade away as both layers magnetize along +y, resulting
in a gradual suppression of Ic. Figure 5b shows the variations in
Ic(By) when sweeping the field from a high positive to negative
value, and back. We observe a complex pattern accompanied with
a peculiar hysteresis, where individual features are mirrored (and
not just shifted) with respect to the direction of field sweep.

The observed field dependence is fundamentally different from
the usual hysteresis in SFS junctions, where the self-field of the
ferromagnets can distort or introduce a shift in the interference
pattern7,17,18. This is rather a distinct characteristic of triplet
supercurrents produced by a varying degree of MNC, as the
multilayer reverses its magnetization. The measured hysteresis is
of a similar nature as the ones reported in refs. 6,7 for multilayer
vertical stacks. The most notable difference here is arguably the
relatively large field range where Ic is zero, and the pronounced
reentrant superconductivity that follows. Figure 5c compares one
branch (positive to negative) of the measured Ic(By) with the
simulated MNC snapshots taken at various stages of the vortex
reversal. Even though the experiment and the simulation both
sweep the field in steps of 5 mT, the simulated fields for vortex
entry and exit translate to direct enhancement and suppression of
the measured Ic, respectively. For the fields below −45mT, the
behavior is similar to the one described for the third regime
(green shade) in Fig. 5a.

As a final point, it should be noted that in the present letter we
have assumed the channels have an equal phase. This assumption
is reasonable for a symmetric MNC (hence spin-mixing) on each
side4. Whether both channels are 0 or π, as long as they are
symmetric, the SQI results will be indistinguishable. This would
not strictly apply to systems with asymmetric spin texture (e.g.,
caused by vortex displacement), which can result in different
phases for the triplet channels9.

Discussion
Spin-triplet supercurrents in ferromagnets have been bearing the
promise of dissipationless use of spin-polarized currents. This
study opens up a completely different direction, in which the
focus is not the homogeneous amplitude of the supercurrent, but

rather the dynamical control over its spatial distribution. This can
lead to novel hybrid devices for superconducting electronics.
Moreover, our extensive use of simulations, both of the micro-
magnetic configurations and of the supercurrents themselves,
allow for detailed design and understanding before the actual
fabrication of the hybrid device. The next step will be to introduce
magnetization dynamics. Magnetic vortices or domain walls can
be moved with pulses in the GHz regime, and this can also be
simulated. Directing supercurrents then becomes possible on
nanosecond timescales, opening the way for high-speed super-
conducting electronics.

Methods
Device fabrication. Multilayers of Co (60 nm)/Cu (5 nm)/Ni (1.5 nm)/Nb (45 nm)
were deposited on unheated SiO2-coated Si substrates by Ar sputtering in an ultra-
high vacuum chamber (base pressure below 10−8 Pa). The thickness of Co and the
diameter of the disk (1 μm) are chosen to ensure stabilization of a magnetic
vortex19,20. The 5 nm Cu layer is used to avoid exchange coupling between the
layers. The thickness of the Ni layer was tuned for optimal triplet generation in
similar systems21,22. The samples were subsequently coated with Pt (7 nm) to
protect them from oxidation and to reduce the damage introduced by Ga+ ions
during focused ion beam (FIB) processing.

A combination of electron-beam lithography and FIB milling (50 pA Ga+ beam
current) was used to structure the disks. Next, FIB with 1 pA current was applied to
open the sub-20 nm gap that forms the junction. The trench depth is controlled by
the duration of milling. The 1 pA beam current provided sufficient timespan
(several seconds) to vary the depth in a controlled manner. The device used for
investigating single-slit transport was subject to the same processing steps, with the
following exceptions. First, the multilayer was deposited without Ni to minimize
triplet generation. Second, when creating the weak link, the duration of FIB milling
was reduced by 20% to retain a layer of Cu/Nb at the bottom of the trench.
This provides a non-magnetic path for singlet supercurrent in the weak link
(on top of Co).

The trench is presumably deeper near the sides of the disks (where sputtered
atoms can escape more easily) than at the centre. Hence, in contrast to triplets,
singlet correlations would favor the centre of the disk where a non-magnetic
channel may be still present on top of the Co.

Magnetotransport measurements. The magnetic properties of Co and Ni films
used in our devices were characterized by ferromagnetic resonance experiments
and SQUID magnetometry. Transport measurements were performed in a
Quantum Design Physical Properties Measurement System where samples could be
cooled down to 2.1 K. For both in-plane and out-of-plane measurements, the field
was aligned within 2° of the sample plane. Resistance versus temperature was
measured with a current of 10 μA. The current-voltage characteristics were taken in
a four-probe configuration using a current-biased circuit and a nanovoltmeter. The
critical current was determined using a voltage criterion: V> 0.3 μV for SQI and V
> 0.1 μV for the measurements with an in-plane field.

The virgin state was measured directly after fabrication (Supplementary
Note 2). Prior to the Ic(Bz) measurements presented in the letter, the magnetic state
of the sample was conditioned by applying a 2.5 T out-of-plane field at 10 K. The
sample was stored in a UHV chamber for 106 days and re-wired to a different
puck, and the same measurements were repeated using a different magnet. We
were able to reproduce the same Ic patterns, and no discernable changes in
transport characteristics (e.g., R(T) or Ic) were observed.

Micromagnetic simulations. Micromagnetic modeling of the behavior of mag-
netic Josephson junctions was reported before23. Here, finite element micro-
magnetic calculations were carried out using the Object Oriented Micromagnetic
Framework (OOMMF)24. The multilayer is divided into a three-dimensional mesh
of 5 nm cubic cells. The exchange coefficient and saturation magnetization of Co
were set to 30 × 10−12 Jm−1 and 1.40 × 106 Am−1, respectively, while for Ni these
values were 9.0 × 10−12 Jm−1 and 4.90 × 105 Am−1. The Gilbert damping constant α
was set to 0.5 to allow for rapid convergence. The direction of anisotropy was
defined by a random vector field to represent the polycrystalline nature of the
sputtered films. The Usadel calculations are based on static micromagnetic simu-
lations of a multilayer disk with a diameter of 1 μm. For simulations with an
applied in-plane field (shown in Fig. 5), the disk design was extended to include the
leads used for transport measurements in the actual device (Supplementary Fig. 2).
In the absence of in-plane fields, the overall magnetic configuration remains
relatively unaffected by the leads: the vortex core continues to suppress the MNC,
resulting in two main channels for long-ranged triplet correlations. However, the
influence of the leads on shape anisotropy becomes relevant when sweeping the
field along y. This allows for an accurate estimate of the MNC, and the resulting
variation in Ic during the magnetization reversal.
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Control experiment. In addition to the device used for investigating the triplet
currents, a control sample was prepared in parallel, on the same substrate. This was
deposited together with the main device, and received the same treatment, with
only one exception: the Ga+ dose used for opening the gap that forms the weak link
was lowered by 50%. Reducing the dose stops the milling before it reaches the Co
layer in the trench. This leaves a non-magnetic path in the weak link for singlet
correlations. The contribution of singlet supercurrent results in a critical current
that is around 20 times higher than its neighboring junction (the main device)
where the Co weak link can effectively suppress singlet correlations, hence allowing
long-ranged triplet supercurrents to dominate the transport. Unlike triplets, the
singlet current is not sensitive to the spin texture (i.e., MNC) of the system. This is
evident from the single-slit (Fraunhofer-like) interference pattern, shown in Sup-
plementary Fig. 5.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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Supplementary Figures

 

 Supplementary Figure 1 | Interference patterns from the virgin magnetic state. 
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Supplementary Figure 2 | Micromagnetic simulations with an in-plane field. Top

viewsxofxthexmagneticxstatesxofxCoxandxNixlayersxobtainedxfrom OOMMF simulations.

Thex leadsxarex includedx inx thexdesignx toxproducexaxmorex realisticxshapexanisotropy,

neededx tox accuratelyx describex thex systemx underx anx in-planex field. Individual

componentsxofxthexmagnetizationxvector � arexplottedxseparatelyxforxclarity.xThexpixel

colourx scheme,x red-white-blue,x scalesxwithx thexmagnitudexof eachxcomponent.xThe

redxandxbluexpixelsxrepresentxpositivexandxnegativexvaluesxrespectively.xOutxofxplane

magnetizationx (�z)x isx generallyx suppressed,x exceptx atx thex vortexx corex wherex both

layersx havex ax highlyx localizedx outx ofx planex component.x Inx thex actualx device,x the

trenchxthatx formsxthex junctionx isxslightlyxoff-centred.xThisxfeaturex isxaccountedxforx in

thexsimulationsxbyxplacingxthexgapxin Ni 40 nm awayxfromxthexcentrexofxthexdisk.
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Supplementary Figure 3 |  Simulated contributions of singlet and triplet 

supercurrents . /ak MagnitudeTofTtheTcurrentTdensityTgeneratedTbyTsingletT CooperT

pairs,T� ( s )= � ( s ) ,TwhichTisTgreatlyTsuppressedTexceptTforTinTtheTimmediateTvicinityTofT

theTsuperconductors.T /bk MagnitudeTofTtheTcurrentTdensityTgeneratedTbyTtripletT

CooperTpairs,T�(t) = �(t) .TForTclarity,TcurrentsTlowerTthanT10−7�0ThaveTbeenTremoved,T

whichTexplainsTwhyTnoTsingletTcurrentTisTobservedTinTtheTtrench.TItTisTnotedTthatTwhileT

theTtotalTcurrentT	� = �(s) + �(t)TisTconserved,T�(s)TandT�(t)TareTgenerallyTnot.TThisTisTdueT

toTtheTmagnetization,TwhichTcausesToscillationsTbetweenTtheTsingletTandTtripletTstates.
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Supplementary Figure 5 | Control experiment- Supercurrent interference/ pattern

measured at � = 2.1 K from/a/control/device/that/was/processed/in/parallel/with/the
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singlet/ current/ is/ not/ suppressed%/ and/ can/ therefore/ dominate/ the/ transport-/ The

result/ is/ a/ junction/ with/ a/ substantially/ higher/ critical/ current%/ showing/ singlejslit
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Supplementary Notes 

Supplementary Note 1 | Numerical simulations of the critical current. 

To calculate the critical current we use the quasiclassical approximation in the 

diffusive limit, which yields the Usadel equation5 

𝐷 𝛻 𝒈� 𝛻 𝒈� + 𝑖[𝜀 𝝆�3 + 𝝈� ∙ 𝒉 ,𝒈�] = 0  (1) 

where 𝐷 is the diffusion constant and 𝜀 is the quasiparticle energy. The magnetization 

texture from the micromagnetic simulations are represented as an exchange field 

𝐡 = 𝐡(𝐫). Furthermore we have defined 𝛔� = diag(𝛔 ,𝛔∗), where 𝛔 is a vector of Pauli 

matrices, and 𝛒�3 = diag(1, 1,−1,−1). From 𝐠� = 𝐠� (𝐫, 𝜀), the 4 × 4 retarded Green 

function matrix in Nambu ⨂ spin space, the equilibrium current density may be 

computed as 

𝐉 = 𝑁0𝑒𝑒
2 ∫ 𝑑𝑑 Re Tr{𝛒�3 𝐠� ∇ 𝐠�} tanh �𝛽𝛽

2
� (2)  

where 𝑁0 is the density of states at the Fermi level, and 𝛽 = 1 𝑘𝐵𝑇⁄ . We neglect the 

inverse proximity effect, and assume that the superconductors on each side of the 

trench are large enough to be approximated as bulk. In the calculations, we have 

used that the critical current is approximately found for a phase difference between 

the superconductors of ∆𝜙 =  𝜋
2
. For simplicity, we use transparent boundary 

conditions between the Ni and the Co layer, whereas we use the low-transparency 

Kupriyanov-Lukichev boundary conditions6 at the Ni-Nb interface. 

In the modeling of the geometry, we have assumed an effective superconducting 

coherence length of 𝜉 = 10 nm, so that the radius of the circular disk becomes 

𝑅 = 50𝜉. In the direction crossing the trench, the model has been truncated to a width 

of 𝑊 = 40𝜉 to reduce the model size. This has been done under the assumption that 



any contribution to the current from the removed regions is negligible due to the vast 

distance to the opposite superconductor. The thickness of the Ni and the Co layers 

have been set to 𝜉 and 6𝜉, respectively, and the width of the trench is 2𝜉. The Ni 

thickness is set larger than in the actual experiment to avoid unnecessarily small 

elements in the Ni-region, which would substantially increase the calculation time. 

Although this yields lower values for the triplet current, the purpose of our calculation 

here is to identify the origin of this current; and not its absolute magnitude. 

 

The spatial distribution of the magnetization in both the Ni and the Co layer are 

accurately mapped onto the 3D mesh via the exchange field 𝐡, where an amplitude 

of |𝐡| = 30 Δ ≃ 46 meV was used. While this is significantly lower than typical 

exchange fields in Co, it is still sufficient to quench the contribution of singlet Cooper 

pairs to the current density. To verify this, we make use of the fact that the 

supercurrent density generated by the singlet 𝐉(s) and triplet 𝐉(t) Cooper pairs 

contribute additively 𝐉 = 𝐉(s) + 𝐉(t). The two components are presented in 

Supplementary Figure 3. It is clear that the current density of singlet pairs rapidly 

vanishes away from the superconductors. In contrast, the triplet current density 

maintains an appreciable value over a substantially larger region, indicating that 

triplet Cooper pairs are the primary means of transport. The results will therefore be 

qualitatively the same for a more realistic strength of the exchange field. The 

advantage of using the reduced value is that the current densities become larger, 

which in turn make the numerical calculations less resource intensive. 

 

The finite element analysis was carried out using 27-node hexagonal volume 

elements, and the Green function is interpolated within each element by means of 



second order Lagrange polynomials. This means that the current density within each 

element is interpolated by linear polynomials. To ensure that the spatial distribution of 

the current density is accurately resolved, we use a refined mesh in a region 

surrounding the trench, as is shown in Fig. 2a in the main text. For more details 

regarding the finite element analysis of three-dimensional superconducting 

heterostructures, please consult ref. 7. 

Supplementary Note 2 | Interference patterns from the virgin magnetic 

state.Prior to conditioning the magnetization, supercurrent interference patterns were 

measured using small out-of-plane fields. These are presented in Supplementary 

Figure 1. In contrast to the conditioned sample, 𝐼c(𝐵𝑧) is generally suppressed 

around zero field. We observe two maxima, which always occur at fields higher than 

5 mT. Note that this offset cannot be attributed to remnant fields from the 

ferromagnet. The applied field for the interferometry measurements is not sufficient to 

have an appreciable influence on the magnetization of either layer. This is verified by 

SQUID magnetometry and ferromagnetic resonance experiments. 

It has been proposed that the phase of triplet correlations in a S/F’/F/F’/S junction 

such as ours, is determined by the relative magnetic orientation of the F and F’ layers 

on each side2. On the other hand, this unusual interference pattern, with two maxima 

and suppressed 𝐼c at zero field, is the characteristic of a junction with multiple parallel 

0 and 𝜋 channels3,4. This condition could be fulfilled in the virgin state, where the 

arbitrary orientation of Ni and Co magnetization can lead to random formation of 

multiple 0 and 𝜋 segments across the junction. These interference patterns are also 

characterized by irregular discontinuities, which could be attributed to the arbitrary 

arrangement of the 0 and 𝜋 segments.  



Remarkably, we find these features to disappear altogether after conditioning the 

sample: 𝐼c(𝐵𝑧) turns into a highly regular and reproducible SQUID pattern, with 

maximum 𝐼c consistently appearing at 𝐵𝑧 = 0. This pronounced dependence on 

magnetic conditioning was absent for junctions where singlet correlations dominated 

the transport: no significant changes in the interference pattern or the maximum 

value of 𝐼c were observed. 

Supplementary Note 3 | Fourier analysis of supercurrent density profiles. 

As shown by Dynes and Fulton1, the supercurrent density profile 𝐽(𝑥) can be 

determined from the superconducting interference pattern 𝐼c(𝐵) using a Fourier 

transform: 

𝐽(𝑥) ∼ ∫ 𝑑𝑑 𝐼c(𝐵) 𝑒
2𝜋𝜋𝜋𝜋𝜋
𝛷0

+∞
−∞   (3) 

Here, the coordinate system is defined such that the magnetic field 𝐵 is applied along 

the 𝑧-axis, the critical current 𝐼c is measured along the 𝑦-axis, and the current 

distribution 𝐽(𝑥) can then be determined along the 𝑥-axis. The equation also depends 

on the effective length 𝐿 of the junction and the flux quantum 𝛷0 = ℎ/2𝑒. Note that 

𝐼c(𝐵) is the signed critical current, where the sign is determined from the 

experimentally measured |𝐼c(𝐵)| by assuming that it consists of alternating positive 

and negative lobes, as described in more detail in ref. 1. This procedure is justified 

when the interference pattern consists of well-defined maxima separated by deep 

minima, as is the case for our measurements.  

 

The original method by Dynes and Fulton was derived for a rectangular junction 

where the dimensions of each superconductor are much larger than the London 

penetration depth 𝜆. In that case, the effective junction length 𝐿 = 2𝜆 + 𝑑, where 𝑑 is 



the thickness of the barrier between the superconducting leads. In our case, 

however, the junction is cylindrical and the current distribution not uniform, so the 

length (which determines the amount of flux to be screened) is not well defined. We 

therefore performed the Fourier analysis without making any assumptions regarding 

the value of 𝐿, but instead assumed that the position along the 𝑥-axis where we 

obtained 𝐽(𝑥) → 0 likely corresponded to the junction ends 𝑥 ≈ ±𝑅, where 𝑅 is the 

cylinder radius. From this, we obtained an estimate 𝐿 ≈ 180 nm for the effective 

junction length. This value is somewhat lower than expected for a uniform rectangular 

junction: in that case the effective area is 2𝑅𝑅 while the first minimum in 𝐼c(𝐵𝑧 ) is at 

7.8 mT, yielding 𝐿 ≈ 270 nm. Both numbers are of correct order of magnitude: the 

value of 𝜆 for a 50 nm Nb film is about 110 nm8 so 2𝜆 + 𝑑 is 240 nm. If we were to 

take the sharp drop in the current density profile as the sample edge, 𝐿 would 

become less than 100 nm, which appears to be too low in view of the value of 𝜆. 

 

The SQI experiments are carried out by measuring the voltage as a function of 

current for a given applied magnetic field, i.e. 𝑉(𝐼,𝐵). The critical current |𝐼c(𝐵)|, used 

for the Fourier analysis, is obtained by extracting a contour for a small but finite 

voltage threshold 𝑉(𝐼c,𝐵) >  0.3 µV. Experimentally we find this criterion to be optimal 

for reducing noise effects that distort the shape of 𝐼c(𝐵). The result is then adjusted to 

the 𝑦-axis so that |𝐼c(𝐵)| = 0 at the nodes between the lobes of the interference 

pattern. This is to account for the artificial offset introduced by the 0.3 µV threshold 

voltage. We then recover the complex critical current  𝐼c(𝐵), by switching the sign of 

every other lobe of the measured |𝐼c(𝐵)|.  The original |𝐼c(𝐵)|  and the signed 𝐼c(𝐵) 

curves are shown side-by-side in Supplementary Figure 4. 



Note that the measured 𝐼c(𝐵) may slightly deviate from a perfectly symmetric pattern, 

and yield a complex supercurrent distribution 𝐽(𝑥) after Fourier transformation. This 

apparent asymmetry however is predominantly caused by experimental noise. We 

therefore discard the complex phase 𝐽(𝑥) to approximate the supercurrent 

distribution profile by |𝐽(𝑥)|, shown in Fig. 3f of the main text. 
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Giant vortices with higher phase winding than 2π are usually energetically unfavorable, but geometric
symmetry constraints on a superconductor in a magnetic field are known to stabilize such objects. Here, we
show via microscopic calculations that giant vortices can appear in intrinsically nonsuperconducting
materials, even without any applied magnetic field. The enabling mechanism is the proximity effect to a
host superconductor where a current flows, and we also demonstrate that antivortices can appear in this
setup. Our results open the possibility to study electrically controllable topological defects in unusual
environments, which do not have to be exposed to magnetic fields or intrinsically superconducting, but
instead display other types of order.

DOI: 10.1103/PhysRevLett.120.207001

Introduction.—It is well known that applying a magnetic
field to a type-II superconductor can lead to the formation
of Abrikosov vortices [1]. A gradient in the phase φ of
the superconducting order parameter Δ ¼ jΔjeiφ causes a
circulating supercurrent around such vortices, whereas
jΔj → 0 at their centers. Vortex excitations in supercon-
ductors [2,3] remains a vibrant research topic, not least
because it lies at the intersection of two major research
fields: superconductivity and topology in physics.
It was recently pointed out in Ref. [4] that it is also

possible to generate Josephson vortices without applying
magnetic fields. Such vortices are also characterized by a
quantized phase winding and a suppressed order parameter
at their core [5]. Motivated by this, we have performed
microscopic calculations using the quasiclassical theory of
superconductivity [6] on a normal metal enveloped by a
current-biased superconducting wire (Fig. 1). The idea
behind the device is simple: an external current source
forces a supercurrent through the wire, and this circulation
whirls the condensate in a proximitized normal metal as
well. Our objective has been to determine what type of
electrically controllable vortex physics then emerges. We
demonstrate here that both giant vortices and antivortices
appear in the nonsuperconducting region even in the
absence of any applied magnetic field. This provides an
alternative method of creating complex vortex patterns by
applying electric currents. Since these patterns are gen-
erated in a proximitized nonsuperconductor, this opens up
the intriguing prospect of studying unusual topological
vortex excitations in materials with other types of quantum
order, which do not have to be compatible with bulk
superconductivity. One example is a magnetic metal, where
the generation of odd-frequency triplet superconducting
order could reverse the chirality of some vortices, similarly

to the paramagnetic Meissner effect [7,8]. More funda-
mentally, it raises the intriguing question: what character-
izes a vortex in an odd-frequency order parameter?
Geometric effect and winding number.—Since a circu-

lating supercurrent requires a finite phase-gradient ∇φ, and
the analyticity of the superconducting wave function implies
integral winding numbers n ¼ Δφ=2π around any point, the
system is topologically coerced into nucleating vortices in
the normal metal region of Fig. 1. Assuming a thin-film
structure, the total charge current associated with this
circulation is small, and the magnetic field generated by
the circulation can safely be neglected. Note that in contrast
to the setup proposed in Ref. [4], our normal metal is
surrounded by a continuous superconducting wire on all
sides, instead of having two separate wires on the top and
bottom, which we will show fundamentally alters the vortex
physics in the system. Another important difference is that
we model the superconducting wire using an exact solution

FIG. 1. Conceptual sketch of the physical system. An external
current source is used to inject a current into a superconductor
(red). The circulating current also affects a proximitized
normal metal (yellow), causing an electrically controlled vortex
to emerge there.
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of the Usadel equation in the current-biased superconductor
and tunneling boundary conditions. As wewill demonstrate,
this is necessary to correctly describe qualitative changes
that the phase winding induces in, e.g., the density of states
(DOS).
When the current in the superconducting wire makes

a total winding number N > 1, there are multiple ways to
satisfy the boundary conditions. Among other possibil-
ities, we can get (i) N vortices with a winding 1 each,
(ii) N þM vortices with a winding þ1 and M antivortices
with winding −1, or (iii) just one giant vortex with a
winding N. The kinetic energy of an n-winding vortex
scales with n2, so the most energetically favorable is
configuration (i). Hence, giant vortices and antivortices
are seldom seen. However, since the superconducting
order parameter respects the symmetries of the underlying
geometry, vortices only nucleate along the symmetry axes
of the system. For highly symmetric geometries, these
additional constraints may force the appearance of giant
vortices or antivortices. The resulting interplay between
topological defects, geometric symmetries, and energy
minimization was previously studied in Refs. [9–12] using
the phenomenological Ginzburg-Landau formalism for
type-II superconductors in a magnetic field. Here, we
show that this effect also arises in proximitized normal
metals without magnetic fields. This generalization is
particularly important as it opens the possibility to study
novel vortex physics in materials featuring completely
different order than superconductors, e.g., ferromagnets or
topological insulators.
2D diffusive metal with phase-winding.—As shown in

Fig. 1, we consider a normal metal with a superconducting
loop grown on top. We describe the properties of the metal
in terms of quasiclassical propagators ĝ in Nambu and spin
space,

ĝðr; ϵÞ ¼
�

gðr;þϵÞσ0 fðr;þϵÞiσ2
−f�ðr;−ϵÞiσ2 −g�ðr;−ϵÞσ0

�
; ð1Þ

where the normal part g and anomalous part f are complex
scalar functions, subject to the normalization constraint
ĝ2 ¼ 1. Here, σ0 is the 2 × 2 identity matrix, and σ2 is the
second Pauli matrix. We assume that all length scales in the
problem are large compared to the Fermi wavelength and
mean free path; i.e., we take the quasiclassical diffusive
limit. The propagators ĝ are then governed by the Usadel
equation [6,13,14],

D∇ðĝ∇ĝÞ þ i½ϵτ̂3; ĝ� ¼ 0; ð2Þ

where D is the diffusion constant, ϵ the quasiparticle
energy, and τ̂3 ¼ diagðþσ0;−σ0Þ. Furthermore, we assume
that the normal region is connected to the superconducting
wire by a low-transparency interface. We may then use the
Kupriyanov-Lukichev boundary condition ζe⊥ ·∇ĝn ¼
½ĝn; ĝs�=ξ [15], where ζ parametrizes interface resistance,

e⊥ is the outwards-pointing interface normal vector, ĝn
and ĝs are propagators on the normal and superconducting
sides, and ξ the superconducting coherence length. The
propagators ĝs in the current-biased superconductors were
evaluated analytically. The applied current also creates a
magnetic field which penetrates the proximitized material.
Its strength depends on the total applied current, which
in turn depends on the pair density and dimensions of the
superconductor. However, since the field is perpendicular
to and roughly constant within the current loop, its only
effect is to slightly perturb the applied current for which
a given vortex pattern appears. We have neglected the
quantitative correction from the magnetic field herein.
In practice, the differential equations above are Riccati-

parametrized for stability [16], and then solved numerically
using a finite-element method on a two-dimensional mesh.
This lets us handle arbitrary sample geometries, such as the
regular polygons considered herein. For more information
about the numerical solution procedure itself, see Ref. [17].
Superconducting wire with a uniform current.—As

shown in Sec. II of the Supplemental Material [18], the
propagator ĝ in a current-biased bulk superconductor can
be written [23,24]

ĝ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 − Θ2

p
� þϵσ0 Θeþiφiσ2
Θe−iφiσ2 −ϵσ0

�
; ð3Þ

where ΘðϵÞ parametrizes the strength of the superconduc-
tivity, and φ is the superconducting phase. The phase varies
linearly with the distance l along the wire. Defining
φð0Þ≡ 0, and parametrizing the variation using a winding
rate u≡ ξj∇φj, we therefore get φðlÞ ¼ ul=ξ. The func-
tion ΘðϵÞ is determined by

Θ ¼ jΔj
1þ u2=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θ2 − ϵ2

p ; ð4Þ

jΔj ¼ 1

acoshωc

Z
ωc

0

dϵRe

�
Θffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ2−Θ2
p

�
tanh

�
π

2eγ
ϵ

T

�
: ð5Þ

These equations have been written in a form where Θ, Δ, ϵ,
ωc are all normalized to the zero-current gap Δ0, while the
temperature T is normalized to the critical temperature Tc.
Here, ωc refers to the Debye cutoff, and γ is the Euler-
Mascheroni constant. The first of these equations is a
fixpoint iteration equation. This is easily solved by guess-
ing ΘðϵÞ ¼ 1 and jΔj ¼ 1, and applying Newton’s method
to the equation for a discretized set of energies from the
Debye cutoff ϵ ¼ ωc to zero energy ϵ ¼ 0. The second is a
self-consistency equation for the gap Δ, which is evaluated
by numerical integration of the results for ΘðϵÞ. We then
alternate between solving the fixpoint equation and self-
consistency equation until satisfactory convergence. The
solutions to the equations above are visualized in Fig. 2.
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When approaching the setup in Fig. 1 numerically, we
assumed that the superconducting wire suffers a negligible
inverse proximity effect from the normal metal. In this case,
we can use the analytical equation above for the super-
conducting wire, and reduce the superconductor to effective
boundary conditions for the normal metal. Furthermore, we
numerically only considered phase-winding rates u ≤ 0.5,
in which case Eq. (5) can be replaced by the approximation
jΔj ≈ 1. Note that since the phase-winding rate u cannot be
arbitrarily large, we need a system much larger than the
coherence length to obtain high winding numbers using a
current bias.
Quantifying vortices.—We can study the proximity-

induced superconductivity in a normal metal via the pair
correlation

ΨðrÞ∼
Z

ωc

0

dϵ ½fðr;þϵÞ− fðr;−ϵÞ� tanhðϵ=2TÞ; ð6Þ

which behaves like a complex order parameter. This pair
correlation can be decomposed as Ψ≡ jΨj expðiφÞ, and the
phase φ can then be extracted using φ¼arctanðImΨ=ReΨÞ.
As discussed in the introduction, the circulating current

in the enclosing superconductor creates a phase-winding
∇φ along the interface. However, the phase φ is uniquely
defined modulo 2π, which means that it is only possible
for the phase to vary continuously around the edges of the
normal metal if it increases by ΦI ¼ 2πN after having
traversed the entire circumference. In other words, we must
have a total vorticity

N ¼ ΦI

2π
≡ 1

2π

I
∂Ω
ð∇φÞ · dl; ð7Þ

where ∂Ω is the boundary of the normal metal. When we
have a finite vorticity N, the currents inside the normal

metal will form closed loops, leading to the appearance of
vortices. More precisely, the total vorticityN will be equal to
the sumof thewinding numbers n of all the induced vortices.
The vortices manifest as nodes in the pair correlation Ψ.
Numerical results.—In the upper row of Fig. 3, the

vortex pattern for increasing applied current winding ΦI is
shown. The winding of the individual vortices may be
determined graphically from the phase of the pair corre-
lation function φ, which is plotted in the bottom row of
Fig. 3. By using Eq. (7) with the replacements N → n and
∂Ω → C, where C is any contour encircling a single vortex,
one sees that n ≠ 0 only if the integration path crosses
discontinuities. Furthermore, each discontinuity contrib-
utes a value to the integral equal to the size of the jump.
For ΦI ¼ 2π, shown in Fig. 3(a), there is a single vortex in
the center of the normal metal, and any closed contour
around this point must traverse two jumps Δφ ¼ π, thus
showing that the vortex has a winding n ¼ þ1. We note
that the precise locations of these discontinuities depend on
the reference point for the phase of the superconductors,
and are hence not physically significant. The number of
times a closed loop crosses a discontinuity, however, is.
In Fig. 3(b), where ΦI ¼ 4π, there is still only a single
vortex in the system, but now the plot of φ shows four
discontinuities, from which it is inferred that this is a giant
vortex with n ¼ þ2.
For ΦI ¼ 6π, shown in Fig. 3(c), five vortices are found.

As the sum of the individual topological numbers should
add up to N ¼ þ3, in accordance with Eq. (7), one of these
vortices must be an antivortex. The phase plot shows that
this is indeed the case: the central vortex winds in the
opposite direction of other vortices. Hence, this configu-
ration consists of one central n ¼ −1 antivortex with four
surrounding n ¼ þ1 vortices. For ΦI ¼ 8π, there are four
regular n ¼ þ1 vortices along the diagonals, as shown in
Fig. 3(d). Since these vortex patterns arise from symmetry
constraints, they are naturally sensitive to asymmetries in

(a) (b)

FIG. 2. Visualization of a bulk superconductor with a uniform
current at zero temperature. (a) DOS for varying winding rates u,
as shown in the legends above. Note how the coherence peaks are
smoothed out for u > 0 and the gap closes as u → 1, illustrating a
qualitatively different behavior for u > 0. (b) Gap Δ and current
density J as functions of u, where the unit J0 ¼ eDN0Δ0=4ξ. As
long as u < 1=2, we see that Δ ≈ Δ0 and J ∼ u, and a non-self-
consistent solution is reasonably accurate. However, the current
becomes nonmonotonic for u > 2=3, so this regime is inacces-
sible in our proposed setup.

FIG. 3. Vortex nucleation patterns for various applied current
windings ΦI , for a quadratic normal metal with side lengths
L ¼ 12ξ. The top row shows the magnitude jΨj of the pair
correlation, where the minima indicate the vortices. The bottom
row shows the phase φ of the pair correlation, from which the
winding of individual vortices can be determined. The total
windings ΦI are listed below.
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the geometry. The giant vortex in Fig. 3(b) splits into two
n ¼ þ1 vortices as the geometry becomes rectangular.
However, the vortices continue to overlap strongly for
sufficiently small deviations, as shown in Sec. III of the
SupplementalMaterial [18]. This means that the giant vortex
could in practice be stabilized against deviations fromperfect
symmetryby creating a pinning potential at this location [25].
Since the vortex positions are also influenced by the applied
currents, another option is to fine-tune the currents to
experimentally realize the giant vortex. The pattern in
Fig. 3(c) is, on the other hand, stable against small deviations
in aspect ratio.The reason is thatwhen thegeometry becomes
increasingly rectangular, it eventually becomes energetically
favorable to satisfy N ¼ þ3 as three n ¼ þ1 vortices along
the longest axis. The transition to such a pattern can only
occur in awaywhich respects the symmetries of the rectangle,
and hence the central antivortex turns into a vortex, and
additional antivortices must appear so that the off-center
vortices can annihilate symmetrically [26].
Thevortices also create a spatialmodulationof theDOS: at

the vortex cores, superconductivity vanishes, and the mini-
gap disappears. This means that the vortices we predict can
be directly inferred via local STM measurements. In Fig. 4,
the DOS for ϵ ¼ 0 is plotted along the diagonal of the normal
metal (i.e., between two opposite corners). This confirms that
the normal-state result DOS ¼ 1 is recovered at the vortex
cores. For the n ¼ þ2 vortex produced by ΦI ¼ 4π, the
minigap is suppressed in a larger region around the vortex
than for ΦI ¼ 2π. For ΦI ¼ 6π, the normal region is larger
still, but this is likely due to the close proximity of three
vortices. For ΦI ¼ 8π, the vortices are sufficiently far apart
for a dip in the DOS to appear in between, providing an
observable signature.
The above can be understood by analyzing the pair

correlation. In Sec. I of the Supplemental Material [18], it is
shown that for small distances r from the vortex center,

Ψ ∼ ðr=2ξ0Þn=n!, where ξ0 is the Ginzburg-Landau coher-
ence length. For r < 2ξ0ðn!Þ1=n ≈ 2½1þ ðn − 1Þ=e�ξ0,
these correlations recover more slowly with increasing
winding n, and hence the minigap is increasingly sup-
pressed. The fact that the vortex size increases linearly with
n also in the diffusive limit can be motivated from Fig. 2.
There, we see that superconductivity vanishes entirely as
the phase-winding rate u≡ ξj∇φj → 1. Assuming that this
remains approximately valid in nonbulk materials, and
using that j∇φj ¼ jnj=r around an n-winding vortex, we
find that superconductivity vanishes for r < nξ. In other
words, we find that the core size of a giant vortex scales
linearly with its winding number n, providing an observa-
tional signature of giant vortices that can be seen via STM
measurements.
The vortex patterns of Fig. 3 may be deduced from

energy considerations. In general, the kinetic energy of a
vortex with a winding number n scales as n2. This is
because kinetic energy Ek ∼ v2, where v ∼∇φ ∼ n is the
velocity of the superconducting condensate. In Sec. I of the
Supplemental Material [18], we solve the linearized
Ginzburg-Landau equation near a vortex with winding
number n, and use this to confirm that the kinetic energy is
indeed proportional to n2. Similar n2 dependencies have
previously been noted for magnetic vortices in type-II
superconductors [27], and these properties are shared by
vortices in proximitized nonsuperconductors [5,28].
The above provides a simple prescription for predicting

the vortex nucleation pattern. When a total vorticity N is
introduced to the system, it splits into vortices with
individual windings ni in a way that satisfies N ¼ P

ini.
Among all patterns permitted by the symmetries of the
geometry, the energetically favored is the one that mini-
mizes E ¼ P

in
2
i . Note that ni can be either positive or

negative, allowing for antivortex nucleation.
In the geometry considered so far, off-center vortices can

only appear in a square formation without breaking the
symmetry of the system, as is seen in Fig. 3. This symmetry
constraint explains why it is possible to produce a vortex
with winding n ¼ þ2. A higher winding is, however, not
possible because it will always be energetically favorable to
introduce four new vortices away from the center, and,
potentially, an antivortex in the center. Similar results were
found for a mesoscopic superconductor in an applied
magnetic field [10–12]. The present analysis differs in that
the vortex patterns are generated in an intrinsically non-
superconducting material solely by an applying an electric
current. A regular polygon with a higher symmetry (larger
number of sides), will by the same reasoning as above
allow for a higher winding at the center, as any alternative
will require a larger number of of n ¼ þ1 vortices to be
distributed in a symmetrical fashion. Figure 5 shows the
pair correlation function for a hexagonal normal metal
surrounded by a superconductor with an applied current
equivalent to ΦI ¼ 6π. Here, we find a single vortex of

FIG. 4. DOS along the diagonal of the normal metal for various
applied current windings ΦI . Superconductivity is suppressed in
the vortex cores, and the normal-state DOS ¼ 1 is recovered.
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winding n ¼ þ3. Generally, a regular polygon withm sides
allows for a giant vortex with winding up to n ¼ bm=2c.
Conclusion.—We have used microscopic calculations to

show that one can induce giant vortices and antivortices in
nonsuperconducting materials in the absence of magnetic
fields. We also analyzed the vortex nucleation pattern using
arguments of symmetry and energy minimization. Our
results open the possibility to study novel topological defects
in unusual environments, which do not have to be intrinsi-
cally superconducting or exposed to magnetic fields.
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In this supplemental, we derive two sets of equations that are applied in the main manuscript. In Section I, we find
an exact solution to the linearized Ginzburg-Landau equation near a vortex with an arbitrary winding number n,
and show that the kinetic energy is proportional to n2. This is used to explain the vortex configurations in the
main manuscript. In Section II, we find a selfconsistent solution to the Usadel equation in a bulk superconductor
with a uniform charge current. This is used as a boundary condition in the main manuscript.

I. ANALYTICAL SOLUTION AROUND A VORTEX CORE

Let us consider a superconducting vortex with a winding
number n. This means that as we move one counter-clockwise
turn around the vortex core, the phase of the superconducting
condensate changes by ∆ϕ = 2πn. We will here calculate the
energy of such a vortex, which in the main manuscript is used to
understand what nucleation patterns are energetically favored.
To keep the calculations simple and intuitive, we approach the
problem using the Ginzburg-Landau formalism. Furthermore,
we will assume that the energy of a vortex is dominated by the
region close to the vortex core, and that this region exhibits a
cylindrical symmetry. Since the energy of a vortex (n > 0) and
antivortex (n < 0) are exactly the same, we focus on n > 0.

A. Linearized Ginzburg-Landau theory

The starting point of the Ginzburg-Landau framework is the
free energy density in a superconducting material,1

E = α |Ψ|2 +
β

2
|Ψ|4 +

1
2m
|(−i~∇ − 2eA)Ψ|2 +

B2

2µ0
, (1)

whereΨ is the superconductingwavefunction, A is themagnetic
potential, B = ∇ × A is the magnetic field, and we choose
E ≡ 0 in the normal state. Minimizing the free energy of the
system, one arrives at the Ginzburg-Landau equation,1

αΨ + β|Ψ|2Ψ +
1

2m
(−i~∇ − 2eA)2Ψ = 0. (2)

We now introduce some approximations. Firstly, as in the main
manuscript, we are interested in current-induced vortices in thin-
films, for which there is a negligible magnetic potential A ≈ 0
in the system. Secondly, we are interested in the behaviour
near a vortex core, where the superconducting wavefunction is
suppressed |Ψ| � 1, so that we can linearize the equation. We
then obtain an effective Helmholtz equation,

∇2
Ψ ≈ Ψ/ξ2

0, (3)

where ξ0 ≡
√
~2/2m|α | is the Ginzburg-Landau coherence

length. We can parametrize the wavefunction as Ψ ≡ ψeiϕ ,
where the amplitude ψ and phase ϕ are real. Substituting this
parametrization into the Helmholtz equation, we obtain

∇2ψ + 2i(∇ψ)(∇ϕ) + iψ(∇2ϕ) − ψ(∇ϕ)2 = ψ/ξ2
0 . (4)

This equation can be significantly simplified using the law
of charge conservation. The charge current density in a system
governed by the Ginzburg-Landau equation is in general:1

J =
e
m
[Ψ∗(−i~∇ − 2eA)Ψ + Ψ(+i~∇ − 2eA)Ψ∗]. (5)

If we again set A ≈ 0 and substitute in Ψ = ψeiϕ ,

J =
2~e
m
ψ2∇ϕ. (6)

From this equation for the charge current, combined with the
fact that charge current is conserved ∇ · J = 0, we conclude:

2ψ(∇ψ)(∇ϕ) + ψ2∇2ϕ = 0. (7)

At any point with a finite wavefunction ψ , 0, this means that
two of the terms on the left-hand side of Eq. (4) have to cancel.
This lets us write Eq. (4) as simply:

∇2ψ − ψ(∇ϕ)2 = ψ/ξ2
0 . (8)

B. Exact vortex profile

We now focus on the specific case of a vortex with winding n,
meaning that the total phase-difference around the core is
∆ϕ = 2πn. At a distance r from the core, this phase-difference
occurs over a length 2πr, yielding an average phase-gradient
|∇ϕ| = ∆ϕ/2πr = n/r. Assuming cylindrical symmetry, we
expect the amplitude ψ to only depend on the radius r from
the vortex core, so that ∇2ψ → r−1∂r (r∂rψ). Together, these
observations let us reduce Eq. (8) to an ordinary differential
equation for the radial profile ψ(r), which can be written as:

r2 d2ψ

dr2 + r
dψ
dr
−

(
n2 +

r2

ξ2
0

)
ψ = 0. (9)

This is the defining equation for the modified or hyperbolic
Bessel functions In(r/ξ0) and Kn(r/ξ0). However, whereas the
first kind In(r/ξ0) always converges to a finite value as r → 0,
the second kind diverges there, and is therefore an unphysical
solution. The radial profile of a vortex is therefore:

ψ(r) = ψ0In(r/ξ0). (10)
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C. Asymptotic kinetic energy

In the previous subsection, we found exact solutions of the
linearized Ginzburg-Landau equation in the vicinity of a vortex.
These are however not straight-forward to use for analytically
comparing vortex energies. Physically, we expect the dominant
contributions to the kinetic energy to come from the region
close to the vortex. This means that we can do a Taylor
expansion around the vortex core r = 0,

In(r/ξ0) =

∞∑
m=0

1
m!(m + n)!

(
r

2ξ0

)2m+n
(11)

and focus on the region near the vortex core r � ξ0 where the
m = 0 term becomes the dominant contribution. This gives us
the following asymptotic profile for a vortex with winding n:

ψ(r) ≈
ψ0
n!

(
r

2ξ0

)n
. (12)

We can now go back to the free energy, and use these
solutions to determine the energy associated with each vortex.
Let us consider the kinetic energy density Ek . In the absence
of magnetism, this is just the gradient term in Eq. (1):

Ek =
~2

2m
|∇Ψ|2. (13)

We then switch to polar coordinates ∇ = ∂r er + r−1∂θ eθ :

Ek =
~2

2m

(
|∂rΨ|

2 + r−2 |∂θΨ|
2
)
. (14)

Substituting in the asymptotic solutions Ψ ∼ rneinθ :

Ek =
~2 |Ψ|2

mr2 n2. (15)

Thus, the kinetic energy of a giant vortex is proportional to n2.

II. SUPERCONDUCTORWITH A UNIFORM CURRENT

In the main manuscript, we considered a system consisting of
a superconducting wire encircling a normal metal. Although
the superconductor was assumed to be thick enough to act
as a bulk material, the fact that it also carries a supercurrent
means that the propagators are no longer given by the standard
BCS solution. In order to use as realistic boundary conditions
as possible for that setup, we here solve the Usadel equation
analytically for a current-carrying superconductor.

A. Background theory

In a superconductor, the Usadel equation can be written2–4

iD∇(ĝ∇ĝ) = [ε τ̂3 + ∆̂ , ĝ], (16)

where τ̂3 = diag(+1,+1,−1,−1), and the gap matrix is defined
as ∆̂ = antidiag(+∆,−∆,+∆∗,−∆∗). The superconducting gap
can in turn be parametrized as ∆ = |∆|eiϕ where ϕ ∈ �. The
matrices on the left-hand side of the commutator are then:

ε τ̂3 = ε

(
+σ0 0

0 −σ0

)
, ∆̂ = |∆|

(
0 e+iϕiσ2

e−iϕiσ2 0

)
. (17)

The propagator ĝ can be written using the θ-parametrization:4,5

ĝ =

(
+ cosh θ σ0 e+iχ sinh θ iσ2

e−iχ sinh θ iσ2 − cosh θ σ0

)
. (18)

The parameters θ and χ satisfy the particle-hole symmetries
θ∗(+ε) = −θ(−ε) and χ∗(+ε) = χ(−ε).5 For brevity, we also
use the abbreviations s ≡ sinh θ and c ≡ cosh θ. Finally, the
self-consistency equation for the gap is:8

∆ = N0λeiχ
∫ωc

0
dε Re[sinh θ] tanh(ε/2T). (19)

Comparing this to the parametrization of the gap ∆ = |∆|eiϕ ,
we immediately note that the phases ϕ = χ must be equal.

B. Zero current

In the absence of charge currents, we must have a homogeneous
solution ∇ĝ = 0. Thus, the Usadel equation has to reduce to:

[ε τ̂3 + ∆̂ , ĝ] = 0. (20)

Writing the terms in the commutator explicitly, we get:

[ε τ̂3 , ĝ] = +2ε
(

0 +se+iϕiσ2
−se−iϕiσ2 0

)
, (21)

[∆̂ , ĝ] = −2|∆|
(

0 +ce+iϕiσ2
−ce−iϕiσ2 0

)
. (22)

From this, we can extract the scalar equation εs − |∆|c = 0,
which yields the standard BCS solution θ = atanh(|∆|/ε).

C. Uniform current

Before we attempt to solve the Usadel equation in a current-
carrying superconductor with ∂z ĝ , 0, let us try to constrain
the allowed position-dependence of our parameters θ and ϕ.
One such condition can be found from the density of states,

N =
1
2

N0 ReTr[g] = N0 Re[cosh θ]. (23)

For a bulk superconductor carrying a uniform current, we insist
that the density of states is uniform as well, i.e. that ∂zN = 0.
Using the chain rule, we can rewrite this condition as follows:

(∂zθ)(∂θRe[cosh θ]) = 0. (24)

Thus, we may either have ∂zθ = 0 or ∂θRe[cosh θ] = 0. Since
θ is a direct function of energy, the latter is equivalent to the
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density of states being energy-independent, which we know is
false for a superconductor. Thus, we conclude that ∂zθ = 0.
Now that we know ∂zθ = 0, differentiating ĝ is quite easy:

∂z ĝ = i∂zϕ
(

0 +e+iϕsiσ2
−e−iϕsiσ2 0

)
. (25)

Multiplying by ĝ from the left, we then obtain:

ĝ∂z ĝ = i∂zϕ
(

s2σ0 e+iϕcs iσ2
e−iϕcs iσ2 −s2σ0

)
. (26)

Another constraint can then be found from the spectral current,

jz =
1
4

j0 Tr[τ̂3ĝ∂z ĝ]. (27)

Substituting in the expression for ĝ∂z ĝ above, we find that
jz/ j0 = is2∂zϕ. But insisting that the divergence ∂z jz = 0,
and keeping in mind that ∂zs = 0 because we determined that
∂zθ = 0 above, this gives us the constraint ∂2

z ϕ = 0. One might
however argue that perhaps the spectral current does not have to
be conserved, since charge conservation only requires that the
integral of the spectral current above is position-independent.
However, for a uniform current-carrying superconductor, we
can safely insist that the spectral current be constant as well.
Now that we have the additional constraint ∂2

z ϕ = 0, it is
straight-forward to differentiate ĝ∂z ĝ:

∂z(ĝ∂z ĝ) = (i∂zϕ)2
(

0 +e+iϕcs iσ2
−e−iϕcs iσ2 0

)
. (28)

This defines the left-hand side of the Usadel equation. Com-
bining the above with the rest of the Usadel equation, we find
the following equation from the off-diagonal parts:

iD(i∂zϕ)2cs = 2εs − 2|∆|c. (29)

We will now normalize everything with respect to the zero-
current gap ∆0, so that |∆| ≡ δ∆0 and ε ≡ E∆0. Furthermore,
we define a phase-winding rate u2 ≡ D(∂zϕ)2/∆0. Thus:

Es − δc + i(u2/2)cs = 0. (30)

Note that since the diffusion constant can be written D = ∆0ξ
2,

we could also write u = ξ∂zϕ, which means that this parameter
basically measures the phase-winding per coherence length. By
substituting the hyperbolic identity c =

√
1 + s2 into Eq. (30),

the resulting 4th-order algebraic equation in s can easily be
solved to provide the analytical solution. However, for practical
reasons we here pursue a numerical approach.

D. Non-selfconsistent solution

In order to solve Eq. (30), it is convenient to reparametrize
the equation using the following mapping, where Θ(E) is an
unknown function of energy:6,7

c =
E

√
E2 − Θ2

, s =
Θ

√
E2 − Θ2

. (31)

Note that this parametrization manifestly satisfies the identity
c2−s2 = 1. Substituting the above into Eq. (30) and rearranging,
we find that the Usadel equation can be rewritten as:

Θ =
δ

1 + u2/2
√
Θ2 − E2

. (32)

In the absence of currents u = 0, we get a trivial solutionΘ = δ.
For a finite phase-winding rate u, it takes the form of a fixpoint
iteration equation, and can be solved using Newton’s method.

In addition to the above equation forΘ, we need to determine
the superconducting phase ϕ. However, in the previous subsec-
tion, we discovered that ∂2

z ϕ = 0. This means that the phase ϕ
has to be a linear function of position. Furthermore, since the
reference-point for the superconducting phase is arbitrary, we
can define ϕ(0) ≡ 0. Thus, the phase ϕ can be expressed as:

ϕ(z) = uz/ξ. (33)

For small currents, one can safely assume that the gap is nearly
the same as for zero current, meaning that δ ≈ 1. However,
in general, this fixpoint equation has to be accompanied by a
selfconsistency equation for the current-dependent gap factor δ.

E. Selfconsistent solution

Let us now revisit the selfconsistency equation for the gap,
using the Θ-parametrization from the previous subsection. We
normalize the energy E ≡ ε/∆0, gap δ ≡ |∆|/∆0, Debye cutoff
Ωc ≡ ωc/∆0, and temperature τ ≡ T/Tc . Furthermore, the
cutoff is in general related to the BCS coupling strength by
Ωc = cosh(1/N0λ), while the gap and critical temperature
are related by the BCS ratio ∆0/Tc = π/eγ, where γ is the
Euler-Mascheroni constant.8 Combining all of these remarks,
Eq. (19) for the current-dependent gap may be written as:

δ =
1

acoshΩc

∫Ωc

0
dE Re

(
Θ

√
E2 − Θ2

)
tanh

(
π

2eγ
E
τ

)
. (34)

In general, the selfconsistent problem is solved in two steps.
First, we guess that the solution is Θ(E) = 1 and δ = 1. For
each energy in a discretized range from E = Ωc to E = 0, one
solves Eq. (32) forΘ(E) using Newton’s method. The solutions
are substituted into Eq. (34), which is integrated to find a new
estimate for δ. This procedure is repeated until convergence.

III. GIANT VORTICES IN ASYMMETRIC GEOMETRIES

Giant vortices are inherently unstable and will seek to split
into single vortices unless hindered from doing so. For the
systems under consideration, the giant vortices are maintained
due to symmetry constraints. It is therefore interesting to
investigate how, for instance, Fig. 3(b) in the manuscript reacts
to a small deviation from perfect symmetry. We do so by
introducing a small perturbation ε of the aspect ratio α by
defining α = 1+ε, thereby making the system rectangular. The
results are shown in Fig. 1, from which it is seen that vortices



4

do indeed split as ε is increased, but this splitting occurs
in a continuous way, and the resulting vortex pair remains
within close proximity to the location of the original giant
vortex for a deviation of up to ε = 1%. This means that the
giant vortex can be stabilized against small deviations in the
geometry by placing a pinning potential at this position,9 or
by forcing the split vortices together by fine tuning the applied
currents. To reduce the influence of unintended asymmetry, it is
recommended to use a superconductor with as large a coherence
length as possible. Choosing for instance aluminium, one gets
an estimated diffusive coherence length of ξ ' 100 nm. For
a square geometry with side lengths L = 12ξ, a deviation
of ε = 1% then corresponds to ∆L ' 12 nm, which is an
experimentally achievable level of accuracy.10

FIG. 1: Vortex patterns for an applied current winding of ΦI = 4π,
with increasing aspect ratio deviation ε.
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We predict that superconductivity in mesoscopic thin films can be stabilized in high magnetic fields if the
superconductor is driven out of equilibrium by a DC voltage bias. For realistic material parameters and temper-
atures, we show that superconductivity is restored in fields many times larger than the Chandrasekhar-Clogston
limit. After motivating the effect analytically, we perform rigorous numerical calculations to corroborate these
findings and present concrete experimental signatures. On the technical side, we also introduce a formulation of
the nonequilibrium kinetic equations that both generalizes and simplifies previous results.

DOI: 10.1103/PhysRevB.98.144509

I. INTRODUCTION

It is well known that magnetism is harmful to conven-
tional superconductivity; the mechanisms responsible are a
diamagnetic orbital effect and paramagnetic spin effect. The
orbital effect refers to the Lorentz force felt by electrons
moving in a magnetic field, which forces the electronic con-
densate to rotate. That requires kinetic energy and eventually
makes condensation unfavorable. This can be neglected in
thin films with in-plane fields, since currents perpendicular
to the plane are suppressed [1]. The spin effect refers to the
magnetic spin splitting of the electronic dispersion relation.
Since a conventional Cooper pair consists of two electrons
with opposite spins, this results in a momentum mismatch
between the electrons in the pair. In clean systems, this
may lead to an inhomogeneous superconducting state [2–4].
However, in dirty thin films, impurity and surface scattering
prevent such an FFLO state from forming [2], and the spin
effect just causes depairing instead. Superconductivity can
therefore survive only up to the Chandrasekhar-Clogston limit
m = �0/

√
2 [5,6], where m is the Zeeman splitting of the

magnetic field and �0 the zero-temperature gap of a bulk
superconductor. In this paper, we show that this fundamen-
tal limit can be circumvented using a surprisingly simple
trick: voltage biasing the superconductor. The results are
directly applicable to the dawning field of superconducting
spintronics, where stabilizing superconductivity in proximity
to magnetic elements is paramount [7–10].

Figure 1 illustrates relevant experiments. The centerpiece
is a thin-film superconductor exposed to an in-plane magnetic
field. In theory, it does not matter whether this field is provided
by a proximity effect or external source. However, a proximity
effect provides a fixed field strength, limiting the parameter
space one can explore with a single sample. On the other
hand, externally inducing a Zeeman field m ∼ �0 requires
tens of teslas. Thus, the ideal solution is a combination:
A ferromagnet produces a large offset m = m0 ∼ �0, while
an external field tunes it to m = m0 + μBHext, where μB is

*Corresponding author: jabir.a.ouassou@ntnu.no

the Bohr magneton. Finally, the superconductor is voltage
biased via tunneling contacts, providing an additional control
parameter.

In Fig. 1(a), the voltage is applied across the superconduc-
tor. This both induces a nonequilibrium distribution there and
injects a current that can be used as an observable. In Fig. 1(b),
transverse wires are used to manipulate the distribution with-
out any charge accumulation or current injection [11–13].
Herein, we focus on Fig. 1(a) and assume �e < ξ < L < �in

for an elastic mean free path �e, diffusive coherence length ξ ,
system length L, and inelastic scattering length �in.

While both spin-split and voltage-biased superconductors
have been investigated for a long time, a number of inter-
esting discoveries have been made in recent years [14–27].
For instance, Bobkova and Bobkov [14] pointed out that
there is a regime around the Chandrasekhar-Clogston limit
where both a superconducting and normal state are allowed.
This bistability means that if the field is varied adiabatically,
and the metastable states relax slowly, one might observe a
superconducting hysteresis effect. Snyman and Nazarov [15]

FIG. 1. Suggested experiments. A magnet induces a field
m = m0 in the superconductor, while an external field Hext shifts it
to m = m0 + μBHext. The spin-split superconductor is then subjected
to a voltage bias V , which stabilizes the superconducting state.

2469-9950/2018/98(14)/144509(15) 144509-1 ©2018 American Physical Society
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had previously predicted the same kind of bistability in
voltage-biased superconductors. Moreover, their results for
the gap were similar to previous results for spin-split super-
conductors as discussed by Moor et al. [16], who showed that
the gap equations for spin-split and voltage-biased supercon-
ductors are equivalent. Given the close analogy between these
phenomena, a natural question is: What happens when both
are present?

II. ANALYTICAL MOTIVATION

Let us first consider a conventional superconductor in
equilibrium, without any fields or voltages. The order param-
eter then satisfies a self-consistency equation � = N0λF (�),
where the gap function F (�) is given by [28–30]

F (�) = 1

2

∫ +ωc

−ωc

dε Re[f (ε)] h(ε). (1)

Here, N0 is the density of states (DOS) at the Fermi level,
λ the BCS coupling constant, f (ε) = �/

√
ε2 − �2 the pair

amplitude, h(ε) = tanh(ε/2T ) the distribution function, ε the
quasiparticle energy, ωc the Debye cutoff, and T the temper-
ature. We measure energies relative to the zero-temperature
gap �0, temperatures relative to the critical temperature Tc,
and set the cutoff ωc = 30�0. Finally, in the weak-coupling
limit the above are related by N0λ ≈ 1/ log(2ωc/�0) and
�0 ≈ πe−γ Tc, where γ ≈ 0.57722 is the Euler-Mascheroni
constant [28].

In response to a Zeeman-splitting field m, the quasiparticle
energies become spin split according to ε → ε ± m, and
the pair amplitude in Eq. (1) therefore ends up taking
the form [f (ε + m) + f (ε − m)]/2. On the other hand,
when a voltage V is applied over the superconductor, the
electronic distribution functions of the contacts are shifted to
h(ε ± eV/2). By linear combination of the electron and
hole distributions, this can be decomposed into a charge
mode [h(ε ± eV/2) − h(ε ∓ eV/2)]/2 and energy mode
[h(ε ± eV/2) + h(ε ∓ eV/2)]/2 [13,29,31]. The charge
mode, which is related to charge accumulation, relaxes
quickly inside the superconductor [17]. The energy
mode, on the other hand, remains constant throughout the
superconductor and couples to the order parameter in Eq. (1)
instead of h(ε). For further discussion of the relevant modes,
see Sec. V. In reality, voltage biasing the superconductor also
induces a supercurrent, which manifests as a phase winding
of the pair amplitude f (ε) and a suppression of the gap. In
the tunneling limit, this phase winding is small enough to be
neglected in the self-consistency equation. However, when
we later in this paper study the system fully numerically, we
also take phase-winding and nonequilibrium spin modes into
account. Making the above modifications to Eq. (1), we find
that for a field m and voltage V the gap function becomes

F (�,m, eV/2)

= 1

8

∫ +ωc

−ωc

dε Re[f (ε − m) + f (ε + m)] h(ε + eV/2)

+1

8

∫ +ωc

−ωc

dε Re[f (ε − m) + f (ε + m)] h(ε − eV/2).

(2)

FIG. 2. Analytically calculated phase diagrams for a voltage-
biased spin-split superconductor at (a) T = 0 and (b) eV/2 = m.
The inset shows numerical results, which qualitatively match the
analytical ones. For comparison, we overlaid phase transition lines
for V = 0 in (b), where red marks the onset of bistability and black
where superconductivity vanishes entirely.

Following the same approach as Moor et al. [16], we substitute
ε′ ≡ ε ± eV/2 into the above to express the voltages as equiv-
alent magnetic fields. Formally, the integration limits have to
be shifted accordingly—but since ωc 	 �,m, eV/2, this is
inconsequential. After some reordering, the result becomes

F (�,m, eV/2) = F (�,m − eV/2, 0)/2

+ F (�,m + eV/2, 0)/2. (3)

At this point, we find three properties worth remarking.
Firstly, the right-hand side is invariant under eV/2 ↔ m. In
other words, the gap responds in precisely the same way
to an applied voltage and magnetic field. Moreover, plotted
as a function of these two control parameters, the super-
conducting gap should be symmetric around the diagonals
eV/2 = ±m. Secondly, in spin-split superconductors without
any voltage, it is known that a superconducting solution
� = �0 exists as long as the magnetic field m < �0. Applied
to Eq. (3) above, � = �0 should remain a valid solution for
|m| + |eV/2| < �0. Part of this regime is bistable and admits
a normal-metal solution as well. Finally, we note that the
effects of a voltage and magnetic field cancel in the first term
but act constructively in the second. This becomes especially
clear if we tune the voltage to eV/2 = m, where we find the
peculiar result:

F (�,m,m) = [F (�, 0, 0) + F (�, 2m, 0)]/2. (4)

The first term is just the gap function in the absence of fields
and voltages, which by itself always results in superconduc-
tivity at low temperatures. The second is the gap function for
a superconductor with a magnetic field 2m, which only con-
tributes to superconductivity until m = �0/2. We therefore
expect the combination to yield a bulk gap until m = �0/2,
but also produce a weaker superconducting solution for much
higher fields, since half the gap function is independent of m.

In Fig. 2, we show phase diagrams for the voltage-
biased spin-split superconductor, which were calculated using
Eq. (2). For more details on how the phases were clas-
sified, and in particular how bistability was checked, see
Appendix A. Figure 2(a) demonstrates all the qualitative

144509-2



VOLTAGE-INDUCED THIN-FILM SUPERCONDUCTIVITY … PHYSICAL REVIEW B 98, 144509 (2018)

features motivated above: Superconducting solutions exist for
eV/2 ≈ m and |eV/2| + |m| < �0, and are symmetric around
eV/2 = m. For eV/2 ≈ m, the system is not even bistable but
only admits superconducting solutions. In other words, no sta-
ble normal-state solution exists along eV/2 ≈ m at low tem-
peratures, even for fields much larger than the Chandrasekhar-
Clogston limit. For high magnetic fields m > �0, the effect
is particularly striking: There is no superconductivity in the
system until a voltage eV/2 ≈ m is applied. In other words,
a voltage bias can be used to allow coexistence of super-
conductivity and a Zeeman-splitting magnetic field that is
much larger than both the Chandrasekhar-Clogston limit and
the bulk gap.

Figure 2(b) shows the temperature dependence for
eV/2 = m. This is clearly a low-temperature effect: The
limiting magnetic field seems to diverge as T → 0, while
a comparison with the overlays indicate that the cancella-
tion becomes insignificant after ∼0.4Tc. However, the plot
also shows that superconductivity is stabilized in high fields
m > �0 at temperatures up to T ≈ 0.25Tc, which for niobium
corresponds to reasonable value ∼2.3 K. Going down to
∼1 K, one can even expect superconductivity for m > 2�0.

Note that the stabilization of superconductivity for
eV/2 = m is similar to an effect previously reported by
Bobkova and Bobkov [26,27]. They found that if one applies
a spin-dependent voltage eV↑/2 = −eV↓/2 = m, which can
be achieved using voltage-biased half-metallic contacts, su-
perconductivity is recovered. Our effect is, however, qualita-
tively different, since it arises for a spin-independent quasi-
particle distribution and purely electric voltage bias using
normal metal contacts. Related effects were demonstrated
in Refs. [32–35], which found that the critical current in
Josephson junctions behaved symmetrically with respect to
voltages and magnetic fields.

III. NUMERICAL APPROACH

We use the quasiclassical formalism [13,22,29,36,37],
where observables are described via an 8×8 propagator in
Keldysh ⊗ Nambu ⊗ spin space,

ǧ =
(

ĝR ĝA

0 ĝK

)
. (5)

The components are related by ĝK = ĝRĥ − ĥĝA and
ĝA = −τ̂3ĝ

R†τ̂3, where ĥ is the distribution matrix, and
τ̂3 = diag(+1,+1,−1,−1) is a Pauli matrix in Nambu space.
It is therefore sufficient to determine the retarded propaga-
tor ĝR and distribution matrix ĥ. It is commonly stated that
ĝR describes the equilibrium state, while ĥ describes the
nonequilibrium one. However, this is actually incorrect for
a superconductor, since ĝR implicitly depends on ĥ via the
self-consistently determined gap �. In practice, one therefore
has to alternate between solving a diffusion equation for ĝR , a
kinetic equation for ĥ, and a self-consistency equation for �,
until all three converge.

The propagator is governed by the Usadel equation [37],

iξ 2∇(ǧ∇ǧ) = [�̂ + ετ̂3 + mσ̂3, ǧ]/�0, (6)

where �̂ = antidiag(+�,−�,+�∗,−�∗) is the gap matrix,
σ̂3 = diag(+1,−1,+1,−1) a Pauli matrix in spin space.

The film is voltage biased via tunneling contacts, which we
model with Kupriyanov-Lukichev boundary conditions [38]
to normal reservoirs with chemical potentials μ = ±eV/2
relative to the superconductor. The interfaces are character-
ized by the ratio of tunneling to bulk conductance, which
we set to a moderate value GT /G0 = 0.3. For an 8ξ thick
Nb superconductor, this corresponds to an average channel
transparency of ∼1%. Finally, we set the superconductor
length L = 8ξ ; in general, we found a stronger recovery of
superconductivity for longer junctions, but at L = 8ξ the
gap had nearly saturated. We also performed a number of
tests using transparent interfaces and found similar results as
long as the superconductor was made sufficiently long; this
indicates that the results are not very sensitive to the specific
material parameters used. The retarded propagator ĝR was
Riccati parametrized for stability [39] and solved for in the
same way as usual [40]. The gap function can be written as an
integral of the singlet anomalous component of the Keldysh
propagator ĝK [28]. Physical observables, such as the current
and DOS, were calculated from the quasiclassical propagators
using standard formulas [9,13,22,29,36].

We modeled inelastic scattering using the Dynes approx-
imation ε → ε + 0.01i�0 [41,42]. While this is a very good
approximation for the spectral features, it does not produce the
expected decay of the energy mode due to inelastic scattering.
We note that in the most relevant temperature range for exper-
iments (below ∼1 K), electron-electron interactions are the
dominant contribution to the inelastic scattering length [43],
which appears to diverge at lower temperatures [44]. A more
rigorous modeling of the electron-electron interaction is be-
yond the scope of this paper and left for future work.

As for the kinetic equations, we have derived a form which
generalizes and simplifies previous results. Our approach is
similar to the treatment of nonequilibrium S/N systems in
Refs. [13,29] and especially the treatment of S/F systems
with spin-flip and spin-orbit scattering in Refs. [19–22].
However, we extend their results to a Usadel equa-
tion with a completely general second-order self-energy
∇(ǧ∇ǧ) ∼ [�̂(1) + �̂(2)ǧ�̂(2), ǧ] and derive accompanying
boundary conditions for strongly polarized magnetic inter-
faces based on Ref. [45]. We do not make any simplifying
assumptions, so the results can be used for systems with volt-
ages, spin voltages, temperature gradients, spin-temperature
gradients, and any combination of spin projections. The final
result is an explicit linear second-order differential equation
with a simple form,

Mnm∇2hm = −(∇Mnm + Qnm) · ∇hm

− (∇ · Qnm + Vnm + Wnm) hm, (7)

where we sum over repeated indices. The distribution is
parametrized as an 8-element vector h, which describes all
charge, spin, heat, and spin-heat degrees of freedom. The
coefficients M , Q, V , W are 8×8 matrices that depend on
the retarded propagator ĝR and self-energy factors �̂(1), �̂(2)

but not the distribution h. In addition to being simple and
general, this formulation is very efficient numerically since
all coefficients are independent of h; in fact, it takes less time
to solve than the Riccati-parametrized equations for ĝR . For
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FIG. 3. We set eV/2 = m and investigate how m affects (a) the
order parameter and (b) the DOS at T = 0.01Tc. The dashed line was
calculated analytically using Eq. (2) at T = 0, while the colored lines
were calculated numerically at T > 0.

more details about the kinetic equations, see Appendices B
and C.

IV. PHYSICAL OBSERVABLES

Figure 3 highlights some properties of the configura-
tion eV/2 = m that stabilizes superconductivity. Figure 3(a)
compares the analytical and numerical approaches: Even
though the former neglects both inelastic scattering and
spatial variations, we find an impeccable agreement at low
temperatures. Beyond the point m = �0/2, the gap sud-
denly starts to decrease with m. At finite temperatures,
we find that superconductivity remains until m ≈ 2�0 at
T = 0.1Tc and m ≈ �0 at T = 0.2Tc, in agreement with
Fig. 2(b).

Figure 3(b) shows the DOS in the center of the super-
conductor, which can be observed by scanning tunneling
microscopy (STM). These predictions are interesting: At
m ≈ �0/2, a gigantic zero-energy peak develops throughout
the superconductor without destroying the singlet conden-
sate. For m 	 �0, another unusual state develops, manifest-
ing as two half-filled BCS gaps far from the Fermi level
ε = 0. However, these are not unreasonable results: It
is exactly what one would expect from a BCS DOS
N (ε) = N0 Re[|ε|/√ε2 − �2], if one uses the gaps � in
Fig. 3(a) and introduces spin splitting ε → ε ± m. For
m ≈ �0/2 ≈ �(m = �0/2), this results in two BCS shapes
that are shifted so that their coherence peaks overlap at
ε = 0, causing a zero-energy peak to manifest. At higher
fields m 	 �0, we instead see two disjoint BCS shapes.
The spin-resolved DOS (not shown) confirms that there is
actually a full spectral gap in the spin-down DOS at ε = +m

and spin-up DOS at ε = −m, causing the spin-independent
DOS in Fig. 3(b) to exhibit two apparently half-filled spectral
gaps.

In Fig. 4, we present another experimental signature.
Figure 4(a) shows that for a fixed field m = �0, no supercon-
ductivity exists without a voltage bias. At eV/2 ≈ �0, super-
conductivity is suddenly stabilized; taking the superconductor
to be, e.g., niobium, the gap is then restored to � ≈ 0.36 meV
at T ≈ 1 K and � ≈ 0.22 meV at T ≈ 2 K. This manifests
as a spike in the otherwise ohmic current flowing through the
junction, causing an excess current of ∼5% at 1 K and ∼1%

FIG. 4. Numerically calculated gap � for (a) fixed field m = �0

and varying voltage, and (b) fixed voltage eV/2 = �0 and varying
field. The temperatures T are given in the legends above. Panels
(c) and (d) show the corresponding deviations δI from the normal-
state current I = GV due to superconductivity, which have been
normalized to the current I0 at eV/2 = �0.

at 2 K. Figure 4(b) demonstrates that the same qualitative
behavior is expected for a fixed voltage eV/2 = �0 and
varying magnetic field. This shows that there is similarly a
regime where an applied magnetic field is required to induce
superconductivity. Although Fig. 2 shows that the stable
superconducting regime eV/2 ≈ m should be padded by a
bistable regime, this bistable regime shrinks considerably at
finite inelastic scattering and temperature. So while we do
find bistability numerically for low temperatures T = 0.01Tc,
the bistable regime is almost nonexistent for the parameters in
Fig. 4.

V. DISTRIBUTION FUNCTION

In this section, we show how the numerically calculated
distribution function ĥ varies as a function of position x and
energy ε. Since a full decomposition and exposition of the
distribution function takes a lot of space to visualize, we
focus on the parameters m = eV/2 = �0 at a low tempera-
ture T = 0.01Tc. We note that the results for other magnetic
fields and voltages are qualitatively similar to the ones shown
here, and the results at higher temperatures are basically just
thermally smeared.

Following the notation of Appendix B, we parametrize the
distribution function in terms of the modes hn = Tr[ρ̂nĥ]/4.
For a system with a homogeneous magnetic field along the
z axis, only four components may be nonzero: the energy
mode h0, spin-energy mode h3, charge mode h4, and pure
spin mode h7. Numerically, these have only been calculated
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FIG. 5. Nonequilibrium modes hn of the distribution function ĥ

as a function of position and energy. Note that the color bars used for
the different panels differ by several orders of magnitude.

for positive energies ε > 0. However, the energy and spin-
energy modes are by definition odd functions of ε, while the
charge and spin modes are even functions of ε; these energy
symmetries can be used to obtain the distribution at ε < 0.

The results are shown in Fig. 5. We see that the energy
mode h0 agrees perfectly with the analytically expected result

h0 = 1
2 {tanh[(ε + eV/2)/2T ] + tanh[(ε − eV/2)/2T ]},

(8)

which at low temperatures gives h0 = 0 for 0 < ε < eV/2
and h0 = 1 for ε > eV/2, where eV/2 = �0 here. In general,
an energy-mode excitation relaxes over the inelastic scattering
length, which we take to be long compared to the system size.
However, the Dynes model used for the inelastic scattering
herein does not describe the energy-mode decay properly.

The charge mode is an order of magnitude smaller than
the energy mode at the interfaces. Since the voltages ±V/2 at
the interfaces are opposite, the charge mode is also forced to
be an antisymmetric function of position. In total, the charge
mode is therefore much smaller than the energy mode even
at the interfaces and vanishes completely deeper inside the
superconductor. This helps to explain the remarkably accurate
agreement between the analytical and numerical calculations
and legitimizes the approximation ĥ ≈ h0ρ̂0.

In addition to the energy and charge modes, which were
explained in previous sections, we see that there is also a
small spin-energy and pure spin mode in the system. However,
these are roughly two orders of magnitude smaller than the
energy mode, which explains why these are not essential for
the analytical understanding presented earlier.

The origin of the spin-energy mode is actually straightfor-
ward. As can be read out from Fig. 3(a), the self-consistent
order parameter � ≈ �0/4 for m = eV/2 = �0. Figure 3(b)
and related discussion shows that this causes two gaps in

FIG. 6. Occupation number n(ε) at different positions. The dis-
tribution has a two-step shape throughout the superconductor, but a
local charge accumulation distorts it slightly near the interfaces.

the DOS: a hard gap in the spin-down DOS centered at
ε = +m = +�0 and a hard gap in the spin-up DOS centered
at ε = −m = −�0. This spin-split superconducting state is
then coupled to a reservoir at a voltage eV/2 = +�0 at the
left end x = 0. There is therefore a region (3/4)�0 < ε < �0

where spin-up quasiparticles are injected while the spin-down
band has a hard gap. At the right end x = 8ξ , the material
similarly couples to a reservoir at a voltage −eV/2 = −�0.
This causes spin-down quasiparticles to be drained from the
region −�0 < ε < −(3/4)�0, while the spin-up band has
a hard gap. Thus, one has effectively injected spin-up elec-
trons for (3/4)�0 < ε < �0 and injected spin-down holes for
−�0 < ε < −(3/4)�0, which is an excitation of the spin-
energy mode. Note that this energy region where the charge
mode of the voltage-biased reservoirs couple to a spin-energy
mode in the superconductor is the same region where the
charge mode in the superconductor is slightly weakened.

Finally, in Fig. 6, we show how the spin-independent
occupation number n(ε) = [1 − h0(ε) − h4(ε)]/2 depends on
position. This has a two-step Fermi-Dirac-like shape through-
out the superconductor but has some variation through the
superconductor due to the varying charge mode.

VI. CONCLUSION

We have shown that superconductivity can coexist
with a Zeeman-splitting magnetic field far beyond the
Chandrasekhar-Clogston limit m = �0/

√
2 if the supercon-

ductor is exposed to a voltage bias eV/2 = m. We present
concrete setups for observing this effect in Fig. 1 and provide
two experimental signatures: the peculiar spin-split DOS in
Fig. 3, which can be measured using an STM, and the excess
current in Fig. 4, which produces a significant deviation from
the otherwise ohmic behavior. If we take the superconductor
to be niobium, the signals should be very strong at 1 K, and
should be observable at m = �0 for temperatures up to 2 K.

Possibilities for future work include investigating how ro-
bust this superconducting state is with respect to spin-flip scat-
tering, spin-orbit scattering, and orbital depairing. It would
also be interesting to check if a similar effect exists for un-
conventional high-temperature superconductors. Finally, our
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setup might be used as a circuit element for superconducting
spintronic junctions. For instance, the m ≈ �0/2 curve in
Fig. 3(b) shows a gigantic zero-energy peak inside the super-
conductor, which is reminiscent of an intrinsic odd-frequency
superconductor. An even more peculiar behavior might arise
for m 	 �0, when the spectral gaps of the spin bands do not
overlap.
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APPENDIX A: PHASE DIAGRAMS

The self-consistency relation for the superconducting gap
can be written � ∼ F (�,m, eV/2) in the presence of a
magnetic field m and voltage bias V , as discussed in the
main paper. The simplest way to solve such equations is
by fixpoint iteration: For each field m and voltage V , one
chooses an initial guess � = �1 and calculates successive
values using �n+1 ∼ F (�n,m, eV/2). This is repeated until
the difference |�n+1 − �n| between iterations drops below
some acceptance threshold, at which point the system is said
to have converged to a fixed point for the gap. These fixed
points that the system converges toward correspond to minima
in the free energy; this is not straightforward to verify within
the Usadel formalism but can be found by comparison to
the Ginzburg-Landau [14] and Bogoliubov-de Gennes [46]
formalisms. Alternatively, it can be argued more heuristically
that the Usadel equation should be possible to derive by
minimizing some free energy—and its self-consistent solution
should converge towards these minima.

In many cases, the magnitude of the gap converges to-
wards the same fixed point for any finite initial guess � �= 0.
This fixed point is then called a stable solution, since the
system converges back to the same point after perturbations.
Some care must be taken with the normal-state solution
�= 0: Mathematically, this is always a solution to the self-
consistency equation. However, below the critical temperature
of the superconductor, it actually corresponds to a local
maximum in the free energy. In this case, one finds that
even infinitesimal perturbations of the initial state results in
a divergence away from this point, which is why it is called
an unstable solution. These solutions are not very interesting
from a physical point of view and can be discarded.

However, in some systems, the situation is more com-
plicated. In a spin-split superconductor, there is a parame-
ter regime �0/2 < m < �0 where the gap converges to a
superconducting solution � = �0 for large initial guesses
but a normal-state solution � = 0 for small guesses. Both
solutions are locally stable in the sense that they are robust to
small perturbations and correspond to different local minima
of the free energy [14]. These two minima are separated by
an energy barrier, which manifests as an unstable solution

� = �0
√

2m/�0 − 1 where the free energy of the system is
maximized [47]. In a voltage-biased superconductor, the exact
same situation occurs for �0/2 < eV/2 < �0 [15]. Other
situations where multiple locally stable solutions can exist
include optically pumped systems [48], complex Josephson
junctions [49], and supercooled type-I superconductors in a
magnetic field [30].

Originally, this bistability was resolved by comparing the
energies of the two minima, since the system should eventu-
ally relax to the global minimum. In the magnetic case, this
yields the Chandrasekhar-Clogston limit m = �0/

√
2 as the

exact transition point in the interval �0/2 < m < �0, where
a first-order phase transition takes place [5,6]. However, if
the magnetic field is varied adiabatically beyond this point, the
superconductor can in principle remain in a local minimum for
some time before collapsing to the global minimum. Thus, one
might observe a kind of superconducting hysteresis effect in
this regime, and a more accurate characterization might be to
call it bistable or hysteretic [14,15]. In this paper, we take this
view and therefore classify the phase diagram of the junction
into superconducting, bistable, and normal regions, where the
bistable one might exhibit either a superconducting hysteresis
or first-order phase transition depending on the relaxation
times of the metastable states. Since it is not straightforward
to accurately calculate the free energy itself within the Usadel
formalism, we do not calculate the thermodynamic transi-
tion lines, but these can be assumed to lie in the bistable
regime.

After introducing the terminology, we now demonstrate
how the phase diagram itself was calculated. In Figs. 7(a)–
7(c), we visualize how the superconducting gap � changes
depending on the initial guess. Figure 7(a) in particular vi-
sualizes the spin-split superconductor discussed above. For
m < �0/2, the gap increases for � < �0, decreases for
� > �0, and always converges to � = �0. This is a stable
superconducting regime. Conversely, for m > �0, the gap
decreases to � = 0 regardless of our initial guess. This is a
stable normal-state solution. But for the intermediate regime
�0/2 < m < �0, there are three distinct solutions for the
gap [47]: a superconducting one � = �0, a normal one �= 0,
and an unstable one in between. This is an example of the
bistability discussed above. Figure 7(b) shows the correspond-
ing case for a voltage-biased superconductor, which behaves
identically [15,16]. Note that in Fig. 7(c), we also find a
brief bistability between two superconducting solutions at
m = eV/2 ≈ �0/2; such regions were classified as supercon-
ducting and not bistable in this paper.

Figures 7(d)–7(f) display how the superconducting states
were classified, using similar colors to Fig. 2. In practice, two
different initial guesses � = 10−4�0 and � = 1.01�0 are
sufficient to identify both solutions in bistable regimes; this
was done for 400×400 values of m and eV/2 to construct
Fig. 2. We note that our Fig. 7(d) is in agreement with
Ref. [47], and Fig. 7(e) is in agreement with Ref. [15], while
Fig. 7(f) is a result obtained in this paper.

APPENDIX B: KINETIC EQUATIONS

Here, we derive an explicit linear ordinary differential
equation for the distribution function ĥ. The result is a
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FIG. 7. Flow of the superconducting gap � between self-consistency iterations for (a) varying magnetic field m but zero voltage V = 0,
(b) varying voltage V but zero magnetic field m = 0, and (c) matched magnetic field and voltage m = eV/2. The gap spontaneously increases
in blue regions, decreases in red regions, and comes to a standstill in white regions. Panels (d) and (f) show the inferred solutions for the gap,
classified as superconducting (yellow), bistable (red), normal (black), and unstable (gray), i.e., using a color scheme similar to Fig. 2.

highly computationally efficient form of the kinetic equa-
tions, which is also relatively straightforward to implement
numerically.

The starting point is the Usadel equation [37,50], which
describes diffusive materials in the quasiclassical limit. In
terms of the matrix current Ǐ ≡ D(ǧ∇ǧ) and self-energy �̌,
the Usadel equation can be written ∇ · Ǐ = −i[�̌ , ǧ] [51,52].
However, for our purposes, we only require the Keldysh
component:

∇ · Î
K = −i[�̌ , ǧ]K. (B1)

As we will see later, it will prove prudent to introduce a set
of basis matrices ρ̂n that span block-diagonal spin-Nambu
space,

ρ̂0 ≡ τ̂0σ̂0, ρ̂1 ≡ τ̂0σ̂1, ρ̂2 ≡ τ̂0σ̂2, ρ̂3 ≡ τ̂0σ̂3; (B2)

ρ̂4 ≡ τ̂3σ̂0, ρ̂5 ≡ τ̂3σ̂1, ρ̂6 ≡ τ̂3σ̂2, ρ̂7 ≡ τ̂3σ̂3. (B3)

Here, τ̂0 ≡ diag(+σ0,+σ0) and τ̂3 ≡ diag(+σ0,−σ0) are
the diagonal basis matrices in Nambu space, while
σ̂i ≡ diag(σi, σ

∗
i ) forms a complete basis for the spin struc-

ture, where σi are the Pauli matrices. This lets us rewrite the
distribution matrix ĥ as

ĥ = hnρ̂n, (B4)

where we use the summation convention on the right-hand
side and define the coefficients hn as traces with the basis
matrices,

hn ≡ 1
4 Tr[ρ̂nĥ]. (B5)

The kinetic equations take a simple form when written in
terms of hn instead of ĥ, while Eq. (B4) makes it trivial to
reconstruct the matrix structure afterwards. When implement-
ing our results numerically, hn is treated as a real-valued 8-
vector, while the kinetic equations will involve 8×8-matrices
operating on it.
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1. Decomposition of the current

Combining Ǐ = D(ǧ∇ǧ) and ĝK = ĝRĥ − ĥĝA, we find
that the Keldysh component of the matrix current is

Î
K = D[(ĝR∇ĝR )ĥ − ĥ(ĝA∇ĝA)]

+ D[(∇ĥ) − ĝR (∇ĥ)ĝA]. (B6)

Substituting in the parametrization ĥ = hmρ̂m, we see that the
coefficients hm and ∇hm can be factored out of the brackets,

Î
K = D[(ĝR∇ĝR )ρ̂m − ρ̂m(ĝA∇ĝA)] hm

+ D[ρ̂m − ĝRρ̂mĝA] ∇hm. (B7)

If we then multiply the entire equation by ρ̂n/4 from the left
and take the trace, the resulting equation can be written

In = Qnmhm + Mnm∇hm, (B8)

where we have defined the quantities

In ≡ 1

4
Tr[ρ̂nÎ

K
], (B9)

Qnm ≡ D

4
Tr[ρ̂mρ̂n(ĝR∇ĝR ) − ρ̂nρ̂m(ĝA∇ĝA)]], (B10)

Mnm ≡ D

4
Tr[ρ̂nρ̂m − ρ̂nĝ

Rρ̂mĝA]. (B11)

This has a straightforward interpretation [13,20,22,29]. The

traces of ρ̂nÎ
K

are proportional to the spectral charge, spin,
heat, and spin-heat currents, meaning that In describes the
physically observable currents in the system. The right-hand
side of Eq. (B8) then relates this to the distribution function hm

and its derivative ∇hm. The term proportional to hm can be
nonzero even in equilibrium, which means that Qnm can be
identified as the supercurrent contribution. On the other hand,
the term proportional to ∇hm requires an inhomogeneous
distribution function, so Mnm is a resistive contribution.

If we now go back to the Usadel equation, and multiply that
by ρ̂n/4 from the left and take the trace, we find the equation:

∇ · In = − i

4
Tr

{
ρ̂n[�̌ , ǧ]K

}
. (B12)

This will later be combined with Eq. (B8) to derive the kinetic
equations. First, however, we need to express the right-hand
side of the equation in terms of the distribution function hm.

2. First-order self-energy terms

When describing phenomena such as superconductivity
and ferromagnetism, the self-energy matrix �̌ = �̂ is diag-
onal in Keldysh space and independent of the propagator ǧ.
This simplifies the commutator in Eq. (B12):

[�̌ , ǧ]K = [�̂ , ĝK ]. (B13)

Substituting in ĝK = ĝRĥ − ĥĝA and ĥ = hmρ̂m, we find:

[�̌ , ǧ]K = [�̂ , ĝRρ̂m − ρ̂mĝA]hm. (B14)

Going back to Eq. (B12), we therefore find that

∇ · In = −Vnmhm, (B15)

where we have defined the quantity

Vnm ≡ i

4
Tr{ρ̂n[�̂ , ĝRρ̂m − ρ̂mĝA]}. (B16)

Finally, we note that using the cyclic property of the trace, the
above can be rewritten in the alternative form

Vnm = i

4
Tr{[ρ̂n , �̂](ĝRρ̂m − ρ̂mĝA)}. (B17)

Since all our basis matrices ρ̂n commute with both τ̂0 and τ̂3,
we see that Vnm = 0 for a normal metal where �̂ = ετ̂3. This
implies that in the absence of other self-energy terms, all
currents In must be conserved in normal metals.

3. Second-order self-energy terms

When describing phenomena such as spin-dependent scat-
tering and orbital depairing [20], each self-energy contribution
takes the form �̌ = �̂ǧ�̂. Substituting this into the right-hand
side of Eq. (B12), an explicit calculation yields

[�̌ , ǧ]K = �̂ĝR�̂ĝK + �̂ĝK�̂ĝA

− ĝR�̂ĝK�̂ − ĝK�̂ĝA�̂. (B18)

We recognize the right-hand side as a commutator with �̂,

[�̌ , ǧ]K = [�̂ , ĝR�̂ĝK + ĝK�̂ĝA]. (B19)

We then multiply by ρ̂n from the left and take the trace,

Tr{ρ̂n[�̌ , ǧ]K} = Tr{ρ̂n[�̂ , ĝR�̂ĝK + ĝK�̂ĝA]}. (B20)

Using the cyclic property of the trace, this can be rewritten as

Tr{ρ̂n[�̌ , ǧ]K} = Tr{[ρ̂n , �̂](ĝR�̂ĝK + ĝK�̂ĝA)}. (B21)

Substituting in ĝK = ĝRĥ − ĥĝA, the right side becomes

Tr{[ρ̂n, �̂](ĝR�̂ĝRĥ − ĥĝA�̂ĝA + ĝR[ĥ, �̂]ĝA)}. (B22)

Substituting the parametrization ĥ = hmρ̂m into the above,
and substituting the result back into Eq. (B12), we find that

∇ · In = −Wnmhm, (B23)

where we have defined the quantity

Wnm ≡ i

4
Tr{[ρ̂n , �̂]

×(ĝR�̂ĝRρ̂m − ρ̂mĝA�̂ĝA + ĝR[ρ̂m , �̂]ĝA)}.
(B24)

4. Deriving the kinetic equation

In the previous subsections, we have shown that for
a system described by a general second-order self-energy
matrix �̌, which has contributions of the types �̌ = �̂(1)

and �̌ = �̂(2)ǧ�̂(2), the nonequilibrium distribution function
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satisfies the equations

∇ · In = −(Vnm + Wnm)hm, (B25)

In = Qnmhm + Mnm∇hm. (B26)

Combining these equations, we find a differential equation for
the distribution function components hm:

Mnm∇2hm = −(∇Mnm + Qnm) · ∇hm

− (∇ · Qnm + Vnm + Wnm) hm. (B27)

This is an explicit linear differential equation for the distribu-
tion hm. This can be made manifest by first multiplying by the
8×8 matrix M−1 from the left and then rewriting the equation
in terms of a 16-element state vector (h,∇h).

Note that all coefficient matrices depend only on the equi-
librium solution and can be precalculated before solving the
kinetic equation. The coefficients do, however, depend on
position, since the equilibrium propagators and self-energy
terms may do so. In practice, one might therefore wish to
precalculate the Jacobian of the differential equation at the
discrete positions where the equilibrium problem was solved
and then interpolate between these when solving the kinetic
equation. In our experience, linear interpolation may lead to
convergence issues, while, e.g., Catmull-Rom cubic splines
work very well [53].

APPENDIX C: BOUNDARY CONDITIONS

In order to solve Eq. (B27), we also need boundary
conditions. In some cases, a satisfactory approximation can
be obtained using transparent boundary conditions for the
propagator ǧ. The corresponding boundary conditions for the
distribution are then trivial to obtain: hn is equal on both sides
of the interface.

For more realistic interfaces, the boundary conditions are
often written in terms of the matrix current Ǐ that is flowing
outwards from the interface. This directionality means that
one typically has to flip the sign of the boundary condition at
one end of a material, where the current is directed opposite
from the coordinate axis. Furthermore, let us assume that this
matrix current is a linear function of the distribution ĥ; we
will later prove that this is the case for spin-active tunneling or
reflecting interfaces. Denoting the distribution on “this” side
of the interface as hm, and on the “other” side as hm, we get

In = Cnmhm − Cnmhm. (C1)

Extracting the component In flowing out of the interface from
Eq. (B8), and denoting the normal derivatives by ∇ → ∂ ,

Mnm ∂hm + (Qnm + Cnm)hm = Cnmhm. (C2)

If one uses a numerical solver that minimizes interface resid-
uals, this is a very suitable form of the equation; but if one
requires an explicit form, the derivative ∂hm is also easy to

isolate. Note that the coefficients only depend on the equilib-
rium properties of the system and can therefore be precalcu-
lated. In the following derivations, we will use the notations

Cnm ≡ Tnm + Rnm, (C3)

Cnm ≡ T nm, (C4)

where T and R refer to the boundary condition contributions
from tunneling and reflection terms, respectively.

1. Spin-dependent tunneling contributions

We will now derive boundary conditions for magnetic
interfaces with spin-dependent tunneling. To leading order
in the tunneling probability, and all orders in the polariza-
tion, the matrix current at such an interface can be writ-
ten [40,45,54,55]:

2LǏ = Dt[F (ǧ) , ǧ]. (C5)

Here, ǧ refers to the propagator on “this” side of the interface,
ǧ to the “other” side, and the matrix function F is defined as

F (ǧ) = ǧ + P

1 + √
1 − P 2

{ǧ , m̂} + 1 − √
1 − P 2

1 + √
1 − P 2

m̂ǧm̂.

(C6)

The remaining parameters are the ratio t ≡ GT /G0 be-
tween tunneling conductance and bulk conductance, material
length L, interface polarization P , and magnetization matrix
m̂ ≡ m · σ̂ , where m is a unit vector pointing along the
average interface magnetization. Note that for unpolarized
interfaces, we get F (ǧ) = ǧ, which simplifies the boundary
condition above and the results below. For vacuum interfaces,
we can also set ǧ = 0.

We start our derivation by noting that since m̂ is diagonal
in Keldysh space, the function F has the following property:

F (ǧ)R,K,A = F (ĝR,K,A). (C7)

Applied to the commutator in Eq. (C5), we then get

Î K = Dt

2L
[F (ĝR )ĝK + F (ĝK )ĝA − ĝRF (ĝK ) − ĝKF (ĝA)].

(C8)

Substituting in ĝK = ĝRĥ − ĥĝA, and grouping similar terms,

Î K = Dt

2L
[F (ĝR )(ĝRĥ − ĥĝA) − (ĝRĥ − ĥĝA)F (ĝA)]

+ Dt

2L
[F (ĝRĥ − ĥĝA)ĝA − ĝRF (ĝRĥ − ĥĝA)]. (C9)

We then substitute in ĥ = hmρ̂m and ĥ = hmρ̂m, multiply by
ρ̂n/4 from the left, and take the trace. This results in a linear
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boundary condition In = T nmhm − Tnmhm, where we identify

Tnm ≡ Dt

8L
Tr{ρ̂n[(ĝRρ̂m − ρ̂mĝA)F (ĝA)

−F (ĝR )(ĝRρ̂m − ρ̂mĝA)]}, (C10)

T nm ≡ Dt

8L
Tr{ρ̂n[F (ĝRρ̂m − ρ̂mĝA)ĝA

− ĝRF (ĝRρ̂m − ρ̂mĝA)]}. (C11)

Finally, using the cyclic trace rule, these results simplify to:

Tnm = Dt

8L
Tr{[F (ĝA)ρ̂n − ρ̂nF (ĝR )](ĝRρ̂m − ρ̂mĝA)},

(C12)

T nm = Dt

8L
Tr{(ĝAρ̂n − ρ̂nĝ

R )[F (ĝRρ̂m − ρ̂mĝA)]}. (C13)

2. Spin-dependent reflection contributions

We will now derive the boundary coefficients for a spin-
mixing interface. These boundary conditions can either be
used alone, in the case of completely opaque interfaces to fer-
romagnetic insulators, or together with the tunneling bound-
ary conditions from the previous subsection. The spin-mixing
contribution to the matrix current is [40,45,55–57]:

2LǏ = −iDr[m̂′ , ǧ], (C14)

where r ≡ Gϕ/G0 is the ratio between the spin-mixing and
bulk conductances, and m̂′ ≡ m′ · σ̂ is the interface mag-
netization matrix. In the case of inhomogeneous magnetic
interfaces, m′ may be different from m, due to reflected
and transmitted quasiparticles experiencing different average
magnetizations.

Extracting the Keldysh component of the boundary condi-
tion, and substituting in ĝK = ĝRĥ − ĥĝA on the right side,

Î K = − iDr

2L
[m̂′ , ĝRĥ − ĥĝA]. (C15)

Substituting in ĥ = hmρ̂m, multiplying by ρ̂n/4 from the left,
and taking the trace, we find the current components

In = − iDr

8L
Tr{ρ̂n[m̂′, ĝRρ̂m − ρ̂mĝA]}hm. (C16)

Rewriting the commutator with the cyclic trace rule, and
identifying the trace as a boundary coefficient, we conclude
that this follows the pattern In = −Rnmhm, where

Rnm ≡ − iDr

8L
Tr{[m̂′ , ρ̂n](ĝRρ̂m − ρ̂mĝA)}. (C17)

3. Nonequilibrium reservoirs

The boundary conditions above require knowledge of the
distributions h in any reservoirs that couple to the system.
By a reservoir, we mean a bulk material with a homo-
geneous quasiparticle distribution, which may be either in
or out of equilibrium. In equilibrium, the electron density
ne = 〈�†�〉 should be described by Fermi-Dirac statistics
f (ε) = 1/[1 + exp(ε/T )], and the holes nh = 〈��†〉 by the
remaining probability 1 − f (ε), where the quasiparticle en-
ergy ε is measured relative to the Fermi level. This can
be used to derive that the distribution is simply given by
ĥ = [1 − 2f (ε)]ρ̂0 in equilibrium, which reproduces the con-
ventional expression ĥ = tanh(ε/2T )ρ̂0 [29,58].

Upon applying a voltage V , the chemical potential of
the reservoir is shifted by eV . This increases the electron
density but decreases the hole density and thus shifts the
electron and hole blocks of the distribution above in opposite
directions [29,59]:

ĥ =
(

tanh[(ε + eV )/2T ]σ0 0
0 tanh[(ε − eV )/2T ]σ0

)
.

(C18)

Substituted into Eq. (B5), one finds an energy mode h0 and
charge mode h4, while the spin-energy modes h1, h2, h3 and
spin modes h5, h6, h7 remain zero.

In a more general spin-dependent reservoir, the distri-
bution matrix ĥ should contain components proportional to
σ1, σ2, σ3 as well. One way to describe such a spin depen-
dence is that spin-up and spin-down particles experience dif-
ferent voltages V↑ and V↓ and possibly different temperatures
T↑ and T↓ [22,60]. Physically, the most extreme realization of
this situation is given by half-metallic reservoirs, which only
have one metallic spin band that can couple to regular con-
ductors [26,40]. If we for simplicity take the spin-quantization
axis to be the z axis, introducing spin-dependent voltages and
temperatures yields

ĥ =

⎛
⎜⎜⎝

tanh[(ε + eV↑)/2T↑] 0 0 0
0 tanh[(ε + eV↓)/2T↓] 0 0
0 0 tanh[(ε − eV↑)/2T↑] 0
0 0 0 tanh[(ε − eV↓)/2T↓]

⎞
⎟⎟⎠.

This can also be parametrized in terms of an average
voltage V ≡ (V↑ + V↓)/2 and spin-voltage Vs ≡ (V↑ − V↓)/2;
in nonmagnetic materials, a gradient in the former gives
rise to a pure electric current and in the latter a
pure spin current. Similarly, one can define an aver-
age temperature T ≡ (T↑ + T↓)/2 and spin-temperature
Ts ≡ (T↑ − T↓)/2, whose gradients cause energy and spin-

energy currents. Finally, the physics of the system should
not depend on our arbitrary choice of coordinate axes, so
a corresponding expression for a general spin quantization
axis u = (u1, u2, u3) can be obtained using spin rotation
matrices.

Introducing spin voltages and spin temperatures as dis-
cussed above, performing a spin rotation to an arbitrary spin
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axis u, and again applying Eq. (B5), we find the general result:

h0 = [h++ + h+− + h−+ + h−−],

h1 = [h++ − h+− + h−+ − h−−] u1,

h2 = [h++ − h+− + h−+ − h−−] u2,

h3 = [h++ − h+− + h−+ − h−−] u3,

h4 = [h++ + h+− − h−+ − h−−],

h5 = [h++ − h+− − h−+ + h−−] u1,

h6 = [h++ − h+− − h−+ + h−−] u2,

h7 = [h++ − h+− − h−+ + h−−] u3. (C19)

For brevity, the above is written in terms of the distributions

hcs = tanh[(ε + cV + csVs )/(T + sTs )]/4, (C20)

which describe quasiparticles with a charge index c and spin
index s. For instance, h+− corresponds to c = +1 (elec-
trons) and s = −1 (spin-down), and so on. This describes a
quite general reservoir that can have a voltage, spin voltage,
temperature, and spin temperature, with an arbitrary spin-
quantization axis. The main possibility not accounted for is
that the spin splitting of the voltage and temperature could in
principle be in different directions. Also, it might be possible
to excite some even more exotic distributions via, e.g., optical
methods, which might be unnatural to describe in terms of
voltages and temperatures.

APPENDIX D: CONVERSION TO SUPERCURRENTS

For the numerical calculations presented in the main paper,
the interfaces between the superconductor and voltage-biased
reservoirs were assumed to be relatively opaque. However,
we also performed numerical tests for other parameter sets,
including voltage-biased N/S/N junctions with completely
transparent interfaces. These showed that superconductivity
remained stable in high magnetic fields m for a voltage
bias eV/2 = m, provided that the superconductor is suffi-
ciently long compared with the coherence length ξ . The fact
that a voltage drop can exist across a “superconductor” even in
the absence of interface resistance may seem a bit surprising.
The answer has previously been derived in, e.g., Refs. [13,17].
When a resistive current is injected into a superconductor via
ideal interfaces, there is actually a layer of thickness ∼ξ where
the resistive current is converted into a supercurrent. In other
words, there is still a “superconducting contact resistance” in
the transparent limit, and the associated voltage drop occurs
near the interfaces. For more details, see the numerical results
in Ref. [17].

In a superconductor with a spin splitting that exceeds
the order parameter, an even more peculiar situation arises.
Since the DOS is no longer gapped at the Fermi level, and
resistive currents are only converted into supercurrents in the
gapped regions of the energy spectrum, a long-ranged resistive
current can exist in the superconductor in this limit. On the
following pages, we derive an approximate analytical result
for the length scale over which resistive currents decay inside
strongly spin-split superconductors to explain this observa-
tion. The derivation itself makes a number of approximations,
some more reasonable than others, but the final analytical

equation is simple and agrees quite well with our numerical
observations.

We should stress that even though the superconductor can
harbor a long-ranged resistive current in this exotic state, the
name “superconductor” is still fitting. The most fundamental
way to justify it is that the material still exhibits a singlet order
parameter � and a spontaneously broken U (1) symmetry,
which are the hallmarks of a superconducting state. Another
perspective is that the material also supports dissipationless
currents when the order parameter has a phase winding. This
would perhaps be even clearer if we used the experimental
setup sketched in Fig. 1(b). There, no resistive current is in-
jected into the superconductor, and yet the same stabilization
effect at m = eV/2 occurs. If a supercurrent is then generated
using, e.g., a weak out-of-plane magnetic field, where the
flux couples directly to the phase, we would generate a pure
supercurrent in the system. The conclusion is that the abilities
of a material to host resistive or dissipationless currents over
long distances are not always mutually exclusive.

The starting point for our analytical derivation is Eq. (B27).
Let us assume that the system under consideration is roughly
homogeneous, so that ∇gR ≈ ∇gA ≈ 0, in which case
Q ≈ 0 and ∇M ≈ 0. Furthermore, let us assume that no
spin-flip scattering, spin-orbit scattering, or orbital depairing
effects are important in the system, so that the term W = 0 as
well. The kinetic equation then reduces to the much simpler
form

Mnm∇2hm = −Vnmhm. (D1)

In the most general case, M and V are 8×8 matrices while
h is an 8-vector. If one considers a system where only one
spin axis is relevant, such as a bulk superconductor with a
spin splitting along the z axis, this can be reduced to a system
of 4×4 matrices in the equation for a 4-vector h. This gives us
a system of coupled equations for the charge, energy, spin,
and spin-energy modes of the nonequilibrium distribution
function, which can in principle be solved explicitly.

We will now assume that the dominant relaxation process
of the charge mode inside a superconductor occurs via the di-
agonal terms. The charge mode is given by h4 in our notation,
so neglecting the coupling to other modes, we then get

∇2h4 ≈ −(V44/M44)h4. (D2)

Comparing this to the equation ∇2h4 = h4/λ
2 that would de-

fine an exponential decay, we can describe such a decay via an
energy-dependent charge relaxation length λ ≡ √−M44/V44.

The source term V44 can be calculated using Eq. (B17),

Vnm = i

4
Tr{[ρ̂n, �̂](ĝRρ̂m − ρ̂mĝA)}. (D3)

We are interested in the case n = m = 4, and since
the basis matrix ρ̂4 = τ̂3σ0, the commutator [ρ̂4, �̂]
vanishes for the self-energy terms corresponding to a
regular magnet �̂ = ετ̂3 + mσ̂3. The charge mode is
therefore controlled by the superconducting contributions
�̂ = �̂ = antidiag(+�,−�,+�∗,−�∗). If we choose a
real gauge, which is possible since we already assumed
that any supercurrents are negligible Q ≈ 0, this reduces to
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�̂ = �iτ̂1σ2. Substituted into the equation above, we find that

V44 = −�

4
Tr{[τ̂3, τ̂1σ2](ĝRτ̂3 − τ̂3ĝ

A)}. (D4)

Using [τ̂3, τ̂1] = 2iτ̂2 and ĝA = −τ̂3ĝ
R†τ̂3, this becomes

V44 = − i�

2
Tr{τ̂2σ2(ĝR τ̂3 + ĝR†τ̂3)}. (D5)

We then use the cyclic rule to move the τ̂3 matrices to the other
end of the trace, and use the Pauli identity τ̂3τ̂2 = −iτ̂1, and
finally apply Tr[A + A†] = 2 Re Tr[A] to simplify the result:

V44 = −� Re Tr{τ̂1σ2ĝ
R}. (D6)

This is essentially the same result as was used in Ref. [13] to
show that resistive currents decay over a length ∼ξ inside a
superconductor, except that we will attempt to use it for the
more general case of a spin-split superconductor.

In general, we can write the retarded propagator as

ĝR =
(+g +f

−f̃ −g̃

)
. (D7)

Multiplying this by τ̂1σ2 and taking the trace, we find that

Tr{τ̂1σ2ĝ
R} = Tr{σ2(f − f̃ )}. (D8)

Firstly, we can split the anomalous propagators into singlets
and triplets using the decomposition f = (fs + f t · σ )iσ2.

Secondly, when the superconducting gap � is purely real,
the singlet component satisfies f̃s = −fs . This leads us to the
conclusion that the only contribution to the trace of σ2(f − f̃ )
comes from the singlet part σ2(fs + fs )iσ2 = 2ifsσ0:

Tr{σ2(f − f̃ )} = 4ifs. (D9)

Thus, the final form of the source term V44 derived above is

V44 = 4� Im(fs ), (D10)

where as usual the singlet component fs ≡ (f↑↓ − f↓↑)/2.
We now turn to the matrix M , which can be interpreted as

an energy-dependent renormalized diffusion coefficient [29].
In previous sections, this quantity was defined as

Mnm = D

4
Tr{ρ̂nρ̂m − ρ̂nĝ

Rρ̂mĝA}. (D11)

We again set n = m = 4, and use ρ̂4 = τ̂3σ0, ĝ
A = −τ̂3ĝ

R†τ̂3,

M44 = D

4
Tr{τ̂3τ̂3 + τ̂3ĝ

RĝR†τ̂3}. (D12)

Applying the cyclic trace rule, and the identity τ̂ 2
3 = 1, we get

M44 = D

4
Tr{1 + ĝRĝR†}. (D13)

FIG. 8. DOS for a Zeeman-split superconductor with a magnetic field m. For simplicity, this was calculated using a non-self-consistent
analytical solution for a bulk superconductor with an exchange field, using an inelastic scattering parameter ε → ε + 0.01i�0.
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FIG. 9. Charge relaxation length for a Zeeman-split superconductor with a magnetic field m. The solid lines show the exact results from
Eq. (D20), which we see align very well with how the DOS looks in Fig. 8. The dotted lines show the approximation in Eq. (D21), which
manages to predict where the charge relaxation length is finite and infinite but does not replicate its precise shape.

One way to parametrize the retarded propagator ĝR is [9]

ĝR =
(

(gs + gt · σ ) (fs + f t · σ )iσ2

−iσ2(f̃s − f̃ t · σ ) −σ2(g̃s − g̃t · σ )σ2

)
. (D14)

Explicitly taking the complex transpose of this matrix, and using that σn are Hermitian while i is anti-Hermitian, we find

ĝR† =
(

(g∗
s + g∗

t · σ ) (f̃ ∗
s − f̃

∗
t · σ )iσ2

−iσ2(f ∗
s + f ∗

t · σ ) −σ2(g̃∗
s − g̃∗

t · σ )σ2

)
. (D15)

We now calculate the product ĝRĝR†, keeping only diagonal terms proportional to an even power of Pauli matrices, since terms
proportional to σ disappear when we later take the trace:

ĝRĝR† =
(|gs |2 + |gt |2 + |fs |2 + | f t |2 · · ·

· · · |f̃s |2 + | f̃ t |2 + |g̃s |2 + | g̃t |2
)

. (D16)

Due to the electron-hole symmetry of quasiclassical theory, it is reasonable to expect all magnitudes |gs |2, |gt |2, |fs |2,
| f t |2 to be invariant under tilde conjugation, even though the signs of the quantities themselves might change. Using this,
we find

Tr{1 + ĝRĝR†} = 4 + 4|gs |2 + 4|gt |2 + 4|fs |2 + 4| f t |2. (D17)

Going back to our result for M44, we find the final result:

M44 = D(1 + |gs |2 + |gt |2 + |fs |2 + | f t |2). (D18)

Putting together the pieces we have calculated so far, we find that the charge relaxation length λ = √−M44/V44 is:

λ =
√

D(1 + |gs |2 + |gt |2 + |fs |2 + | f t |2)

−4� Im fs

. (D19)
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Defining the coherence length ξ ′ ≡ √
D/�, which depends

on temperature via the self-consistent gap �, this becomes

λ = ξ ′

2

√
1 + |gs |2 + |gt |2 + |fs |2 + | f t |2

−Im fs

. (D20)

This is a somewhat general result, as it is valid regardless
what mixture of singlets and triplets is present in the system,
and we have not made any assumptions of weak proximity
or weak inverse proximity effect. The result does, however,
rest on two crucial assumptions. The first is that the charge
mode couples only weakly to the other nonequilibrium modes
of the distribution function, so that it was sufficient to consider
the diagonal parts of Eq. (D1). This should be a reasonable
approximation as long as either (i) the charge mode relaxes
over a shorter length scale than the other modes or (ii) the
coupling to the other modes is weak. The second assumption
is that the system is roughly homogeneous, so that we can
neglect variations in the propagator and the presence of any
supercurrents. In practice, this should be a fair approximation
if we consider a large superconductor with tunneling contacts.

Let us first consider the numerator of Eq. (D20). We see
that the numerator is always larger than 1. Furthermore, for
a normal metal |gs |2 = 1 while the other quantities are zero,
making the numerator simply equal to 2. On the other hand,
for a BCS superconductor, we get |gs |2 = |ε2/(ε2 − �2)|
while |fs |2 = |�2/(ε2 − �2)|. From this, we find that

|gs |2 + |fs |2 ≈ 1 in the limits |ε| � � and |ε| 	 � but di-
verges as ε → ±�. Thus, except near the coherence peaks of
a superconductor, the charge relaxation length should mainly
be controlled by the denominator in Eq. (D20), yielding the
approximation

λ ≈ ξ√−2 Im fs

. (D21)

If we again focus on a BCS superconductor, for e = 0 we find
fs = �/

√
ε2 − �2 for ε > 0. For energies outside the gap

ε > �, we see that Im fs = 0, yielding a charge relaxation
length λ → ∞. On the other hand, for energies inside the
gap ε � �, we find that Im fs = −1, yielding λ ≈ ξ/

√
2.

Thus, we found exactly the kind of behavior we were ex-
pecting: The charge mode is screened over a characteristic
length ∼ξ inside the gap but is not screened for energies that
reside outside the gap.

In Figs. 8 and 9, we show how the DOS N (ε) and ap-
proximate charge relaxation length λ(ε) vary with the spin
splitting m in a superconductor. The results confirm that
resistive currents decay over a length ∼ξ in gapped parts of
the spectrum, while a long-ranged resistive current can exist
in ungapped parts of the spectrum. This result agrees quite
well with our numerical results, where we observe that for
m = eV/2 > �, a resistive current contribution can persist
throughout the superconductor for the energy range between
the two spectral gaps.
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Exerting control of the magnetic exchange interaction in heterostructures is of both basic interest and has potential
for use in spin-based applications relying on quantum effects. We here show that the sign of the exchange
interaction in a spin-valve, determining whether a parallel (p) or antiparallel (ap) magnetic configuration is favored,
can be controlled via an electric voltage. This occurs due to an interplay between a nonequilibrium quasiparticle
distribution and the presence of spin-polarized Cooper pairs. Additionally, we show that a voltage-induced
distribution controls the anomalous supercurrent that occurs in magnetic Josephson junctions, obviating the
challenging task to manipulate the magnetic texture of the system. This demonstrates that two key phenomena in
superconducting spintronics, the magnetic exchange interaction and the phase shift generating the anomalous
Josephson effect, can be controlled electrically. Our findings are of relevance for spin-based superconducting
devices which in practice most likely have to be operated precisely by nonequilibrium effects.

Introduction.—Driving a condensed matter system out of
equilibrium via a control parameter such as electric voltage
is a fundamentally interesting scenario. It offers a way to
alter the physical properties of the system in a controllable
manner and can give rise to new types of quantum effects. In
recent years, it has been realized that rich physics ensues when
considering magnetic-superconducting heterostructures that
are out of equilibrium [1–3]. This includes very large thermo-
electric effects [4–6], large quasiparticle spin Hall effects [7],
raising the paramagnetic limit of superconducting films [8, 9],
and supercurrent-induced magnetization dynamics [10, 13–17].
The study of such effects is associated with the field of su-
perconducting spintronics [18], where the aim is to create a
synergy between spin-polarized order and superconductivity.

Historically, creating a nonequilibrium distribution of quasi-
particle states in superconducting structures has been shown
to give rise to interesting effects. A prominent example is
the supercurrent transistor demonstrated in Ref. [19], where
the direction of a Josephson effect (charge supercurrent) was
tuned via a voltage-induced nonequilibrium distribution in a
superconductor/normal-metal/superconductor junction [20, 21].
In this Letter, we explore a spin-analogue of this effect. More
precisely, we pose the question: can a spin supercurrent be
controlled via the nonequilibrium mode induced by an electric
voltage? Such a spin supercurrent exists when magnetic layers
are added to the Josephson junction above and physically rep-
resents the exchange interaction between these layers [22, 23].
If the spin supercurrent—and in particular its sign—is con-
trolled by a nonequilibrium distribution function, it allows the
preferred magnetic configuration to be switched by an electric
voltage. We show that this is indeed possible, and that it only
requires small voltages below the superconducting gap ∆.
Additionally, we show that the recently experimentally ob-

served anomalous phase shift in Josephson junctions [24] can
be tuned via a nonequilibrium distribution of quasiparticles.
This is induced via an electric current and permits a nonmag-
netic way to control the anomalous Josephson effect, which
removes the challenging requirement to manipulate the intri-
cate noncollinear magnetic texture of structures that exhibit an
anomalous supercurrent [25]. We predict large phase shifts
that can be tuned by more than π/2 for voltages smaller than

the superconducting gap (∼ 1 meV). This is two orders of
magnitude smaller than the electric gate voltage that was used
in Ref. [24] to observe the anomalous phase shift.

Methodology.—To determine the influence of nonequilib-
rium quasiparticle occupation in the system induced by an
electric voltage, we use the quasiclassical theory of supercon-
ductivity. This framework is well-suited to address a range of
physical phenomena occuring in mesoscopic heterostructures,
including charge and spin supercurrents. We propose experi-
mental setups for observing our predictions in Fig. 1. These
setups should be experimentally feasible as they are similar to
the setup used by Baselmans et al. [19], but with the addition
of magnetic layers. In Fig. 1(a), an electric voltage injects a
resistive charge current into a normal-metal wire. At the center
of each wire, there is no net charge accumulation, but a surplus
of both electrons and holes compared to the equilibrium situa-
tion. The superconducting and normal regions are interfaced
by magnetic insulators, which influence each other via an ex-
change interaction. The quasiparticle injection described above
alters the occupation of not only charge supercurrent-carrying
states, as discussed in Refs. [19, 20, 26], but also the spin
supercurrent-carrying states, which determine the exchange
interaction between the magnetic insulators.
In Fig. 1(b), the weak link is made from a ferromagnetic

metal, but except for that, the setup is identical. When the
magnetizations of the ferromagnetic insulators, ml and mr,
form a nonzero spin chirality χ together with the magnetization
of the metallic ferromagnet according to χ = m · (ml × mr),
an anomalous Josephson effect appears at zero phase difference
between the superconductors. This phenomenon can be under-
stood from the fact that the broken spin-degeneracy combined
with the broken chirality symmetry of the system allows the
Cooper pairs to gain a net additional phase ϕ0 as they tunnel
through the system. By using quasiparticle injection to change
the occupation of charge supercurrent-carrying states, we show
below that this anomalous Josephson current can be altered.
Both systems in Fig. 1 can be described by the Usadel

equation for diffusive systems [3, 27–29, 31],

∇ · Ǐ = i[∆̂ + m · σ̂ + ετ̂3, ǧ], Ǐ = −Dǧ∇ǧ, (1)

ar
X

iv
:1

81
0.

02
82

0v
4 

 [
co

nd
-m

at
.s

up
r-

co
n]

  2
9 

N
ov

 2
01

8



2

which determines the 8 × 8 quasiclassical Green functions

ǧ =

(
ĝr ĝk

0 ĝa

)
, Ǐ =

(
Îr Îk

0 Îa

)
. (2)

Above, ∆̂ = antidiag(+∆,−∆,+∆∗,−∆∗), σ̂ = (σ̂1, σ̂2, σ̂3),
σ̂n = diag(σn, σ

∗
n), σn are Pauli matrices in spin space, and

τ̂n are Pauli matrices in Nambu space. The parameter ∆ is
the superconducting gap, which we take to be ∆0e±iϕ/2 for the
superconductors in Fig. 1, where ∆0 is the zero-temperature
bulk gap, and ϕ is the phase difference between them. The
parameter m is the exchange field of a magnetic metal, which
we take to be homogeneous. We consider weakly polarized
ferromagnetic alloys such as PdNi with a low content of Ni,
where the exchange field is of order 10 meV [32]. Finally, D is
the diffusion coefficient and ε the quasiparticle energy. We also
define the coherence length ξ =

√
D/∆0 and material length L.

The components of the Usadel equation are related by the
identities ĝk = ĝr ĥ − ĥĝa and ĝa = −τ̂3ĝ

r†τ̂3, which means
that it is in general sufficient to solve for the retarded com-
ponent ĝr and a distribution function ĥ. We numerically
solved the equations for the retarded component using a Riccati-
parametrization [33, 34]. Themagnetic insulators in Fig. 1(a–b)
were treated as spin-active tunneling boundary conditions to
superconducting reservoirs [5, 35–38],

(2L/D) Ǐ · n = (Gt/Gn) [ǧ, F(ǧbcs)] − i(Gϕ/Gn) [ǧ, m̂], (3)

where the spin-filtering function [35]

F(v̌) = v̌ +
P

1 +
√

1 − P2
{v̌, m̂} + 1 −

√
1 − P2

1 +
√

1 − P2
m̂v̌m̂. (4)

Here, ǧbcs is the standard solution for a bulk superconduc-
tor [34], since we treat the superconductors as reservoirs.
Numerical values for the Drude conductance Gn, tunneling
conductance Gt, spin-mixing conductance Gϕ , and polariza-
tion P are given in the captions of Figs. 2 and 3. Finally, n
is the interface normal, and m̂ = σ̂ · ml,r is related to the
interface magnetization. We use the notations ml and mr for
the magnetizations of the “left” and “right” interfaces, respec-
tively. The misalignment θ between the directions of ml and
mr controls the magnitude of the spin supercurrent according
to Js ∼ ml × mr ∼ sin θ. In our calculations, we have set
ml = x̂ and mr = ŷ so that the polarization Js ∼ ẑ. As for
the distribution function ĥ, we did not need to explicitly solve
the kinetic equations [3, 8, 27, 28, 39–41], since an analytical
solution is already known [20, 26, 42]:

ĥ =
1
2
[tanh(ε + eV/2) + tanh(ε − eV/2)]τ̂0σ̂0. (5)

This result is valid near the centers of voltage-biased normal
metals, including the weak links shown in Fig. 1. The charge
and spin currents were determined from the numerically cal-
culated Green functions using standard formulas [1, 3, 27–30].
More precisely, the charge current Je = eJ0 and spin current
Js = (~/2) (J1, J2, J3) along the junction axis n follow from

Jn = −
Gn∆0

8De2

∫∞
0

dε Re Tr[τ̂3σ̂n(Îk · n)], (6)

and are normalized to Je0 = Gn∆0/e and Js0 = (~/2e)Je0.
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FIG. 1: (Color online) Suggested experimental setups. External
voltage sources inject resistive charge currents into normal-metal
regions. Near the centers of these wires, there is no net charge
accumulation, but an excess of both electrons and holes compared to
the equilibrium situation. These regions of the normal metals are then
used as the weak links of magnetic Josephson junctions. (a) If the weak
link is a normal metal, a spontaneous spin supercurrent Js ∼ ml ×mr
flows between the magnetic insulators (black arrow), where ml and
mr refer to their magnetization directions. We show that this spin
supercurrent can be reversed as a function of voltage, resulting in a
voltage-controllable switching from anti- to ferromagnetic interactions
between the magnets. (b) If the weak link is a ferromagnet, there will
in addition be a spontaneous charge supercurrent Je ∼ m · (ml × mr)
flowing between the superconductors (black arrow), where m is the
exchange field in the weak link. We show that this charge supercurrent
can be tuned as a function of voltage, resulting in a voltage-controllable
ground-state phase shift between the two superconductors.
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Results.—The exchange interaction between two magnetic
layers is a consequence of an equilibrium spin current Js flow-
ing from one to the other and exerting a torque τ by depositing
spin angular momentum to the ferromagnet. The direction of
the torque τ is determined by the polarization of the spin super-
current. This means that reversing the spin supercurrent, one
can control the magnetization configuration of the spin-valve to
favor either a parallel or antiparallel alignment. A comparison
between the properties of the exchange interaction in normal
and superconducting system was provided in Ref. [10]. We
note that in equilibrium, the supercurrent-mediated exchange
interaction acts antiferromagnetically [11, 12].
In Fig. 2(a), we show that the nonequilibrium distribution

function in the Josephson weak link determines the sign of
the superconducting spin current that mediates the exchange
interaction. The plot shows the spin supercurrent polarized in
the ml × mr = z direction. The spin supercurrent drops ap-
proximately linearly from its maximum at zero to its minimum
occuring at eV/2 ≈ 0.35∆0 and changes sign in between. As a
result, the favored configuration of the magnetic insulators is
changed from anti- to ferromagnetic by modifying the distri-
bution of quasiparticles in the weak link with a voltage that is
smaller than the superconducting gap. This corresponds to a
voltage less than ∼1 meV. We expect that the same sign reversal
of the spin supercurrent should be possible when using thin
ferromagnetic metals rather than ferromagnetic insulators. The
stability of a given magnetic configuration at a fixed voltage
is determined by the sign of the spin supercurrent, because
the sign determines the direction of the torque acting on the
magnetic order parameter in the ferromagnetic insulators. If
the torque favors an ap configuration for one particular sign, it
favors the p configuration for the opposite sign.
Moreover, we have numerically confirmed that the sign

change of the spin supercurrent as a function of applied voltage
occurs for a wide parameter range, as shown in Fig. 2(c–f). In
general, a high tunneling conductance Gt and short junction
length L enhances the proximity effect; this increases the spin
supercurrent at all voltages, but also increases the switching
voltage required. The polarization P has a relatively small
effect on our results. However, in the limit P→ 1, it suppresses
tunneling of opposite-spin Cooper pairs from the superconduct-
ing reservoirs, which is detrimental to the spin supercurrent.
Interestingly, the voltages where the strongest ferromagnetic
and antiferromagnetic interactions occur are found to increase
nearly linearly with the spin-mixing conductance Gϕ . We
note that for most parameter combinations explored here, a
switching between p and ap ground-state configurations can be
achieved using reasonable applied voltages eV . ∆0.
Recently, the superconducting exchange coupling between

ferromagnets was experimentally reported in Ref. [43]. By
lowering the temperature below the superconducting critical
temperature Tc, an antiferromagnetic effective exchange inter-
action was induced by the transition to the superconducting
state. Here, we have shown that the superconducting exchange
interaction can be toggled between anti- and ferromagnetic via
electric voltage, providing a new mechanism compatible with
devices operating out-of-equilibrium for actively controlling
the magnetic state. Physically, the sign change of the exchange

·

·

·

·

0 1��/2Δ₀
−0.04

+0.04

� s
/�
s0 AP

P

(a) (b)

0 1ε/Δ0
−0.22

+0.22

� s

0 1��/2Δ₀
0

1

� T
/�

N

(c)

AP P

0 1��/2Δ₀
0

1

�

(d)

AP P

0 1��/2Δ₀
0

3

� φ
/�

T

(e)
AP

P

0 1��/2Δ₀
0

3

�/
ξ

(f)

AP
P

FIG. 2: (Color online) Numerical results for the setup in Fig. 1(a).
(a) Spin supercurrent Js as a function of applied voltage. The voltage
shifts the distribution function in the weak link of the Josephson
junction, and causes the spin supercurrent to change sign at eV/2
well below ∆0. Since the spin supercurrent mediates the exchange
interaction between the magnets, the sign reversal implies a switch
from anti- to ferromagnetic interactions, thus switching from an
antiparallel (ap) to parallel (p) configuration as the magnetic ground
state. The magnetic insulators were modeled as spin-active interfaces
with polarization P = 70%, tunneling conductance Gt = 0.3Gn, and
spin-mixing conductance Gϕ = 1.25Gt. The normal-metal weak
link has a length Ln = ξ and conductance Gn. (b) Spectral spin
supercurrent js as a function of energy. Note that js changes its sign
at higher energies, which explains why manipulating the distribution
function can reverse the spin supercurrent Js. The remaining panels
show phase diagrams as functions of the voltage and (c) tunneling
conductance, (d) polarization, (e) spin-mixing conductance, and
(f) normal-metal length. The remaining parameters are the same as in
panel (a). Yellow regions correspond to significant antiferromagnetic
interactions (Js > +0.001Js0), and red to significant ferromagnetic
interactions (Js < −0.001Js0). The dashed lines indicate the voltages
required to maximize these interactions.

interaction can be understood from the fact that the voltage
alters the occupation of not only states carrying the spectral
(energy-resolved) charge supercurrent through the junction, but
also the spin supercurrent.

For a more thorough explanation of the effect, we have
to consider the spectral spin supercurrents. The total spin
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supercurrent Js can be expressed as an integral

Js = Js0

∞∫
0

dε js(ε) h(ε), (7)

where the spectral spin supercurrent js describes the spin
supercurrent-carrying states available, and the distribution
function h(ε) describes which of these are occupied. According
to Eq. (5) in the limit T → 0, the distribution function at ε > 0
can be summarized as a step function Θ(ε − eV/2), where we
assume a positive voltage V . Putting these equations together,
we see that the spin supercurrent is basically just an integral
of js from ε = eV/2 and up. In Fig. 2(b), we have plotted the
numerically calculated spectral spin supercurrent as a function
of energy. The result is primarily positive for ε < 0.35∆0,
and primarily negative for ε > 0.35∆0. Since the equation
above shows that the voltage eV/2 plays the role of a cutoff that
determines which of these energy regions contribute to the total
spin supercurrent, it becomes clear why the spin supercurrent
can be switched via an electric voltage. The mechanism is thus
similar to the charge supercurrent switching [20] in an S/N/S
transistor setup with phase-biased superconductors.

Our secondmain result is that the voltage-controlled nonequi-
librium quasiparticle distribution can be used to control the
anomalous Josephson effect. We have for concreteness consid-
ered a fixed spin chirality χ corresponding to perpendicularly
orientedmagnetization vectorsml,mr, andm. Fig. 3(a) shows
the phase shift as a function of applied voltage. As the phase
increases from its minimum value ϕ0 ≈ π/4 at eV/2 = 0.2∆0
to a maximum ϕ0 ≈ π near eV/2 = ∆0, the phase shift is seen to
be tuned by more than 120◦ within a voltage regime of ∼1 meV.
It is worth emphasizing that the voltage required here to change
the ϕ0-shift is two orders of magnitude smaller than the gate
voltage ∼ 200 meV used in the recent experiment Ref. [24].
This suggests that the anomalous phase shift proposed in this
manuscript can be tuned with much less power dissipation than
by using gated quantum dots.

The physical mechanism behind the voltage-controlled phase
shift can be understood as follows. The total supercurrent
flowing in a Josephson junction with a finite spin-chirality χ
has two contributions according to Je = Jc1 sin ϕ + Jc2 cos ϕ
where Jc2 ∼ χ [44–50]. The latter term is responsible for
the anomalous supercurrent at zero phase difference, as can
be seen by rewriting the current-phase relation to the form
Je = Jc sin(ϕ − ϕ0) where ϕ0 depends on the relative magni-
tude of Jc1 and Jc2. From previous works considering S/N/S
transistors [19–21], it is known that the conventional term Jc1
can be forced to change sign by inducing a nonequilibrium
energy distribution, corresponding to a 0–π transition. Pre-
cisely at this transition point, only the anomalous part cos ϕ
remains which is seen in the red curve (eV/2 = 0.5∆0) of
Fig. 3(b). As one moves away from the 0–π transition point,
the critical supercurrent may increase since now both Jc1 and
Jc2 contribute to Je. This matches well with the eV/2 = 0.3∆0
and eV/2 = 0.6∆0 curves in Fig. 3. Additionally, since the
ratio Jc1/Jc2 changes rapidly around the 0–π transition point
corresponding to eV/2 = 0.5∆0, we would expect the anoma-
lous phase shift to also vary rapidly near this voltage. This is
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FIG. 3: (Color online) Phase shift causing the anomalous Josephson
effect in the system depicted in Fig. 1(b). We have used the same
interfacial parameter set as in Fig. 2 and set the length Lf = 0.5ξ and
exchange field m = 5∆0 for the ferromagnetic metal weak link.

confirmed by the results in Fig. 3(a).
The electrically tunable anomalous phase shift could be of

interest for the purpose of designing a phase battery. Similarly
to how conventional batteries store a potential difference which
can drive resistive currents, an anomalous Josephson junction
provides a built-in phase difference which could be used to drive
supercurrents. Recent works on magnetic Josephson junctions
have taken steps toward realizing such a phase control [25].
Unless the magnetic anisotropies of the system are such that a
finite spin chirality χ exists in the ground-state, the misoriented
magnetization configuration producing χ , 0 has to be fixed
by external conditions such as an applied magnetic field.

Conclusion.—We have investigated the influence of nonequi-
librium quasiparticle modes on a superconducting spin-valve
and discovered two effects. First, the voltage-controlled dis-
tribution function controls the magnitude and sign of the
superconducting exchange interaction, toggling the preferred
configuration of the spin-valve from anti- to ferromagnetic.
Moreover, we show that the same basic setup controls the
anomalous Josephson effect in a junction with finite spin-
chirality, obviating the requirement to manipulate the magnetic
texture of the system. We believe this two phenomena may be
of interest for the design of nonequilibrium superconducting
devices that exploit spin-dependent quantum effects.
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Controlling spin supercurrents via nonequilibrium spin injection
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We propose a mechanism whereby spin supercurrents can be manipulated in superconductor/ferromagnet
proximity systems via nonequilibrium spin injection. More precisely, we find that if a spin supercurrent exists in
equilibrium, a nonequilibrium spin accumulation will exert a torque on the spins transported by this current. This
interaction causes a new spin supercurrent contribution to manifest out of equilibrium, which is proportional
to and polarized perpendicularly to both the injected spins and equilibrium spin current. This is interesting
for several reasons: as a fundamental physical effect; due to possible applications as a way to control spin
supercurrents; and timeliness in light of recent experiments on spin injection in proximitized superconductors.

Introduction.—In the emerging field of superconducting
spintronics, a key objective is to study the interactions between
superconductors (S) and ferromagnets (F) [1–4]. These interac-
tions can produce new types of Cooper pairs |↑↑〉 and |↓↓〉 with
a net spin polarization, which enables the use of S/F systems for
dissipationless spin transport. There has been a lot of research
on generating spin supercurrents in equilibrium, either via inho-
mogeneous magnetism [5–10] or spin-orbit coupling [11–13].
In the magnetic case, it has been shown that two layers with
noncollinear magnetic moments m1 and m2 give rise to an
equilibrium spin supercurrent Jeq

s ∼ m1×m2, which transports
spins polarized perpendicularly to both magnetic moments [14].
One challenge with these suggestions is, however, that it would
be difficult to manipulate the polarization of the spin supercur-
rent in situ. To produce all spin projections, one would need
to carefully control the magnetic orientations m1 and m2 inde-
pendently. In addition, this would likely lead to high switching
times for prospective device applications. It would therefore
be interesting to investigate whether a spin supercurrent can
be controlled via electronic spin injection instead. This would
have the added benefit of enabling the coupling of supercon-
ducting and nonsuperconducting spintronics devices. Note that
this is different from many previous works on spin injection
in superconductors, which were largely explained in terms of
quasiparticles and not a spin-triplet condensate [15–19].

Recently, there has been a renewed interest in using nonequi-
librium spin injection as a means to manipulate spin super-
currents. This is largely due to a recent spin-pumping experi-
ment [20], where microwaves were used to excite spins in the
ferromagnetic layer of a N/S/F/S/N junction. Depending on
the spin-orbit coupling in the normal metal N, the spin current
leaving F could increase below the critical temperatureTc of the
S layers. The main interpretation proposed in that paper was
that the increased spin transmission for temperatures T < Tc
was due to a spin-triplet supercurrent, although alternative
explanations have been proposed [21]. We will not consider
that specific geometry here, but focus on the more general
problem of how spin injection might affect spin supercurrents.
One approach was explored in Ref. [13], where they considered
Fermi-liquid interactions. In their model, a spin accumula-
tion ρs induces an effective magnetic exchange field meff ∼ ρs.
Since inhomogeneous exchange fields are well-known to pro-

Superconductor

Spin source

m2(a)

(b) (c)

m1 z

x
y

FIG. 1: (a) Magnetic insulators with magnetizations m1 and m2 on a
superconductor. In equilibrium, this yields a spin supercurrent Jeqs ∼
m1 × m2. A spin source injects a spin accumulation ρs, which exerts
a torque on the spins transported by the equilibrium current, resulting
in a new contribution J

neq
s ∼ ρs × (m1 × m2). (b) If the magnets

are magnetized in the x- and y-directions, an equilibrium spin-z
supercurrent arises. Injection of spin-z particles does not affect its
polarization. (c) If spin-x particles are injected, however, a new spin-y
supercurrent component is generated. Similarly, spin-y injection
would produce a spin-x component.

duce spin supercurrents, this provides one mechanism for the
generation of spin supercurrents.
In this manuscript, we introduce a different mechanism, as

illustrated in Fig. 1. We show that a nonequilibrium spin
accumulation actually produces new terms in the equations
for the spin supercurrent itself. These terms have a natural
interpretation in the form of the injected spin accumulation ρs
exerting a torque on an equilibrium spin supercurrent Jeq

s , thus
giving rise to a new component Jneq

s ∼ ρs × J
eq
s perpendicular

to both. Although this term occurs out-of-equilibrium, it shares
the property of an equilibrium spin supercurrent that it does
not require a gradient in the total or spin-resolved chemical
potential. Therefore, it is legitimate to refer to the new term
J
neq
s as a supercurrent flowing without dissipation as there is

no energy loss associated with a spatially varying chemical
potential. We note that our mechanism differs from the one in
Ref. [13] in three important ways. Our mechanism cannot cause
a spin supercurrent to appear in a systemwithout an equilibrium
spin supercurrent since J

eq
s → 0⇒ J

neq
s → 0. It is also more

universal as it does not require materials with specific Fermi-
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liquid parameters (i.e., metals near the Stoner criterion), and
the effect is relevant for spin injection in any superconducting
system with equilibrium spin transport. Finally, the spin
supercurrent in Ref. [13] is manipulated via an equilibrium spin
accumulation, while our result is inherently nonequilibrium.

Analytical results.—Let us first consider a material with
a spin-independent density of states N(ε), where ε is the
quasiparticle energy. The nonequilibrium spin accumulation ρs
can then be related to a spin distribution function hs,

ρs = −
~

2

∫∞
0

dε N(ε) hs(ε), (1)

where hs describes the imbalance between spin-up and spin-
down occupation numbers. We define hs as a vector that points
in the polarization direction of the spins, while its magnitude
can be described in terms of a spin voltage Vs,

hs(ε) =
{

tanh[(ε + eVs)/2T] − tanh[(ε − eVs)/2T] }/2, (2)

where e < 0 is the electron charge and T is the temperature.
The spin voltage is defined as Vs B (V↑ − V↓)/2, where Vσ are
the effective potentials seen by spin-σ quasiparticles [22–24]
where hs defines the direction of the spin quantization axis.

For a normal metal at T = 0, the density of states N(ε) = N0
is flat, while the spin distribution |hs | = 1 for |ε | < eVs. This
results in a spin accumulation |ρs | = (~/2)N0eVs that increases
linearly with Vs. This gives a simple interpretation of Vs as a
control parameter: if the spin source in Fig. 1 is a nonsupercon-
ducting reservoir, the spin voltage Vs is directly proportional to
the spin accumulation in the reservoir.

Similarly to the above, the excitation of quasiparticles from
the Fermi level is decribed by an energy distribution h0(ε),

h0(ε) =
{

tanh[(ε + eVs)/2T] + tanh[(ε − eVs)/2T] }/2. (3)

At low temperatures, this shows that a spin voltage Vs also
excites quasiparticles in a region of width 2eVs around the
Fermi level ε = 0. For a more in-depth discussion of the
nonequilibrium distribution function, see Refs. [19, 22, 23].

Spin supercurrents can in general be expressed as an energy
integral over a spectral spin supercurrent,

Js = −
~

2
N0

∫∞
0

dε Im[ js]. (4)

In equilibrium, the spectral current jeqs is given by [3, 10]

j
eq
s =

(
gt × ∇gt − ft × ∇ f̃t

)
h0. (5)

Here, gt describes the spin-polarization of the density of states,
while ft describes spin-triplet correlations [3]. The cross
products should be taken between the orientations of gt and ft .
In effectively 1D systems like Fig. 1, we can let the position
derivative ∇ → ∂x . Note that the result depends only on the
energy distribution h0, which is the only part of the electronic
distribution function which remains finite in equilibrium.
Outside equilibrium, the spin distribution hs can become

finite, and the spectral current gains an additional contribution:

j
neq
s =

(
gt × ∇gt − ft × ∇ f̃t

) × ihs. (6)

The full derivation of this result is included in the Supplemental
information. The structure of Eq. (6) is very reminiscent of
Eq. (5), since both depend on gt ×∇gt − ft ×∇ f̃t . However, its
cross product structure generates a spin current perpendicular
to the one in Eq. (5). We also see that it contains an extra
factor i; since the distribution functions h0 and hs are both
real, this causes Eq. (4) to extract the real and not imaginary
part of gt × ∇gt − ft × ∇ f̃t . This comparison shows that the
nonequilibrium contribution can be summarized as

j
neq
s = j

eq
s × (ihs/h0). (7)

So long as gt × ∇gt − ft × ∇ ft is a complex number—which
it in general is—it produces an equilibrium spin supercurrent
j
eq
s according to Eqs. (4) and (5), which combined with a
finite spin distribution hs immediately produces the new su-
percurrent term j

neq
s according to Eq. (7). This suggests an

intuitive interpretation of the effect: injected spins described
by hs exert a torque on the spins transported by the equilib-
rium component jeqs , producing a nonequilibrium component
j
neq
s perpendicular to both. This result also proposes that
this nonequilibrium spin supercurrent should increase linearly
with the equilibrium spin supercurrent and the injected spin
accumulation. Thus, an equilibrium spin supercurrent gains a
new component when propagating through a region with spin
accumulation ρs. All these predictions that arise from Eq. (7)
are confirmed numerically later in this paper.
Let us now consider the setup in Fig. 1. In equilibrium,

the x- and y-polarized magnets give rise to a z-polarized spin
supercurrent jeqs ∼ z. A generic spin source then introduces a
spin imbalance in the superconductor, which we describe via
a nonzero spin distribution hs. If these spins are polarized in
the z-direction, meaning that hs ‖ j

eq
s , then the nonequilibrium

contribution j
neq
s = 0. On the other hand, if these spins are

polarized in the x-direction, so that hs ⊥ j
eq
s , then the nonequi-

librium contribution j
neq
s ∼ j

eq
s × hs obtains a y-polarized

component proportional to the spin imbalance. Similarly, if
one had injected spin-y particles instead, a spin-x supercurrent
would appear in the superconductor.

To summarize, for the geometry in Fig. 1, the analytical
results suggest that we should expect a spin-y supercurrent
proportional to the spin-x voltage, while the spin supercurrent
should remain unchanged for a spin-z voltage. In the following
sections, we compare these expectations to numerical results.

Technical details.—We perform the numerical calculations
using the Usadel equation [23, 25–28], which describes super-
conducting systems in the quasiclassical and diffusive limits.
Within this formalism, observables are described via 8 × 8
quasiclassical propagators in Keldysh ⊗Nambu ⊗ spin space,

ǧ B
(
ĝR ĝK

0 ĝA

)
. (8)

These components are related by the identities ĝK = ĝR ĥ − ĥĝA

and ĝA = τ̂3ĝ
R†τ̂3. Here, ĥ is a 4 × 4 distribution function,

which in systems with spin accumulation can be written

ĥ = h0σ̂0τ̂0 + hs · σ̂τ̂3, (9)
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where h0 and hs were introduced earlier. The τ̂n are σ̂n are
Pauli matrices in Nambu and spin space. As for the retarded
component ĝR, we analytically use the parametrization [3]

ĝR =

( (gs + gt · σ) ( fs + ft · σ)iσ2
−iσ2( f̃s − f̃t · σ) −σ2(g̃s − g̃t · σ)σ2

)
, (10)

while we numerically use the Riccati parametrization [29].
General equations for calculating spin supercurrents and spin
accumulations from these quasiclassical propagators are derived
and presented in the Supplemental Information.
To determine the propagators above for Fig. 1, we have to

simultaneously solve the Usadel equation,

iξ2∇(ǧ∇ǧ) = [∆̂ + ε τ̂3, ǧ]/∆0, (11)

and a selfconsistency equation for the gap ∆ which depends on
ĝK [30]. The other quantities are the coherence length ξ and
bulk gap ∆0. The magnetic insulators in Fig. 1 are modelled
as spin-active interfaces [31–34]. Note that we assume a
fixed distribution function ĥ, and do not solve any kinetic
equation [19, 22, 23, 25, 26, 35, 36]. Thus, there is no resistive
spin current flowing in the superconductor, as ∇hs = 0 ensures
that there is no gradient in the spin accumulation.
Finally, we briefly summarize our parameter choices. The

superconductor was taken to have a length L = 1.5ξ, where
ξ is the superconducting coherence length in the dirty limit.
The magnetic insulators were described using an interfacial
spin-mixing conductance Gϕ/Gn = 0.6, where Gn is the
bulk normal-state conductance of the superconductor. Finally,
we assumed a constant spin voltage Vs throughout the entire
superconductor, instead of explicitly modelling the details of
the spin source in Fig. 1. Thus, the junction is treated as a
1D superconductor with magnetic boundary conditions. Our
results are not qualitatively sensitive to these parameter choices.
The main constraints are that superconductivity collapses in
short superconductors with high spin-mixing conductances,
while the spin supercurrents become vanishingly small for long
superconductors with low spin-mixing conductances.

Numerical results.—The spin supercurrent in the model
considered here is conserved throughout the superconductor.
We have also checked both analytically and numerically that the
it remains conserved even in the presence of spin-flip and spin-
orbit impurities, thus extending the equilibrium considerations
in Ref. [37] to this particular nonequilibrium situation. In fact,
the analytical proof of this is straight-forward: the argument
in Ref. [37] shows that ∇ · jeqs = 0 as long as h0 is position-
independent. Since the new contribution proposed in this paper
j
neq
s = j

eq
s × (ihs/h0), we conclude that ∇ · jneqs = 0 for the

same physical setups if hs is position-independent. However, if
either h0 or hs becomes inhomogeneous, this argument breaks
down, and the spin supercurrent is no longer conserved.

In Fig. 2, we show the spin supercurrent in the superconductor
as a function of spin voltage at a low temperature T = 0.01Tc.
Up until eVs ≈ ∆0/2, these results are in perfect agreement with
the analytical predictions. More precisely, we see that a spin-z
injection [Fig. 2(a)] has no effect on the spin supercurrent, while
a spin-x injection [Fig. 2(b)] leads to a spin-y supercurrent.
The spin-y supercurrent increases linearly with the spin voltage,
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FIG. 2: Spin supercurrent Js as a function of spin voltageVs. This spin
voltage corresponds to injected (a) spin-z or (b) spin-x accumulation.
The light shaded region shows where the system is bistable, and the
dark region where superconductivity vanishes.

again in agreement with the predictions. Remarkably, the spin-
z supercurrent does not decrease as the spin-y supercurrent
increases, in contrast to what one might intuitively expect.
At low temperatures, we also see that there is a bistable

regime at high spin voltages eVs > ∆0/2. This means that both
a superconducting and normal-state solution exist, which both
correspond to local minima in the free energy. Depending on
the dynamics of the system, this can either lead to hysteretic
behaviour, or a first-order phase transition. Precisely where in
the bistable region the thermodynamic transition point occurs
is however difficult to predict within the Usadel formalism,
as it is not straight-forward to explicitly evaluate the free
energy of each solution. For more information on bistability in
superconducting systems, see Refs. [22, 38, 39].

Within the bistable regime, there is a point where the spin-z
supercurrent reverses direction as a function of the spin voltage.
This behaviour can be understood [40] as a spin equivalent of
the S/N/S transistor effect [41, 42] where, according to Eq. (3),
the energy distribution h0 is also modulated by a spin voltage,
and may therefore tune the equilibrium contribution in Eq. (5).
Since the spin-y supercurrent remains positive for all spin

voltages, there exists a point where we get a pure spin-y
supercurrent. In other words, there is a particular spin voltage
that causes a 90◦ rotation of the spin supercurrent polarization
compared to equilibrium. The fact that the spin-y supercurrent
can remain finite while the spin-z supercurrent goes to zero
might at first seem contradictory to our previous explanation
j
neq
s ∼ j

eq
s ×(ihs/h0). However, it is the energy-integrated spin

currents Js ∼
∫
dε Im [ js] that are plotted in Fig. 2. The spin-y

current is generated from the spectral spin-z current, which
remains finite even though the total spin-z current is zero.
In Fig. 3, we show how the spin supercurrent varies as a

function of temperature for a fixed spin voltage eVs = ∆0/4.
Curiously, we find that the spin current increases linearly
with decreasing temperature in a relatively large parameter
regime. That the spin-y current decreases at the same rate as
the spin-z current seems reasonable in light of the equation
j
neq
s ∼ j

eq
s ×hs: if jeqs decreases linearly, then j

neq
s should do so

as well. The most important message from Fig. 3 is perhaps that
the nonequilibrium contribution j

neq
s to the spin supercurrent

remains significant all the way up to the critical temperature
of the junction. This means that relevant experiments can be
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FIG. 3: Spin supercurrent Js as a function of temperature T for a fixed
spin voltage eVs = ∆0/4 in the superconductor. This spin voltage
corresponds to injected (a) spin-z or (b) spin-x accumulation. The
shaded region shows where superconductivity vanishes.

performed at any temperature where superconductivity exists.
Discussion.—In the previous sections, we have shown that

injection of a nonequilibrium spin accumulation can be used to
generate new spin supercurrent components. The results are
especially encouraging since the nonequilibrium contribution
to the spin supercurrent can even be made larger than the
equilibrium contribution, and we found that it persists all the
way up to the critical temperature of the junction. Both these
features should make it a particularly interesting effect for
experimental detection and future device design. However,
there are some questions that we have not addressed yet.

The first question is how the spin source in Fig. 1 works. So
far, we have simply treated it as a generic device thatmanipulates
the spin distribution hs inside the superconductor directly. One
alternative is to use a normal metal coupled to a voltage-biased
ferromagnet [17] or half-metallic ferromagnet [43]. In that case,
the polarization of the magnets enable a charge-spin conversion,
thus translating an electric voltage into a spin voltage. Another
possibility would be spin-pumping experiments, where it is a
microwave signal that is translated to a spin voltage [20].

In all these cases, the spin source necessarily contains mag-
netic elements, and one challenge would be how to prevent the
spin source from affecting the equilibrium spin current. One
solution might be to embrace the existing magnets in Fig. 1:
one could use the same magnets to generate the equilibrium
spin supercurrent and for spin injection. This spin injection
may them be performed either using spin pumping—or if
the magnets are sufficiently thin for electron tunneling—by
placing voltage-biased contacts on top of the magnets. One
complication with this strategy is that since the resulting spin

accumulation will necessarily be inhomogeneous, both spin
supercurrents and resistive spin currents have to coexist.
Another question relates to how one might measure these

spin supercurrents. How to perform a direct measurement of
a spin supercurrent is an open question, although suggestions
have been proposed very recently [44]. Indirect measurements
of spin supercurrents, on the other hand, have already been
performed experimentally. Most of these rely on measuring
dissipationless charge currents through strongly polarized mate-
rials [45–52]. Since only |↑↑〉 and |↓↓〉 pairs can penetrate over
longer distances, and the polarization breaks the degeneracy
between them, one can infer the existence of spin supercurrents
from the measured charge supercurrents.

One solution to the measurement problem might be to look
for an inverse effect. We have shown that spin injection into a
superconductor results in a torque on the spins transported by
the equilibrium spin supercurrent. However, this interaction
should cause a reaction torque on the spin source, which might
be possible to detect. For instance, in a setup similar to
Ref. [17], this reaction torque might directly affect the nonlocal
spin conductance. Similarly, in a spin pumping setup, this
might affect the FMR linewidths. In both cases, this reaction
torque should only exist when there is an equilibrium spin
supercurrent j

eq
s ∼ m1 × m2 to interact with, so it should

depend on the magnetic configuration of the device.
Conclusion.—We have shown analytically and numerically

that if a system harbors a spin supercurrent jeqs in equilibrium,
then a spin injection hs creates a new component jneqs ∼ j

eq
s ×hs.

This effect can be intuitively understood as the injected spins
exerting a torque on the spins transported by the equilibrium
spin supercurrent, generating a component that is perpendicular
to both. These results have implications for the control of spin
supercurrents in novel superconducting spintronics devices.
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Section I provides a self-contained derivation of the charge and spin transport equations. Specifically, we start
with the definitions of particle densities from quantum field theory, and derive quasiparticle continuity equations.
The results are used to derive quasiclassical results for the charge accumulation, spin accumulation, charge current,
and spin current. Section II then uses these results to derive an analytical expression for the spin supercurrent in
materials with spin accumulation. The result is used to explain the predictions in the main manuscript.

I. CHARGE AND SPIN TRANSPORT

A. Quasiparticle accumulations

There are four relevant species of quasiparticles in the sys-
tems that we will consider: namely electrons and holes, which
each have two distinct spin projections. These have the densities

ne↑(r, t) B
〈
Ψ
†

↑
(r, t)Ψ

↑
(r, t)

〉
, (S1)

ne↓(r, t) B
〈
Ψ
†

↓
(r, t)Ψ

↓
(r, t)

〉
, (S2)

nh↑(r, t) B
〈
Ψ
↑
(r, t)Ψ†

↑
(r, t)

〉
, (S3)

nh↓(r, t) B
〈
Ψ
↓
(r, t)Ψ†

↓
(r, t)

〉
, (S4)

where Ψ†σ and Ψσ are standard creation and annihilation oper-
ators. For comparison, the propagators are defined as [S1–S3]:

GR
σσ′(r, t; r

′, t ′) B −i〈{Ψσ(r, t) , Ψ
†

σ′(r
′, t ′)}〉 θ(t − t ′), (S5)

GA
σσ′(r, t; r

′, t ′) B +i〈{Ψσ(r, t) , Ψ
†

σ′(r
′, t ′)}〉 θ(t ′ − t), (S6)

GK
σσ′(r, t; r

′, t ′) B −i〈[Ψσ(r, t) , Ψ
†

σ′(r
′, t ′)]〉, (S7)

where the subscripts σ and σ′ denote possible spin projections.
Combining these definitions, we see that the quasiparticle den-
sities are directly related to the equal-coordinate propagators:

neσ =
i
2
[GR

σσ − GA
σσ − GK

σσ], (S8)

nhσ =
i
2
[GR

σσ − GA
σσ + GK

σσ]. (S9)

These expressions can be used to calculate the spin-resolved
density of electrons and holes, respectively. Note that holes
carry both opposite charge and opposite spin compared to
electrons [S16]. The charge and spin accumulations are then
found by multiplying each quasiparticle density with their
respective charges or spins, and summing up their contributions:

ρe B e
1
2
[+ne↑ + ne↓ − nh↑ − nh↓], (S10)

ρz B
~

2
1
2
[+ne↑ − ne↓ − nh↑ + nh↓], (S11)

wherewe use the convention that e is the electron charge (e < 0).
The prefactors 1/2 are required to prevent double-counting, and

can be explained as follows. If we add one physical electron
to the system, then the charge of the system increases by e.
However, the number of electrons increases by one, and the
number of holes decreases by one, meaning that the difference
between electrons and holes increases by two. Thus, when
the charge density ρe is described in terms of both electrons
and holes, we need an extra factor 1/2 to get the right physical
charge. The same logic applies to the spin density ρz . We
can rewrite the results in terms of the propagators above, and
recognize the remaining sum as a trace over spins:

ρe = −
i
2

e Tr[σ0GK], (S12)

ρz = −
i
2
~

2
Tr[σ3GK]. (S13)

There is nothing special about the spin-z axis, so it is straight-
forward to generalize this result to arbitrary spin-projections:

ρe = −
i
2

e Tr[σ0GK], (S14)

ρs = −
i
2
~

2
Tr[σGK], (S15)

where σ = (σ1, σ2, σ3) is the Pauli vector. From the definition
of the Keldysh propagator above, we can also use the identity
〈AB〉∗ = 〈B†A†〉 to show that GK∗

σσ = −GK
σσ . This means that

GK
σσ is imaginary, which makes ρe, ρs ∼ iGK manifestly real.

For later convenience, we will therefore write this out explicitly:

ρe = −
1
2

e Re Tr[iσ0GK], (S16)

ρs = −
1
2
~

2
Re Tr[iσGK]. (S17)

B. Quasiparticle currents

Now that we know the charge and spin accumulations, the
next step is to find the corresponding currents. To derive these,
we go back to the quasiparticle densities defined in Eq. (S1):

neσ(r, t) B
〈
Ψ
†
σ(r, t)Ψσ(r, t)

〉
, (S18)

nhσ(r, t) B
〈
Ψσ(r, t)Ψ

†
σ(r, t)

〉
. (S19)
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To rigorously derive expressions for the charge and spin currents,
we will use the definitions above to look for quasiparticle
continuity equations on the form

∂tnτσ + ∇ · jτσ = qτσ, (S20)

where jτσ is the particle- and spin-resolved current density we
are interested in, while qτσ represents possible source terms.

We start by differentiating the densities with respect to time:

∂tneσ =
〈
(∂tΨ

†
σ)Ψσ + Ψ

†
σ (∂tΨσ)

〉
, (S21)

∂tnhσ =
〈
(∂tΨσ)Ψ

†
σ + Ψσ (∂tΨ

†
σ)

〉
. (S22)

We can rewrite the above using the Heisenberg equation of
motion for the field operators. Note that any contributions to
the continuity equation arising from non-derivative terms in the
Hamiltonian—such as a superconducting gap or an exchange
field—can be incorporated into the source term q. Thus, for
the purposes of deriving current equations, it is sufficient to
consider only derivative terms. Whether or not the currents we
derive are conserved currents can be checked at the end of the
derivation, by substituting the Usadel equation into the final
quasiclassical current equations [S4, S5]. If we for simplicity
disregard gauge fields for now, the equations reduce to:

∂tΨσ = +
i

2m
∇2
Ψσ, (S23)

∂tΨ
†
σ = −

i
2m
∇2
Ψ
†
σ . (S24)

We then substitute these back into the equations for ∂tnτσ:

∂tneσ = −
i

2m
〈
(∇2
Ψ
†
σ)Ψσ − Ψ

†
σ (∇

2
Ψσ)

〉
, (S25)

∂tnhσ = +
i

2m
〈
(∇2
Ψσ)Ψ

†
σ − Ψσ (∇

2
Ψ
†
σ)

〉
. (S26)

Thanks to cancellation of cross-terms, these can be factorized:

∂tneσ = −
i

2m
∇ ·

〈
(∇Ψ†σ)Ψσ − Ψ

†
σ (∇Ψσ)

〉
, (S27)

∂tnhσ = +
i

2m
∇ ·

〈
(∇Ψσ)Ψ

†
σ − Ψσ (∇Ψ

†
σ)

〉
. (S28)

Comparing this to Eq. (S20), we conclude that:

jeσ = −
i

2m
〈
(∇Ψ†σ)Ψσ − Ψ

†
σ (∇Ψσ)

〉
, (S29)

jhσ = +
i

2m
〈
(∇Ψσ)Ψ

†
σ − Ψσ (∇Ψ

†
σ)

〉
. (S30)

As a mathematical trick, let us now use different coordinates
Ψσ = Ψσ(r, t) and Ψ†σ = Ψ†σ(r ′, t ′) for the field operators,
where we let r ′ → r and t ′ → t in the end. In this case,
the differential operators acting on the field operators can be
factored out of the expectation value without ambiguity:

jeσ = −
i

2m
(∇′ − ∇)

〈
Ψ
†
σ(r

′, t ′)Ψσ(r, t)
〉
, (S31)

jhσ = −
i

2m
(∇′ − ∇)

〈
Ψσ(r, t)Ψ

†
σ(r

′, t ′)
〉
. (S32)

We are now ready to define the charge and spin current densities.
In correspondence with Eq. (S10), we define these as:

Je B e
1
2
[+ je↑ + je↓ − jh↑ − jh↓], (S33)

Jz B
~

2
1
2
[+ je↑ − je↓ − jh↑ + jh↓]. (S34)

Substituting Eq. (S31) into Eqs. (S33) and (S34), comparing the
results to the Keldysh propagator in Eq. (S7), and recognizing
the results as traces in spin space, we conclude:

Je = −e
1

4m
(∇′ − ∇) Tr[σ0GK], (S35)

Jz = −
~

2
1

4m
(∇′ − ∇) Tr[σ3GK]. (S36)

Generalizing to all spin projections, we obtain the final results:

Je = −e
1

4m
(∇′ − ∇) Tr[σ0GK], (S37)

Js = −
~

2
1

4m
(∇′ − ∇) Tr[σGK]. (S38)

We wish to point out that these currents are manifestly real.
From the definition of the Keldysh propagator, we see that:

(∇′ − ∇)[GK∗(r, t; r ′, t ′)] = (∇′ − ∇)[−GK(r ′, t ′; r, t)]. (S39)

But which set of coordinates we chose to call (r, t) and (r ′, t ′)
was arbitrary, and should not affect the physical results, since we
are considering the limit r ′, t ′→ r, t anyway. This means that
we can interchange the coordinates (r, t) and (r ′, t ′) on the right-
hand side of the equation, as long as we do this consistently
for every factor simultaneously. The coordinate interchange
leads to a sign flip in (∇′ − ∇) which cancels the minus sign
inside the brackets, and makes the two sides of the equation
equal. This lets us conclude that (∇′ − ∇)GK∗ = (∇′ − ∇)GK,
which in turn implies that the charge and spin currents are real.
For later convenience, we can therefore rewrite the above as

Je = −e
1

4m
Re Tr[σ0(∇

′ − ∇)GK], (S40)

Js = −
~

2
1

4m
Re Tr[σ(∇′ − ∇)GK]. (S41)

C. Quasiclassical and diffusive limits

To derive equations we can use together with the Usadel
equation, we now follow the standard prescription for taking
the quasiclassical and diffusive limits [S1–S3, S6]. The net
change to the Keldysh propagator and its derivative are then:

iGK →
1
4

N0

+∞∫
−∞

dε 〈gK〉F, (S42)

1
2m
(∇′ − ∇)GK →

1
4

N0

+∞∫
−∞

dε 〈vgK〉F, (S43)



3

where v B p/m is interpreted as the quasiparticle velocity, N0
is the density of states at the Fermi level, and 〈· · ·〉F refers to
the average over the Fermi surface. From the derivation of the
Usadel equation, we also know that in the diffusive limit the
Fermi-surface averages can be written [S6, S7]

〈ǧ〉F B ǧs, 〈vǧ〉F ≈ −D(ǧs∇̃ǧs), (S44)

where ∇̃ is a gauge-covariant derivative including the electro-
magnetic vector potential and spin-orbit interactions [S6–S8],
ǧs is the isotropic propagator, and D is the diffusion constant.
We drop the subscripts on the isotropic propagators ǧs, and
substitute the above into the accumulations and currents:

ρe = −e
1
8

N0

+∞∫
−∞

dε Re Tr[σ0g
K], (S45)

ρs = −
~

2
1
8

N0

+∞∫
−∞

dε Re Tr[σgK], (S46)

Je = +e
1
8

N0

+∞∫
−∞

dε Re Tr[σ0I
K], (S47)

Js = +
~

2
1
8

N0

+∞∫
−∞

dε Re Tr[σIK], (S48)

where we have reintroduced the matrix current Ǐ B D(ǧ∇̃ǧ).
Note that these equations only depend on the “electronic” part
of the propagators in Nambu space, which in reality contains
information about both the electrons and holes in the system.

All these results can be written as integrals over only positive
energies using the symmetries of the Nambu-space matrices

σ̂nĝ
K(ε) =

(
+σng

K(+ε) +σn f K(+ε)
+σ∗n f K∗(−ε) +σ∗ng

K∗(−ε)

)
, (S49)

σ̂n Î
K(ε) =

(
+σnI

K(+ε) +σnJ
K(+ε)

−σ∗nJ
K∗(−ε) −σ∗nI

K∗(−ε)

)
. (S50)

In other words, the negative-energy contributions can be recast
in terms of the lower-right blocks; and since take the real part
of the results, the complex conjugations are irrelevant. The
remaining structure can be recognized as a trace over Nambu
space, yielding the final quasiclassical transport equations

ρe = −e
1
8

N0

∞∫
0

dε Re Tr[τ̂0σ̂0ĝ
K], (S51)

ρs = −
~

2
1
8

N0

∞∫
0

dε Re Tr[τ̂0σ̂ĝK], (S52)

Je = +e
1
8

N0

∞∫
0

dε Re Tr[τ̂3σ̂0 Î
K], (S53)

Js = +
~

2
1
8

N0

∞∫
0

dε Re Tr[τ̂3σ̂ ÎK]. (S54)

Note that σ̂ ÎK should be interpreted as an outer product between
two vectors, which results in a rank-2 tensor. This is because a
general description of spin transport requires both a direction
of transport ∼ ÎK and a spin orientation ∼ σ̂.

D. Higher-order gauge contributions

The equations of motion for the field operators also include
first-order derivative terms in systems with electromagnetic
[S6, S9] or spin-orbit [S7, S8, S10, S11] gauge fields. If we
ignore all other terms in the Hamiltonian, these derivative terms
give the following Heisenberg equations:

∂tΨσ =
1
m
Aσσ′ · (∇Ψσ′), (S55)

∂tΨ
†
σ =

1
m
(∇Ψ

†

σ′) · Aσ′σ, (S56)

where we implicitly sum over the spin index σ′. Going through
the same kind of derivations as without the gauge fields, we find
that we basically just have to make the following replacement
in the results right before taking the quasiclassical limit:

pGK →
1
2
{GK, p − A}. (S57)

Note that the gauge fields also affects charge and spin transport
in a different way, since they also appear as covariant deriva-
tives ∇̃( · ) = ∇( · ) − i[A, · ] in the matrix current Ǐ = Dǧ∇̃ǧ.

II. NONEQUILIBRIUM SUPERCURRENTS

A. Supercurrents vs. resistive currents

As shown in previous sections, the total spin current Js can
in the quasiclassical limit be calculated as an energy integral,

Js =
~

2
N0

∫∞
0

dε js, (S58)

where the spectral spin current js B Re Tr[τ̂3σ̂ ÎK]/8 and the
matrix current Î B Dǧ∇ǧ. If we substitute the parametrization
ĝK = ĝR ĥ − ĥĝA into the definition of the matrix current, we
find that its Keldysh component can be expanded as

ÎK =D[(ĝR∇ĝR)ĥ − ĥ(ĝA∇ĝA)]

+D[(∇ĥ) − ĝR(∇ĥ)ĝA].
(S59)

The terms on the first line may be finite even for a homogeneous
distribution function ĥ, and produces spin currents even in equi-
librium. Furthermore, they are sensitive to the phase-winding
of the superconducting condensate via ĝR∇ĝR and ĝA∇ĝA. We
therefore identify this as a supercurrent contribution. The
terms on the second line, however, are proportional to ∇ĥ. This
current contribution both requires an inhomogeneous distribu-
tion function, and is insensitive to the phase-winding of the
superconducting condensate, and has to be a resistive current.
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In this work, we are primarily interested in generating a
spin supercurrent from a nonequilibrium spin accumulation.
We therefore limit our attention to systems with a position-
independent distribution function ĥ that has an excited spin
mode. Since we assume ∇ĥ = 0, the second line of Eq. (S59)
disappears, and only the supercurrent contribution remains:

js =
1
8

Re Tr
[
ĥτ̂3σ̂(ĝ

R∇ĝR) − τ̂3σ̂ ĥ(ĝR†∇ĝR†)
]
. (S60)

As for the distribution function, it can be parametrized as

ĥ = h0σ̂0τ̂0 + hs · σ̂τ̂3, (S61)

where hs points along the net quantization axis of the accumu-
lated spins, and the magnitudes of the modes above are

h0(ε) =
1
2 tanh[(ε + eVs)/2T] + 1

2 tanh[(ε − eVs)/2T], (S62)
hs(ε) = 1

2 tanh[(ε + eVs)/2T] − 1
2 tanh[(ε − eVs)/2T]. (S63)

Note that the energy mode h0 and spin mode hs are odd and
even functions of energy, respectively. We have parametrized
the spin mode in terms of a spin voltage Vs B (V↑ − V↓)/2,
where Vσ are the effective potentials experienced by spin-
σ quasiparticles [S12–S14]. The spin mode hs is related
to the spin accumulation in Eq. (S52) by an energy integral
ρs ∼

∫
dε N(ε) hs(ε), where N(ε) is the density of states [S13].

B. Expansion in Pauli matrices

Once we substitute Eq. (S61) into Eq. (S60), there are a few
subtleties to be careful about. To handle these, without yet
introducing all the details of the singlet/triplet-decomposition,
we first expand ĝR∇ĝR directly in terms of Pauli matrices:

ĝR∇ĝR B α · σ̂τ̂3 + β · σ̂τ̂0 + γ σ̂0τ̂3 + δ σ̂0τ̂0 + ε̂ . (S64)

The first four terms parametrizes a general block-diagonal
matrix, while the last term ε̂ represents off-block-diagonal
parts. Since the distribution ĥ can always be chosen to be
block-diagonal, ε̂ does not contribute to the trace in Eq. (S60).
The other coefficients are found by taking appropriate traces:

α =
1
4

Tr[σ̂τ̂3ĝ
R∇ĝR], β =

1
4

Tr[σ̂τ̂0ĝ
R∇ĝR],

γ =
1
4

Tr[σ̂0τ̂3ĝ
R∇ĝR], δ =

1
4

Tr[σ̂0τ̂0ĝ
R∇ĝR].

(S65)

We parametrize ĝR†∇ĝR† using coefficients α, β, γ, δ that are
defined in the same manner as above.
We will now argue that the parameter δ is identically zero.

By differentiating the normalization condition (ĝR)2 = 1, one
can show that the retarded propagator anticommutes with its
gradient, {ĝR,∇ĝR} = 0. This identity can be rewritten

ĝR(∇ĝR) = −(∇ĝR)ĝR. (S66)

Let us now trace both sides of the equation, and use the cyclic
rule Tr[ÂB̂] = Tr[B̂ Â] on the right-hand side,

Tr[ĝR(∇ĝR)] = −Tr[ĝR(∇ĝR)]. (S67)

Since σ̂0τ̂0 is an identity matrix, we see from Eq. (S65) that:

δ = −δ. (S68)

In other words, δ = 0 is always satisfied, as any other conclusion
would violate the normalization condition (ĝR)2 = 1.

Next, to clarify another subtlety, we need to derive some
trace identities. By explicitly writing out the matrix products
and using σ̂ = diag(σ,σ∗), one can show that

Tr[(a · σ̂)(b · σ̂)σ̂τ̂0] = Tr[(a · σ )(b · σ )σ ]
+ Tr[(a · σ∗)(b · σ∗)σ∗], (S69)

Tr[(a · σ̂)(b · σ̂)σ̂τ̂3] = Tr[(a · σ )(b · σ )σ ]
− Tr[(a · σ∗)(b · σ∗)σ∗]. (S70)

Products of spin matrices in general satisfy (a · σ)(b · σ) =
(a · b)+ i(a × b) · σ; multiplying by σ and taking the trace, we
find the associated trace rule Tr[(a · σ)(b · σ)σ] = +2i(a × b).
However, if we complex-conjugate before taking the trace, we
uncover another identity Tr[(a · σ∗)(b · σ∗)σ∗] = −2i(a × b).
A geometric motivation for the sign difference is that if the basis
σ = (σ1, σ2, σ3) defines a right-handed coordinate system, then
σ∗ = (σ1,−σ2, σ3) has to define a left-handed one—and this
inverts the right-hand rule that cross-products usually satisfy.
With the aid of the results above, we see that

Tr[(a · σ̂)(b · σ̂)σ̂τ̂0] = 0, (S71)
Tr[(a · σ̂)(b · σ̂)σ̂τ̂3] = 4i(a × b). (S72)

This is the subtle trap alluded to above: due to the way we
define σ̂ = diag(σ,σ∗), the generalization of the Pauli cross-
product identity to matrices in Nambu space requires an extra
factor τ̂3 in the trace to produce a nonzero result.

We now substitute Eqs. (S61) and (S64) into Eq. (S60). With
the identities above, we see that the only contributions are:

js =
1
2 h0 Re

[
α − α

]
+ 1

2hs × Im
[
α + α

]
. (S73)

By multiplying Eq. (S66) by appropriate Pauli matrices, taking
traces, and using Tr[Â†] = Tr[Â]∗, one can show that α = −α∗.
Thismakesα−α real andα+α imaginary, so both contributions
are compatible with the normalization condition. We could also
use this information to eliminate the underlined coefficients,
but this would make it harder to see how mixed singlet/triplet-
terms cancel later in the derivation. Interestingly, all spin
supercurrent contributions depend on the same coefficient α,
and do not couple to the other traces of ĝR∇ĝR.
The physically observable spin supercurrent is found by

integrating the spectral current over all positive and nega-
tive energies. We also know that h0 and hs are odd and
even functions of energy, respectively. We can therefore let
α (+ε) → ∓α (−ε) = ∓α̃ ∗(+ε) in the spectral current without
changing the total spin supercurrent:

js =
1
2 h0 Re

[
α + α̃ ∗

]
+ 1

2hs × Im
[
α + α̃ ∗

]
. (S74)

This form of the result will be useful later, as it makes it clearer
which parts of the non-underlined and underlined coefficients
cancel for symmetry reasons. Conveniently, this also makes
the h0 and hs contributions take very similar forms.
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C. Expansion in singlets and triplets

We now proceed with an expansion of the propagators in
terms of physically meaningful components. Following the
same kind of parametrization as Ref. [S15], we can write

ĝR =

(
(gs + gt · σ) ( fs + ft · σ)iσ2
−iσ2( f̃s − f̃t · σ) −σ2(g̃s − g̃t · σ)σ2

)
. (S75)

Here, fs represents the spin-singlet pair amplitude, while ft is
the spin-triplet amplitude. On the other hand, we can interpret
gs and gt as the spin-independent and spin-dependent parts
of the density of states, respectively [S15]. In our notation,
this means that the density of states for particles with spin-
projection p is given by N = N0 Re[gs + gt · p]. In equilibrium,
the spin accumulation is found by integrating h0gt over energies,
giving another interpretation of gt . Outside of equilibrium,
we of course get another kind of spin accumulation due to a
nonzero spin mode hs, which we are interested in here.

Using Eq. (S75) and the identity σ2σσ2 = −σ
∗, we find that

the diagonal components of ĝR∇ĝR in Nambu space are[
ĝR∇ĝR]

1,1 = (gs + gt · σ)∇(gs + gt · σ)

+ ( fs + ft · σ)∇( f̃s − f̃t · σ),[
ĝR∇ĝR]

2,2 = (g̃s + g̃t · σ
∗)∇(g̃s + g̃t · σ

∗)

+ ( f̃s + f̃t · σ
∗)∇( fs − ft · σ

∗),

(S76)

where the subscripts [· · · ]i, j are matrix indices in Nambu space.
Using the identity (a ·σ)(b ·σ) = (a · b)+ i(a × b) ·σ and its
conjugate (a ·σ∗)(b ·σ∗) = (a · b) − i(a × b) ·σ∗, we can sort
the above into spin-independent and spin-dependent terms,[

ĝR∇ĝR]
1,1 =

(
gs∇gs + gt∇gt + fs∇ f̃s − ft∇ f̃t

)
+

(
gs∇gt + gt∇gs + ft∇ f̃s − fs∇ f̃t

)
σ

+
(
gt × ∇gt − ft × ∇ f̃t

)
iσ,[

ĝR∇ĝR]
2,2 =

(
g̃s∇g̃s + g̃t∇g̃t + f̃s∇ fs − f̃t∇ ft

)
+

(
g̃s∇g̃t + g̃t∇g̃s + f̃t∇ fs − f̃s∇ ft

)
σ∗

−
(
g̃t × ∇g̃t − f̃t × ∇ ft

)
iσ∗.

(S77)

Since we define σ̂ = diag(σ,σ∗), Eq. (S65) tells us that the
coefficient α that we require can be expressed as

α =
1
4

Tr
{
σ[ĝR∇ĝR]

1,1 − σ
∗[ĝR∇ĝR]

2,2

}
. (S78)

Together with the expansion of ĝR∇ĝR above, and standard
trace identities for Pauli matrices, we then obtain

2α = gs∇gt + gt∇gs − g̃s∇g̃t − g̃t∇g̃s

+ ft∇ f̃s − fs∇ f̃t − f̃t∇ fs + f̃s∇ ft
+ igt × ∇gt + i g̃t × ∇g̃t
− i ft × ∇ f̃t − i f̃t × ∇ ft .

(S79)

Let us now calculate the corresponding coefficient α from the
matrix ĝR†∇ĝR†. Taking the complex-transpose of Eq. (S75),

ĝR† =

(
(g∗s + g∗t · σ) ( f̃ ∗s − f̃ ∗t · σ)iσ2

−iσ2( f ∗s + f ∗t · σ) −σ2(g̃
∗
s − g̃∗t · σ)σ2

)
, (S80)

we see that ĝR† changed as follows compared to ĝR:

gs → +g
∗
s, gt → +g

∗
t , fs → + f̃ ∗s , ft → − f̃

∗
t . (S81)

Other than these transformations, the parametrization is clearly
identical, and the derivation of α becomes identical as well. If
we in the end results also choose to let ε → −ε , corresponding
to a combination of complex-conjugation and tilde-conjugation,
the net transformation rules become

gs → +g̃s, gt → +g̃t, fs → + fs, ft → − ft . (S82)

We can therefore simply perform the changes above to Eq. (S79)
to get the corresponding equations for α̃ ∗:

2α̃ ∗ = g̃s∇g̃t + g̃t∇g̃s − gs∇gt − gt∇gs

− ft∇ f̃s + fs∇ f̃t + f̃t∇ fs − f̃s∇ ft
+ i g̃t × ∇g̃t + igt × ∇gt
− i ft × ∇ f̃t − i f̃t × ∇ ft .

(S83)

We are now ready to calculate the spectral spin supercur-
rent in terms of the singlet/triplet-decomposition. Adding up
Eqs. (S79) and (S83), we see that all mixed singlet/triplet terms
drop out, and we are left with only the cross-product terms:

α+ α̃ ∗ = +igt×∇gt+i g̃t×∇g̃t−i f̃t×∇ ft−i ft×∇ f̃t . (S84)

Substituting this into Eq. (S74), we immediately see that:

js = −
1
2 h0 Im

[
gt × ∇gt + g̃t × ∇g̃t − ft × ∇ f̃t − f̃t × ∇ ft

]
+ 1

2hs×Re
[
gt × ∇gt + g̃t × ∇g̃t − ft × ∇ f̃t − f̃t × ∇ ft

]
.

(S85)
Since h0 and hs are odd and even functions of energy, and
the observable spin current is the energy integral of the above,
we can let h0 Im[Ã] → h0 Im[A] and hs Re[Ã] → hs Re[A]
without changing any results. Applied to the above, we can
summarize our results in the tidy and compact form

js =− Im
[
gt × ∇gt − ft × ∇ f̃t

]
· h0

−Re
[
gt × ∇gt − ft × ∇ f̃t

]
× hs.

(S86)

We have shown earlier in the derivation that both contributions
are compatible with the normalization condition. The fact
that they did not cancel during the last simplification above,
shows that both contributions are compatible with the energy
symmetries of h0 and hs. Finally, we know that the contents of
the brackets gt × ∇gt − ft × ∇ f̃t can be nonzero, since this is
the source of equilibrium spin currents.
The final result shows that if one in equilibrium has a spin

supercurrent j
eq
s , then a nonequilibrium spin mode hs gives

rise to a new component jneqs ∼ j
eq
s × hs. This can intuitively

be interpreted as the injected spins hs exerting some kind of
torque on the spins transported by the equilibrium current jeqs ,
thus producing a component j

neq
s that is spin-polarized in a

direction perpendicular to both. This analogy is not perfect: it
leaves out the Im and Re operations in Eq. (S86), and the fact
that the cross-product relation is between spectral currents and
accumulations. However, the intuition provided by this picture
is sufficient to explain the results in the main manuscript.
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