
Programming is hard. Programming correct C++ is particularly hard. Indeed, it is uncommon to 
see a screenful containing only well defined and conforming code. Why do professional 
programmers write code like this? Because most programmers do not have a deep understanding 
of the language they are using. While they sometimes know that certain things are undefined or 
unspecified, they often do not know why it is so. 

In this talk we will study small code snippets of C++, and use them to discuss the fundamental 
building blocks, limitations and underlying design philosophies of this wonderful but dangerous 
programming language.
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#include <iostream>

int foo(int a) { std::cout << a; return a; }

int bar(int a, int b) { return a + b; }

int main() 
{
    int i = foo(3) + foo(4);
    std::cout << i << std::endl;

    int j = bar(foo(3), foo(4));
    std::cout << j << std::endl;
}

Exercise
What do you think this code snippet might print if you compile, link and run it
in your development environment? 
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C and C++ are among the few 
programming languages where 

evaluation order is mostly 
unspecified. This is an example of 
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In C++. Why is the evaluation order mostly 
unspecified?

Because C++ is a 
braindead programming 

language?
Because there is a design goal to 

allow optimal execution speed on a 
wide range of architectures. In C++ 
the compiler can choose to evaluate 
expressions in the order that is most 
optimal for a particular platform. This 

allows for better optimization.
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foo.cpp:7: warning: operation on 'i' may be undefined
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On my computer (Mac OS 10.8.3, clang 4.2, icc 13.0.2, gcc 4.2.1):
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Why don’t the C++ standard require that you 
always get a warning or error on invalid code?

Because C++ is a 
braindead programming 

language?

C++ has kind of adopted that attitude from C, and 
therefore the C++ standard does not say much about 

what should happen if the code is not well-formed. 

One of the primary design goals of C was 
that it should be relatively easy to write a 

compiler, which implies that the C standard 
could not add a requirement to detect and 

diagnose invalid code. 



It is important to understand that C and C++ are not 
really high-level languages compared to most other 
common programming languages. 

They are more like just portable assemblers where 
you have to appreciate and respect the underlying 
architecture to program correctly. This is reflected in 
the language definition and in how compiler deals 
with “incorrect” code.

Without a deep understanding of the language, its 
history, and its design goals, you are doomed to fail.
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Let's start with some basic stuff...
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In C++. Why do you think objects with static storage duration 
(eg, static variables) gets a default value (in this case 0), while 
objects with automatic storage duration (eg, local variables) 
does not get a default value?

Because C++ is a 
braindead programming 

language?

Because C++ (and C) is all about 
execution speed. Setting static 

variables to default values is a one 
time cost, while defaulting auto 

variables is a signficant runtime cost. 
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When you compile 
without optimization, 
objects of automatic 
storage duration are 
often placed in an 

activation frame on a 
stack. In this case it 

seems like the "garbage 
value" is in the same 

memory location, and it 
is increased every time 
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Here we compile without optimization. The compiler 
might try to be helpful and memset the whole stack 

to 0... just to make debugging simpler. That might be a 
reason why we get 1,2,3 
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When you compile 
without optimization, 
objects of automatic 
storage duration are 
often placed in an 

activation frame on a 
stack. In this case it 

seems like the "garbage 
value" is in the same 

memory location, and it 
is increased every time 

foo() is called.
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    ++a;
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    foo();
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}
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Here we compile without optimization. The compiler 
might try to be helpful and memset the whole stack 

to 0... just to make debugging simpler. That might be a 
reason why we get 1,2,3 

Insight like this is 
very useful, but you 
should also know 

that...

Ehh...
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}
    
int main()
{
    foo();
    foo();
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void foo()
{
    int a;
    ++a;
    std::cout << a << std::endl;
}
    
int main()
{
    foo();
    foo();
    foo();
}

OK, let’s add some 
flags then

Lousy compiler!

I don’t need 
to know 

about this, 
because my 

compiler find 
bugs like this

$ c++ -Wall -Wextra -pedantic foo.cpp
$ ./a.out
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Eg variable a was used and 
released in bar(), then when 
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think you will get 42.
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void foo()
{
    int a;
    std::cout << a << std::endl;
}

void bar()
{
    int a = 42;
}
    
int main()
{
    bar();
    foo();
}

eh? 

$ c++ -O0 foo.cpp && ./a.out
42

I am now going to show you something cool!

Perhaps this compiler has a pool 
of named variables that it reuses. 

Eg variable a was used and 
released in bar(), then when 

foo() needs an integer named a 
it will get the same variable for 

reuse. If you rename the variable 
in bar() to, say b, then I don’t 

think you will get 42.

Yeah, sure...

Can you explain this behavior?



Strange explanations are often symptoms of having an invalid conceptual model!
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understand such phenomenons are 
essential for troubleshooting C++ 

programs and for avoiding falling into all 
the traps laid out for you.



#include <iostream>

void foo()
{
    int a;
    std::cout << a << std::endl;
}

void bar()
{
    int a = 42;
}
    
int main()
{
    bar();
    foo();
}

$ c++ -O0 foo.cpp && ./a.out
42

If you can give a plausible explanation for 
this behavior, you should feel both good 

and bad. Bad because you obviously 
know something you are not supposed 
to know when programming in a high 
level language. You make assumptions 

about the underlying implementation and 
architecture. Good because being able to 

understand such phenomenons are 
essential for troubleshooting C++ 

programs and for avoiding falling into all 
the traps laid out for you.

$ c++ -O2 foo.cpp && ./a.out
1462303832
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#include <iostream>

void foo()
{
    int a = 3;
    a++;
    std::cout << a << std::endl;
}
    
int main(void)
{
    foo();
    foo();
    foo();
}

They are all 
morons!

Believe it or not, I 
have met several 

programmers who 
thought this snippet 
would print 3,3,3.

Do you really have a deep 
understanding of when side-
effects take place in C++? 
Do you know the rules of 

sequencing? 

ehh...
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Strange explanations are often symptoms of having an invalid conceptual model!



int a=41; a++; printf("%d\n", a);

int a=41; (a++ < 42) & printf("%d\n", a);

int a=41; (a++ < 42) && printf("%d\n", a);

int a=41; if (a++ < 42) printf("%d\n", a);

int a=41; (a++ < 42), printf("%d\n", a);

int a=41; printf("%d\n", (a++ < 42) ? a : a);

int a=41; a = ++a; printf("%d\n", a);

int a=41; a = printf("%d\n", ++a);

int a=41; a = foo(++a); printf("42\n");

Exercise
Which of these snippets prints 42?

(hint: printf() returns the number of characters printed) 

1)

2)

3)

4)

5)

6)

7)

8)

9)



int a=41; a++; printf("%d\n", a);

int a=41; (a++ < 42) & printf("%d\n", a);
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int a=41; a = ++a; printf("%d\n", a);
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int a=41; a++; printf("%d\n", a);

int a=41; (a++ < 42) & printf("%d\n", a);

int a=41; (a++ < 42) && printf("%d\n", a);

int a=41; if (a++ < 42) printf("%d\n", a);

int a=41; (a++ < 42), printf("%d\n", a);

int a=41; printf("%d\n", (a++ < 42) ? a : a);

int a=41; a = ++a; printf("%d\n", a);

int a=41; a = printf("%d\n", ++a);

int a=41; a = foo(++a); printf("42\n");

// 42

// undefined

Exercise
Which of these snippets prints 42?

(hint: printf() returns the number of characters printed) 

1)

2)
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int a=41; a++; printf("%d\n", a);
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This program is UB because b is used without being initialized. But in 
practice, what do you think might happen when this function is called?
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computation of i, so the behavior is undefined. 

In C++ (and C), unlike most other languages, within a full 
expression the order in which subexpressions are evaluated is 

mostly unspecified.  Therefore the expression 
i + v[++i] + v[++i] 

does not make sense and yields undefined behavior.  
When we have UB then anything can happen.

?

#include <iostream>

int main()
{
    int v[] = {0,2,4,6,8};
    int i = 1;
    int n = i + v[++i] + v[++i];
    std::cout << n << std::endl;
}



But, seriously, who is releasing code with undefined behavior?
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But, seriously, who is releasing code with undefined behavior?

...
    /* if both are imag, store value, otherwise store 0.0 */
 if (!(li && ri)) {
  tfree(r);
  r = bcon(0);
 }
 p = buildtree(ASSIGN, l, r);
 p->n_type = p->n_type += (FIMAG-FLOAT);
....

snippet from pftn.c in pcc 1.0.0.RELEASE 20110221
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C and C++ are not really high level languages, they are more 
like portable assemblers. When programming in C and C++ 
you must have a understanding of what happens under the 
hood! And if you don’t have a decent understanding of it, then 
you are doomed to create lots of bugs...



C and C++ are not really high level languages, they are more 
like portable assemblers. When programming in C and C++ 
you must have a understanding of what happens under the 
hood! And if you don’t have a decent understanding of it, then 
you are doomed to create lots of bugs...

But if you do have a useful conceptual model of 
what happens under the hood, then...
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The spirit of C

trust the programmer
• let them do what needs to be done
• the programmer is in charge not the compiler

keep the language small and simple
• small amount of code → small amount of assembler
• provide only one way to do an operation
• new inventions are not entertained

make it fast, even if its not portable
• target efficient code generation 
• int preference, int promotion rules
• sequence points, maximum leeway to compiler

rich expression support
• lots of operators
• expressions combine into larger expressions



•C++ is designed to be a statically typed, general-purpose language 
that is as efficient and portable as C

•C++ is designed to directly and comprehensively support multiple 
programming styles (procedural programming, data abstraction, 
object-oriented programming, and generic programming)

•C++ is designed to give the programmer choice, even if this makes 
it possible for the programmer to choose incorrectly

•C++ is designed to be as compatible with C as possible, therefore 
providing a smooth transition from C

•C++ avoids features that are platform specific or not general 
purpose

•C++ does not incur overhead for features that are not used (the 
"zero-overhead principle")

•C++ is designed to function without a sophisticated programming 
environment

Design principles for C++
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