
Programming is hard. Programming correct C++ is particularly hard. Indeed, it is uncommon to
see a screenful containing only well defined and conforming code. Why do professional
programmers write code like this? Because most programmers do not have a deep understanding
of the language they are using. While they sometimes know that certain things are undefined or
unspecified, they often do not know why it is so.

In this talk we will study small code snippets of C++, and use them to discuss the fundamental
building blocks, limitations and underlying design philosophies of this wonderful but dangerous
programming language.

Deep C++

http://www.noaanews.noaa.gov/stories2005/images/rov-hercules-titanic.jpg

by Olve Maudal

A 60 minute session at Norwegian Developers Conference 2013
Friday, June 14, 2013

http://www.noaanews.noaa.gov/stories2005/images/rov-hercules-titanic.jpg
http://www.noaanews.noaa.gov/stories2005/images/rov-hercules-titanic.jpg

#include <iostream>

int foo(int a) { std::cout << a; return a; }

int bar(int a, int b) { return a + b; }

int main()
{
 int i = foo(3) + foo(4);
 std::cout << i << std::endl;

 int j = bar(foo(3), foo(4));
 std::cout << j << std::endl;
}

Exercise
What do you think this code snippet might print if you compile, link and run it
in your development environment?

#include <iostream>

int foo(int a) { std::cout << a; return a; }

int bar(int a, int b) { return a + b; }

int main()
{
 int i = foo(3) + foo(4);
 std::cout << i << std::endl;

 int j = bar(foo(3), foo(4));
 std::cout << j << std::endl;
}

$ c++ foo.cpp

Exercise
What do you think this code snippet might print if you compile, link and run it
in your development environment?

#include <iostream>

int foo(int a) { std::cout << a; return a; }

int bar(int a, int b) { return a + b; }

int main()
{
 int i = foo(3) + foo(4);
 std::cout << i << std::endl;

 int j = bar(foo(3), foo(4));
 std::cout << j << std::endl;
}

$ c++ foo.cpp
$./a.out

Exercise
What do you think this code snippet might print if you compile, link and run it
in your development environment?

#include <iostream>

int foo(int a) { std::cout << a; return a; }

int bar(int a, int b) { return a + b; }

int main()
{
 int i = foo(3) + foo(4);
 std::cout << i << std::endl;

 int j = bar(foo(3), foo(4));
 std::cout << j << std::endl;
}

$ c++ foo.cpp
$./a.out
347

Exercise
What do you think this code snippet might print if you compile, link and run it
in your development environment?

#include <iostream>

int foo(int a) { std::cout << a; return a; }

int bar(int a, int b) { return a + b; }

int main()
{
 int i = foo(3) + foo(4);
 std::cout << i << std::endl;

 int j = bar(foo(3), foo(4));
 std::cout << j << std::endl;
}

$ c++ foo.cpp
$./a.out
347
437

Exercise
What do you think this code snippet might print if you compile, link and run it
in your development environment?

#include <iostream>

int foo(int a) { std::cout << a; return a; }

int bar(int a, int b) { return a + b; }

int main()
{
 int i = foo(3) + foo(4);
 std::cout << i << std::endl;

 int j = bar(foo(3), foo(4));
 std::cout << j << std::endl;
}

$ c++ foo.cpp
$./a.out
347
437

but you might also get

Exercise
What do you think this code snippet might print if you compile, link and run it
in your development environment?

#include <iostream>

int foo(int a) { std::cout << a; return a; }

int bar(int a, int b) { return a + b; }

int main()
{
 int i = foo(3) + foo(4);
 std::cout << i << std::endl;

 int j = bar(foo(3), foo(4));
 std::cout << j << std::endl;
}

$ c++ foo.cpp
$./a.out
347
437

437
347

but you might also get

Exercise
What do you think this code snippet might print if you compile, link and run it
in your development environment?

#include <iostream>

int foo(int a) { std::cout << a; return a; }

int bar(int a, int b) { return a + b; }

int main()
{
 int i = foo(3) + foo(4);
 std::cout << i << std::endl;

 int j = bar(foo(3), foo(4));
 std::cout << j << std::endl;
}

$ c++ foo.cpp
$./a.out
347
437

437
347

but you might also get

or

Exercise
What do you think this code snippet might print if you compile, link and run it
in your development environment?

#include <iostream>

int foo(int a) { std::cout << a; return a; }

int bar(int a, int b) { return a + b; }

int main()
{
 int i = foo(3) + foo(4);
 std::cout << i << std::endl;

 int j = bar(foo(3), foo(4));
 std::cout << j << std::endl;
}

$ c++ foo.cpp
$./a.out
347
437

437
347

but you might also get

437
437or

Exercise
What do you think this code snippet might print if you compile, link and run it
in your development environment?

#include <iostream>

int foo(int a) { std::cout << a; return a; }

int bar(int a, int b) { return a + b; }

int main()
{
 int i = foo(3) + foo(4);
 std::cout << i << std::endl;

 int j = bar(foo(3), foo(4));
 std::cout << j << std::endl;
}

$ c++ foo.cpp
$./a.out
347
437

437
347

but you might also get

437
437or or

Exercise
What do you think this code snippet might print if you compile, link and run it
in your development environment?

#include <iostream>

int foo(int a) { std::cout << a; return a; }

int bar(int a, int b) { return a + b; }

int main()
{
 int i = foo(3) + foo(4);
 std::cout << i << std::endl;

 int j = bar(foo(3), foo(4));
 std::cout << j << std::endl;
}

$ c++ foo.cpp
$./a.out
347
437

437
347

but you might also get

437
437

347
347or or

Exercise
What do you think this code snippet might print if you compile, link and run it
in your development environment?

#include <iostream>

int foo(int a) { std::cout << a; return a; }

int bar(int a, int b) { return a + b; }

int main()
{
 int i = foo(3) + foo(4);
 std::cout << i << std::endl;

 int j = bar(foo(3), foo(4));
 std::cout << j << std::endl;
}

$ c++ foo.cpp
$./a.out
347
437

437
347

C and C++ are among the few
programming languages where

evaluation order is mostly
unspecified. This is an example of

unspecified behavior.

but you might also get

437
437

347
347or or

Exercise
What do you think this code snippet might print if you compile, link and run it
in your development environment?

I don't write code like that!

I don't write code like that!

Of course your don't!

In C++. Why is the evaluation order mostly
unspecified?

In C++. Why is the evaluation order mostly
unspecified?

In C++. Why is the evaluation order mostly
unspecified?

Because C++ is a
braindead programming

language?

In C++. Why is the evaluation order mostly
unspecified?

Because C++ is a
braindead programming

language?
Because there is a design goal to

allow optimal execution speed on a
wide range of architectures. In C++
the compiler can choose to evaluate
expressions in the order that is most
optimal for a particular platform. This

allows for better optimization.

Exercise

#include <iostream>

int main()
{
 int v[] = {0,2,4,6,8};
 int i = 1;
 int n = i + v[++i] + v[++i];
 std::cout << n << std::endl;
}

foo.cpp

What do you think this code snippet might print if you compile, link and run it
in your development environment?

Exercise

#include <iostream>

int main()
{
 int v[] = {0,2,4,6,8};
 int i = 1;
 int n = i + v[++i] + v[++i];
 std::cout << n << std::endl;
}

foo.cpp

What do you think this code snippet might print if you compile, link and run it
in your development environment?

On my computer (Mac OS 10.8.3, clang 4.2, icc 13.0.2, gcc 4.2.1):

Exercise

#include <iostream>

int main()
{
 int v[] = {0,2,4,6,8};
 int i = 1;
 int n = i + v[++i] + v[++i];
 std::cout << n << std::endl;
}

foo.cpp

What do you think this code snippet might print if you compile, link and run it
in your development environment?

On my computer (Mac OS 10.8.3, clang 4.2, icc 13.0.2, gcc 4.2.1):
$ clang++ foo.cpp && ./a.out

Exercise

#include <iostream>

int main()
{
 int v[] = {0,2,4,6,8};
 int i = 1;
 int n = i + v[++i] + v[++i];
 std::cout << n << std::endl;
}

foo.cpp

What do you think this code snippet might print if you compile, link and run it
in your development environment?

On my computer (Mac OS 10.8.3, clang 4.2, icc 13.0.2, gcc 4.2.1):
$ clang++ foo.cpp && ./a.out
11

Exercise

#include <iostream>

int main()
{
 int v[] = {0,2,4,6,8};
 int i = 1;
 int n = i + v[++i] + v[++i];
 std::cout << n << std::endl;
}

foo.cpp

What do you think this code snippet might print if you compile, link and run it
in your development environment?

On my computer (Mac OS 10.8.3, clang 4.2, icc 13.0.2, gcc 4.2.1):
$ clang++ foo.cpp && ./a.out
11
$ icc foo.cpp && ./a.out

Exercise

#include <iostream>

int main()
{
 int v[] = {0,2,4,6,8};
 int i = 1;
 int n = i + v[++i] + v[++i];
 std::cout << n << std::endl;
}

foo.cpp

What do you think this code snippet might print if you compile, link and run it
in your development environment?

On my computer (Mac OS 10.8.3, clang 4.2, icc 13.0.2, gcc 4.2.1):
$ clang++ foo.cpp && ./a.out
11
$ icc foo.cpp && ./a.out
13

Exercise

#include <iostream>

int main()
{
 int v[] = {0,2,4,6,8};
 int i = 1;
 int n = i + v[++i] + v[++i];
 std::cout << n << std::endl;
}

foo.cpp

What do you think this code snippet might print if you compile, link and run it
in your development environment?

On my computer (Mac OS 10.8.3, clang 4.2, icc 13.0.2, gcc 4.2.1):
$ clang++ foo.cpp && ./a.out
11
$ icc foo.cpp && ./a.out
13
$ g++ foo.cpp && ./a.out

Exercise

#include <iostream>

int main()
{
 int v[] = {0,2,4,6,8};
 int i = 1;
 int n = i + v[++i] + v[++i];
 std::cout << n << std::endl;
}

foo.cpp

What do you think this code snippet might print if you compile, link and run it
in your development environment?

On my computer (Mac OS 10.8.3, clang 4.2, icc 13.0.2, gcc 4.2.1):
$ clang++ foo.cpp && ./a.out
11
$ icc foo.cpp && ./a.out
13
$ g++ foo.cpp && ./a.out
12

Exercise

#include <iostream>

int main()
{
 int v[] = {0,2,4,6,8};
 int i = 1;
 int n = i + v[++i] + v[++i];
 std::cout << n << std::endl;
}

foo.cpp

What do you think this code snippet might print if you compile, link and run it
in your development environment?

On my computer (Mac OS 10.8.3, clang 4.2, icc 13.0.2, gcc 4.2.1):
$ clang++ foo.cpp && ./a.out
11
$ icc foo.cpp && ./a.out
13
$ g++ foo.cpp && ./a.out
12

This is a classic example of
undefined behavior.

Exercise

#include <iostream>

int main()
{
 int v[] = {0,2,4,6,8};
 int i = 1;
 int n = i + v[++i] + v[++i];
 std::cout << n << std::endl;
}

foo.cpp

What do you think this code snippet might print if you compile, link and run it
in your development environment?

On my computer (Mac OS 10.8.3, clang 4.2, icc 13.0.2, gcc 4.2.1):
$ clang++ foo.cpp && ./a.out
11
$ icc foo.cpp && ./a.out
13
$ g++ foo.cpp && ./a.out
12

This is a classic example of
undefined behavior.

#include <iostream>

int main()
{
 int v[] = {0,2,4,6,8};
 int i = 1;
 int n = i + v[++i] + v[++i];
 std::cout << n << std::endl;
}

foo.cpp

I don't write code like that!

#include <iostream>

int main()
{
 int v[] = {0,2,4,6,8};
 int i = 1;
 int n = i + v[++i] + v[++i];
 std::cout << n << std::endl;
}

foo.cpp

Let’s add some flags for better diagnostics.

I don't write code like that!

#include <iostream>

int main()
{
 int v[] = {0,2,4,6,8};
 int i = 1;
 int n = i + v[++i] + v[++i];
 std::cout << n << std::endl;
}

foo.cpp

$ clang++ -O -Wall -Wextra -pedantic foo.cpp && ./a.out
11
$ icc -O -Wall -Wextra -pedantic foo.cpp && ./a.out
13
$ g++ -O -Wall -Wextra -pedantic foo.cpp && ./a.out
foo.cpp:7: warning: operation on 'i' may be undefined
12

On my computer (Mac OS 10.8.3, clang 4.2, icc 13.0.2, gcc 4.2.1):

Let’s add some flags for better diagnostics.

I don't write code like that!

Why don’t the C++ standard require that you
always get a warning or error on invalid code?

Why don’t the C++ standard require that you
always get a warning or error on invalid code?

Because C++ is a
braindead programming

language?

Why don’t the C++ standard require that you
always get a warning or error on invalid code?

Because C++ is a
braindead programming

language?

One of the primary design goals of C was
that it should be relatively easy to write a

compiler, which implies that the C standard
could not add a requirement to detect and

diagnose invalid code.

Why don’t the C++ standard require that you
always get a warning or error on invalid code?

Because C++ is a
braindead programming

language?

C++ has kind of adopted that attitude from C, and
therefore the C++ standard does not say much about

what should happen if the code is not well-formed.

One of the primary design goals of C was
that it should be relatively easy to write a

compiler, which implies that the C standard
could not add a requirement to detect and

diagnose invalid code.

It is important to understand that C and C++ are not
really high-level languages compared to most other
common programming languages.

They are more like just portable assemblers where
you have to appreciate and respect the underlying
architecture to program correctly. This is reflected in
the language definition and in how compiler deals
with “incorrect” code.

Without a deep understanding of the language, its
history, and its design goals, you are doomed to fail.

http://www.slideshare.net/olvemaudal/deep-c

http://www.slideshare.net/olvemaudal/deep-c
http://www.slideshare.net/olvemaudal/deep-c

Let's start with some basic stuff...

#include <iostream>

void foo()
{
 int a = 3;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

#include <iostream>

void foo()
{
 int a = 3;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ foo.cpp

#include <iostream>

void foo()
{
 int a = 3;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ foo.cpp
$./a.out

#include <iostream>

void foo()
{
 int a = 3;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ foo.cpp
$./a.out
4

#include <iostream>

void foo()
{
 int a = 3;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ foo.cpp
$./a.out
4
4

#include <iostream>

void foo()
{
 int a = 3;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ foo.cpp
$./a.out
4
4
4

#include <iostream>

void foo()
{
 int a = 3;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ foo.cpp
$./a.out
4
4
4

#include <iostream>

void foo()
{
 static int a = 3;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

#include <iostream>

void foo()
{
 static int a = 3;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

4

#include <iostream>

void foo()
{
 static int a = 3;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

4
5

#include <iostream>

void foo()
{
 static int a = 3;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

4
5
6

#include <iostream>

void foo()
{
 static int a = 3;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

4
5
6

#include <iostream>

void foo()
{
 static int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

#include <iostream>

void foo()
{
 static int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

garbage, garbage,
garbage?

#include <iostream>

void foo()
{
 static int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

garbage, garbage,
garbage? No. In C++, variables

with static storage
duration are initialized
to their default value,

in this case 0

#include <iostream>

void foo()
{
 static int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

garbage, garbage,
garbage? No. In C++, variables

with static storage
duration are initialized
to their default value,

in this case 0
It is better to

initialize
explicitly.

#include <iostream>

void foo()
{
 static int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

garbage, garbage,
garbage? No. In C++, variables

with static storage
duration are initialized
to their default value,

in this case 0
It is better to

initialize
explicitly.

I agree, in this case.
But, as a professional

programmer, you
sometimes have to
read and reason

about code written
by other people.

#include <iostream>

void foo()
{
 static int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

1

garbage, garbage,
garbage? No. In C++, variables

with static storage
duration are initialized
to their default value,

in this case 0
It is better to

initialize
explicitly.

I agree, in this case.
But, as a professional

programmer, you
sometimes have to
read and reason

about code written
by other people.

#include <iostream>

void foo()
{
 static int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

1
2

garbage, garbage,
garbage? No. In C++, variables

with static storage
duration are initialized
to their default value,

in this case 0
It is better to

initialize
explicitly.

I agree, in this case.
But, as a professional

programmer, you
sometimes have to
read and reason

about code written
by other people.

#include <iostream>

void foo()
{
 static int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

1
2
3

garbage, garbage,
garbage? No. In C++, variables

with static storage
duration are initialized
to their default value,

in this case 0
It is better to

initialize
explicitly.

I agree, in this case.
But, as a professional

programmer, you
sometimes have to
read and reason

about code written
by other people.

#include <iostream>

void foo()
{
 static int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

#include <iostream>

void foo()
{
 static int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

1, 1, 1?

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

1, 1, 1? Variables with
automatic storage
duration are not

initialized implicitly

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

1, 1, 1? Variables with
automatic storage
duration are not

initialized implicitly
Garbage,
garbage,
garbage?

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

Maybe.

1, 1, 1? Variables with
automatic storage
duration are not

initialized implicitly
Garbage,
garbage,
garbage?

In C++. Why do you think objects with static storage duration
(eg, static variables) gets a default value (in this case 0), while
objects with automatic storage duration (eg, local variables)
does not get a default value?

In C++. Why do you think objects with static storage duration
(eg, static variables) gets a default value (in this case 0), while
objects with automatic storage duration (eg, local variables)
does not get a default value?

Because C++ is a
braindead programming

language?

In C++. Why do you think objects with static storage duration
(eg, static variables) gets a default value (in this case 0), while
objects with automatic storage duration (eg, local variables)
does not get a default value?

Because C++ is a
braindead programming

language?

Because C++ (and C) is all about
execution speed. Setting static

variables to default values is a one
time cost, while defaulting auto

variables is a signficant runtime cost.

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

So, let’s try this code
on my machine.

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

So, let’s try this code
on my machine.

$ c++ foo.cpp

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

So, let’s try this code
on my machine.

$ c++ foo.cpp
$./a.out

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

So, let’s try this code
on my machine.

$ c++ foo.cpp
$./a.out
1

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

So, let’s try this code
on my machine.

$ c++ foo.cpp
$./a.out
1
2

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

So, let’s try this code
on my machine.

$ c++ foo.cpp
$./a.out
1
2
3

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

any plausible
explaination for this

behavior?

So, let’s try this code
on my machine.

$ c++ foo.cpp
$./a.out
1
2
3

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

any plausible
explaination for this

behavior?

So, let’s try this code
on my machine.

$ c++ foo.cpp
$./a.out
1
2
3

Ehh...

When you compile
without optimization,
objects of automatic
storage duration are
often placed in an

activation frame on a
stack. In this case it

seems like the "garbage
value" is in the same

memory location, and it
is increased every time

foo() is called.

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ foo.cpp
$./a.out
1
2
3

Ehh...

When you compile
without optimization,
objects of automatic
storage duration are
often placed in an

activation frame on a
stack. In this case it

seems like the "garbage
value" is in the same

memory location, and it
is increased every time

foo() is called.

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ foo.cpp
$./a.out
1
2
3

Here we compile without optimization. The compiler
might try to be helpful and memset the whole stack

to 0... just to make debugging simpler. That might be a
reason why we get 1,2,3

Ehh...

When you compile
without optimization,
objects of automatic
storage duration are
often placed in an

activation frame on a
stack. In this case it

seems like the "garbage
value" is in the same

memory location, and it
is increased every time

foo() is called.

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ foo.cpp
$./a.out
1
2
3

Here we compile without optimization. The compiler
might try to be helpful and memset the whole stack

to 0... just to make debugging simpler. That might be a
reason why we get 1,2,3

Insight like this is
very useful, but you
should also know

that...

Ehh...

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

Since we are using a value that is indeterminate (not initialized) this is Undefined Behavior!

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

It is important to
understand that, at
least in theory, you
might as well get:

Since we are using a value that is indeterminate (not initialized) this is Undefined Behavior!

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ foo.cpp

It is important to
understand that, at
least in theory, you
might as well get:

Since we are using a value that is indeterminate (not initialized) this is Undefined Behavior!

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ foo.cpp
$./a.out

It is important to
understand that, at
least in theory, you
might as well get:

Since we are using a value that is indeterminate (not initialized) this is Undefined Behavior!

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ foo.cpp
$./a.out
Happy birthday!

It is important to
understand that, at
least in theory, you
might as well get:

Since we are using a value that is indeterminate (not initialized) this is Undefined Behavior!

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ foo.cpp
$./a.out
Happy birthday!

It is important to
understand that, at
least in theory, you
might as well get:

or

Since we are using a value that is indeterminate (not initialized) this is Undefined Behavior!

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ foo.cpp
$./a.out
Happy birthday!

It is important to
understand that, at
least in theory, you
might as well get:

or

$ c++ foo.cpp

Since we are using a value that is indeterminate (not initialized) this is Undefined Behavior!

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ foo.cpp
$./a.out
Happy birthday!

It is important to
understand that, at
least in theory, you
might as well get:

or

$ c++ foo.cpp
$./a.out

Since we are using a value that is indeterminate (not initialized) this is Undefined Behavior!

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ foo.cpp
$./a.out
Happy birthday!

It is important to
understand that, at
least in theory, you
might as well get:

or

$ c++ foo.cpp
$./a.out
[FORMATTING HD]

Since we are using a value that is indeterminate (not initialized) this is Undefined Behavior!

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ foo.cpp
$./a.out
Happy birthday!

It is important to
understand that, at
least in theory, you
might as well get:

or

$ c++ foo.cpp
$./a.out
[FORMATTING HD]

or even

Since we are using a value that is indeterminate (not initialized) this is Undefined Behavior!

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ foo.cpp
$./a.out
Happy birthday!

It is important to
understand that, at
least in theory, you
might as well get:

or

$ c++ foo.cpp
$./a.out
[FORMATTING HD]

or even

$ c++ foo.cpp

Since we are using a value that is indeterminate (not initialized) this is Undefined Behavior!

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ foo.cpp
$./a.out
Happy birthday!

It is important to
understand that, at
least in theory, you
might as well get:

or

$ c++ foo.cpp
$./a.out
[FORMATTING HD]

or even

$ c++ foo.cpp
[FORMATTING HD]

Since we are using a value that is indeterminate (not initialized) this is Undefined Behavior!

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ foo.cpp
$./a.out
Happy birthday!

It is important to
understand that, at
least in theory, you
might as well get:

or

$ c++ foo.cpp
$./a.out
[FORMATTING HD]

or even

$ c++ foo.cpp
[FORMATTING HD]

“When the compiler encounters [a given undefined construct] it is
legal for it to make demons fly out of your nose” (from comp.std.c)

Since we are using a value that is indeterminate (not initialized) this is Undefined Behavior!

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

I don’t need
to know

about this,
because my

compiler find
bugs like this

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

OK, let’s add some
flags then

I don’t need
to know

about this,
because my

compiler find
bugs like this

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

OK, let’s add some
flags then

I don’t need
to know

about this,
because my

compiler find
bugs like this

$ c++ -Wall -Wextra -pedantic foo.cpp

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

OK, let’s add some
flags then

I don’t need
to know

about this,
because my

compiler find
bugs like this

$ c++ -Wall -Wextra -pedantic foo.cpp
$./a.out

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

OK, let’s add some
flags then

I don’t need
to know

about this,
because my

compiler find
bugs like this

$ c++ -Wall -Wextra -pedantic foo.cpp
$./a.out
1

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

OK, let’s add some
flags then

I don’t need
to know

about this,
because my

compiler find
bugs like this

$ c++ -Wall -Wextra -pedantic foo.cpp
$./a.out
1
2

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

OK, let’s add some
flags then

I don’t need
to know

about this,
because my

compiler find
bugs like this

$ c++ -Wall -Wextra -pedantic foo.cpp
$./a.out
1
2
3

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

OK, let’s add some
flags then

Lousy compiler!

I don’t need
to know

about this,
because my

compiler find
bugs like this

$ c++ -Wall -Wextra -pedantic foo.cpp
$./a.out
1
2
3

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

Pro tip:
 "always" compile
with optimization!

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ -O -Wall -Wextra foo.cpp

Pro tip:
 "always" compile
with optimization!

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ -O -Wall -Wextra foo.cpp
warning: variable "a" is used before its value is set

Pro tip:
 "always" compile
with optimization!

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ -O -Wall -Wextra foo.cpp
warning: variable "a" is used before its value is set
$./a.out

Pro tip:
 "always" compile
with optimization!

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ -O -Wall -Wextra foo.cpp
warning: variable "a" is used before its value is set
$./a.out
1395100640

Pro tip:
 "always" compile
with optimization!

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ -O -Wall -Wextra foo.cpp
warning: variable "a" is used before its value is set
$./a.out
1395100640
1543516672

Pro tip:
 "always" compile
with optimization!

#include <iostream>

void foo()
{
 int a;
 ++a;
 std::cout << a << std::endl;
}

int main()
{
 foo();
 foo();
 foo();
}

$ c++ -O -Wall -Wextra foo.cpp
warning: variable "a" is used before its value is set
$./a.out
1395100640
1543516672
1543516672

Pro tip:
 "always" compile
with optimization!

I am now going to show you something cool!

#include <iostream>

void foo()
{
 int a;
 std::cout << a << std::endl;
}

void bar()
{
 int a = 42;
}

int main()
{
 bar();
 foo();
}

I am now going to show you something cool!

#include <iostream>

void foo()
{
 int a;
 std::cout << a << std::endl;
}

void bar()
{
 int a = 42;
}

int main()
{
 bar();
 foo();
}

$ c++ -O0 foo.cpp && ./a.out
42

I am now going to show you something cool!

#include <iostream>

void foo()
{
 int a;
 std::cout << a << std::endl;
}

void bar()
{
 int a = 42;
}

int main()
{
 bar();
 foo();
}

$ c++ -O0 foo.cpp && ./a.out
42

I am now going to show you something cool!

Can you explain this behavior?

#include <iostream>

void foo()
{
 int a;
 std::cout << a << std::endl;
}

void bar()
{
 int a = 42;
}

int main()
{
 bar();
 foo();
}

eh?

$ c++ -O0 foo.cpp && ./a.out
42

I am now going to show you something cool!

Can you explain this behavior?

#include <iostream>

void foo()
{
 int a;
 std::cout << a << std::endl;
}

void bar()
{
 int a = 42;
}

int main()
{
 bar();
 foo();
}

eh?

$ c++ -O0 foo.cpp && ./a.out
42

I am now going to show you something cool!

Perhaps this compiler has a pool
of named variables that it reuses.

Eg variable a was used and
released in bar(), then when

foo() needs an integer named a
it will get the same variable for

reuse. If you rename the variable
in bar() to, say b, then I don’t

think you will get 42.

Can you explain this behavior?

#include <iostream>

void foo()
{
 int a;
 std::cout << a << std::endl;
}

void bar()
{
 int a = 42;
}

int main()
{
 bar();
 foo();
}

eh?

$ c++ -O0 foo.cpp && ./a.out
42

I am now going to show you something cool!

Perhaps this compiler has a pool
of named variables that it reuses.

Eg variable a was used and
released in bar(), then when

foo() needs an integer named a
it will get the same variable for

reuse. If you rename the variable
in bar() to, say b, then I don’t

think you will get 42.

Yeah, sure...

Can you explain this behavior?

Strange explanations are often symptoms of having an invalid conceptual model!

#include <iostream>

void foo()
{
 int a;
 std::cout << a << std::endl;
}

void bar()
{
 int a = 42;
}

int main()
{
 bar();
 foo();
}

$ c++ -O0 foo.cpp && ./a.out
42

#include <iostream>

void foo()
{
 int a;
 std::cout << a << std::endl;
}

void bar()
{
 int a = 42;
}

int main()
{
 bar();
 foo();
}

$ c++ -O0 foo.cpp && ./a.out
42

If you can give a plausible explanation for
this behavior, you should feel both good

and bad. Bad because you obviously
know something you are not supposed
to know when programming in a high
level language. You make assumptions

about the underlying implementation and
architecture. Good because being able to

understand such phenomenons are
essential for troubleshooting C++

programs and for avoiding falling into all
the traps laid out for you.

#include <iostream>

void foo()
{
 int a;
 std::cout << a << std::endl;
}

void bar()
{
 int a = 42;
}

int main()
{
 bar();
 foo();
}

$ c++ -O0 foo.cpp && ./a.out
42

If you can give a plausible explanation for
this behavior, you should feel both good

and bad. Bad because you obviously
know something you are not supposed
to know when programming in a high
level language. You make assumptions

about the underlying implementation and
architecture. Good because being able to

understand such phenomenons are
essential for troubleshooting C++

programs and for avoiding falling into all
the traps laid out for you.

$ c++ -O2 foo.cpp && ./a.out
1462303832

#include <iostream>

void foo()
{
 int a = 3;
 ++a;
 std::cout << a << std::endl;
}

int main(void)
{
 foo();
 foo();
 foo();
}

#include <iostream>

void foo()
{
 int a = 3;
 ++a;
 std::cout << a << std::endl;
}

int main(void)
{
 foo();
 foo();
 foo();
}

4

#include <iostream>

void foo()
{
 int a = 3;
 ++a;
 std::cout << a << std::endl;
}

int main(void)
{
 foo();
 foo();
 foo();
}

4
4

#include <iostream>

void foo()
{
 int a = 3;
 ++a;
 std::cout << a << std::endl;
}

int main(void)
{
 foo();
 foo();
 foo();
}

4
4
4

#include <iostream>

void foo()
{
 int a = 3;
 ++a;
 std::cout << a << std::endl;
}

int main(void)
{
 foo();
 foo();
 foo();
}

4
4
4

#include <iostream>

void foo()
{
 int a = 3;
 a++;
 std::cout << a << std::endl;
}

int main(void)
{
 foo();
 foo();
 foo();
}

#include <iostream>

void foo()
{
 int a = 3;
 a++;
 std::cout << a << std::endl;
}

int main(void)
{
 foo();
 foo();
 foo();
}

4

#include <iostream>

void foo()
{
 int a = 3;
 a++;
 std::cout << a << std::endl;
}

int main(void)
{
 foo();
 foo();
 foo();
}

4
4

#include <iostream>

void foo()
{
 int a = 3;
 a++;
 std::cout << a << std::endl;
}

int main(void)
{
 foo();
 foo();
 foo();
}

4
4
4

#include <iostream>

void foo()
{
 int a = 3;
 a++;
 std::cout << a << std::endl;
}

int main(void)
{
 foo();
 foo();
 foo();
}

Believe it or not, I
have met several

programmers who
thought this snippet
would print 3,3,3.

4
4
4

#include <iostream>

void foo()
{
 int a = 3;
 a++;
 std::cout << a << std::endl;
}

int main(void)
{
 foo();
 foo();
 foo();
}

They are all
morons!

Believe it or not, I
have met several

programmers who
thought this snippet
would print 3,3,3.

4
4
4

#include <iostream>

void foo()
{
 int a = 3;
 a++;
 std::cout << a << std::endl;
}

int main(void)
{
 foo();
 foo();
 foo();
}

They are all
morons!

Believe it or not, I
have met several

programmers who
thought this snippet
would print 3,3,3.

Do you really have a deep
understanding of when side-
effects take place in C++?
Do you know the rules of

sequencing?

4
4
4

#include <iostream>

void foo()
{
 int a = 3;
 a++;
 std::cout << a << std::endl;
}

int main(void)
{
 foo();
 foo();
 foo();
}

They are all
morons!

Believe it or not, I
have met several

programmers who
thought this snippet
would print 3,3,3.

Do you really have a deep
understanding of when side-
effects take place in C++?
Do you know the rules of

sequencing?

ehh...

4
4
4

Strange explanations are often symptoms of having an invalid conceptual model!

int a=41; a++; printf("%d\n", a);

int a=41; (a++ < 42) & printf("%d\n", a);

int a=41; (a++ < 42) && printf("%d\n", a);

int a=41; if (a++ < 42) printf("%d\n", a);

int a=41; (a++ < 42), printf("%d\n", a);

int a=41; printf("%d\n", (a++ < 42) ? a : a);

int a=41; a = ++a; printf("%d\n", a);

int a=41; a = printf("%d\n", ++a);

int a=41; a = foo(++a); printf("42\n");

Exercise
Which of these snippets prints 42?

(hint: printf() returns the number of characters printed)

1)

2)

3)

4)

5)

6)

7)

8)

9)

int a=41; a++; printf("%d\n", a);

int a=41; (a++ < 42) & printf("%d\n", a);

int a=41; (a++ < 42) && printf("%d\n", a);

int a=41; if (a++ < 42) printf("%d\n", a);

int a=41; (a++ < 42), printf("%d\n", a);

int a=41; printf("%d\n", (a++ < 42) ? a : a);

int a=41; a = ++a; printf("%d\n", a);

int a=41; a = printf("%d\n", ++a);

int a=41; a = foo(++a); printf("42\n");

// 42

Exercise
Which of these snippets prints 42?

(hint: printf() returns the number of characters printed)

1)

2)

3)

4)

5)

6)

7)

8)

9)

int a=41; a++; printf("%d\n", a);

int a=41; (a++ < 42) & printf("%d\n", a);

int a=41; (a++ < 42) && printf("%d\n", a);

int a=41; if (a++ < 42) printf("%d\n", a);

int a=41; (a++ < 42), printf("%d\n", a);

int a=41; printf("%d\n", (a++ < 42) ? a : a);

int a=41; a = ++a; printf("%d\n", a);

int a=41; a = printf("%d\n", ++a);

int a=41; a = foo(++a); printf("42\n");

// 42

// undefined

Exercise
Which of these snippets prints 42?

(hint: printf() returns the number of characters printed)

1)

2)

3)

4)

5)

6)

7)

8)

9)

int a=41; a++; printf("%d\n", a);

int a=41; (a++ < 42) & printf("%d\n", a);

int a=41; (a++ < 42) && printf("%d\n", a);

int a=41; if (a++ < 42) printf("%d\n", a);

int a=41; (a++ < 42), printf("%d\n", a);

int a=41; printf("%d\n", (a++ < 42) ? a : a);

int a=41; a = ++a; printf("%d\n", a);

int a=41; a = printf("%d\n", ++a);

int a=41; a = foo(++a); printf("42\n");

// 42

// undefined

// 42

Exercise
Which of these snippets prints 42?

(hint: printf() returns the number of characters printed)

1)

2)

3)

4)

5)

6)

7)

8)

9)

int a=41; a++; printf("%d\n", a);

int a=41; (a++ < 42) & printf("%d\n", a);

int a=41; (a++ < 42) && printf("%d\n", a);

int a=41; if (a++ < 42) printf("%d\n", a);

int a=41; (a++ < 42), printf("%d\n", a);

int a=41; printf("%d\n", (a++ < 42) ? a : a);

int a=41; a = ++a; printf("%d\n", a);

int a=41; a = printf("%d\n", ++a);

int a=41; a = foo(++a); printf("42\n");

// 42

// undefined

// 42

// 42

Exercise
Which of these snippets prints 42?

(hint: printf() returns the number of characters printed)

1)

2)

3)

4)

5)

6)

7)

8)

9)

int a=41; a++; printf("%d\n", a);

int a=41; (a++ < 42) & printf("%d\n", a);

int a=41; (a++ < 42) && printf("%d\n", a);

int a=41; if (a++ < 42) printf("%d\n", a);

int a=41; (a++ < 42), printf("%d\n", a);

int a=41; printf("%d\n", (a++ < 42) ? a : a);

int a=41; a = ++a; printf("%d\n", a);

int a=41; a = printf("%d\n", ++a);

int a=41; a = foo(++a); printf("42\n");

// 42

// undefined

// 42

// 42

// 42

Exercise
Which of these snippets prints 42?

(hint: printf() returns the number of characters printed)

1)

2)

3)

4)

5)

6)

7)

8)

9)

int a=41; a++; printf("%d\n", a);

int a=41; (a++ < 42) & printf("%d\n", a);

int a=41; (a++ < 42) && printf("%d\n", a);

int a=41; if (a++ < 42) printf("%d\n", a);

int a=41; (a++ < 42), printf("%d\n", a);

int a=41; printf("%d\n", (a++ < 42) ? a : a);

int a=41; a = ++a; printf("%d\n", a);

int a=41; a = printf("%d\n", ++a);

int a=41; a = foo(++a); printf("42\n");

// 42

// undefined

// 42

// 42

// 42

// 42

Exercise
Which of these snippets prints 42?

(hint: printf() returns the number of characters printed)

1)

2)

3)

4)

5)

6)

7)

8)

9)

int a=41; a++; printf("%d\n", a);

int a=41; (a++ < 42) & printf("%d\n", a);

int a=41; (a++ < 42) && printf("%d\n", a);

int a=41; if (a++ < 42) printf("%d\n", a);

int a=41; (a++ < 42), printf("%d\n", a);

int a=41; printf("%d\n", (a++ < 42) ? a : a);

int a=41; a = ++a; printf("%d\n", a);

int a=41; a = printf("%d\n", ++a);

int a=41; a = foo(++a); printf("42\n");

// 42

// undefined

// 42

// 42

// 42

// 42

// undefined

Exercise
Which of these snippets prints 42?

(hint: printf() returns the number of characters printed)

1)

2)

3)

4)

5)

6)

7)

8)

9)

int a=41; a++; printf("%d\n", a);

int a=41; (a++ < 42) & printf("%d\n", a);

int a=41; (a++ < 42) && printf("%d\n", a);

int a=41; if (a++ < 42) printf("%d\n", a);

int a=41; (a++ < 42), printf("%d\n", a);

int a=41; printf("%d\n", (a++ < 42) ? a : a);

int a=41; a = ++a; printf("%d\n", a);

int a=41; a = printf("%d\n", ++a);

int a=41; a = foo(++a); printf("42\n");

// 42

// undefined

// 42

// 42

// 42

// 42

// undefined

// 42

Exercise
Which of these snippets prints 42?

(hint: printf() returns the number of characters printed)

1)

2)

3)

4)

5)

6)

7)

8)

9)

int a=41; a++; printf("%d\n", a);

int a=41; (a++ < 42) & printf("%d\n", a);

int a=41; (a++ < 42) && printf("%d\n", a);

int a=41; if (a++ < 42) printf("%d\n", a);

int a=41; (a++ < 42), printf("%d\n", a);

int a=41; printf("%d\n", (a++ < 42) ? a : a);

int a=41; a = ++a; printf("%d\n", a);

int a=41; a = printf("%d\n", ++a);

int a=41; a = foo(++a); printf("42\n");

// 42

// undefined

// 42

// 42

// 42

// 42

// undefined

// 42

// ?

Exercise
Which of these snippets prints 42?

(hint: printf() returns the number of characters printed)

1)

2)

3)

4)

5)

6)

7)

8)

9)

int the_answer(int seed)
{
 int answer = seed + 42;
 return answer - seed;
}

deep_thought.cpp

int the_answer(int seed)
{
 int answer = seed + 42;
 return answer - seed;
}

deep_thought.cpp
This looks like quite innocent code?

int the_answer(int seed)
{
 int answer = seed + 42;
 return answer - seed;
}

deep_thought.cpp
This looks like quite innocent code?

But what if someone, years later,
write some code that call this function

with a very high seed?

int the_answer(int seed)
{
 int answer = seed + 42;
 return answer - seed;
}

deep_thought.cpp
This looks like quite innocent code?

But what if someone, years later,
write some code that call this function

with a very high seed?

#include <iostream>
#include <limits>

int the_answer(int);

int main()
{
 printf("The answer is:\n");
 int a = the_answer(2147483647);
 printf("%d\n", a);
}

main.cpp

int the_answer(int seed)
{
 int answer = seed + 42;
 return answer - seed;
}

#include <iostream>
#include <limits>

int the_answer(int);

int main()
{
 printf("The answer is:\n");
 int a = the_answer(2147483647);
 printf("%d\n", a);
}

main.cpp

deep_thought.cpp

int the_answer(int seed)
{
 int answer = seed + 42;
 return answer - seed;
}

$ c++ main.cpp deep_thought.cpp

#include <iostream>
#include <limits>

int the_answer(int);

int main()
{
 printf("The answer is:\n");
 int a = the_answer(2147483647);
 printf("%d\n", a);
}

main.cpp

deep_thought.cpp

int the_answer(int seed)
{
 int answer = seed + 42;
 return answer - seed;
}

$ c++ main.cpp deep_thought.cpp
$./a.out

#include <iostream>
#include <limits>

int the_answer(int);

int main()
{
 printf("The answer is:\n");
 int a = the_answer(2147483647);
 printf("%d\n", a);
}

main.cpp

deep_thought.cpp

int the_answer(int seed)
{
 int answer = seed + 42;
 return answer - seed;
}

$ c++ main.cpp deep_thought.cpp
$./a.out
... and the anwser is:

#include <iostream>
#include <limits>

int the_answer(int);

int main()
{
 printf("The answer is:\n");
 int a = the_answer(2147483647);
 printf("%d\n", a);
}

main.cpp

deep_thought.cpp

int the_answer(int seed)
{
 int answer = seed + 42;
 return answer - seed;
}

$ c++ main.cpp deep_thought.cpp
$./a.out
... and the anwser is:
3.1416926535897932

#include <iostream>
#include <limits>

int the_answer(int);

int main()
{
 printf("The answer is:\n");
 int a = the_answer(2147483647);
 printf("%d\n", a);
}

main.cpp

deep_thought.cpp

int the_answer(int seed)
{
 int answer = seed + 42;
 return answer - seed;
}

$ c++ main.cpp deep_thought.cpp
$./a.out
... and the anwser is:
3.1416926535897932

Inconceivable!

#include <iostream>
#include <limits>

int the_answer(int);

int main()
{
 printf("The answer is:\n");
 int a = the_answer(2147483647);
 printf("%d\n", a);
}

main.cpp

deep_thought.cpp

int the_answer(int seed)
{
 int answer = seed + 42;
 return answer - seed;
}

$ c++ main.cpp deep_thought.cpp
$./a.out
... and the anwser is:
3.1416926535897932

Inconceivable!

Remember... when you have undefined behavior, anything can happen!

#include <iostream>
#include <limits>

int the_answer(int);

int main()
{
 printf("The answer is:\n");
 int a = the_answer(2147483647);
 printf("%d\n", a);
}

main.cpp

deep_thought.cpp

int the_answer(int seed)
{
 int answer = seed + 42;
 return answer - seed;
}

$ c++ main.cpp deep_thought.cpp
$./a.out
... and the anwser is:
3.1416926535897932

Inconceivable!

Remember... when you have undefined behavior, anything can happen!

#include <iostream>
#include <limits>

int the_answer(int);

int main()
{
 printf("The answer is:\n");
 int a = the_answer(2147483647);
 printf("%d\n", a);
}

main.cpp

deep_thought.cpp

Integer overflow is undefined behavior. If you want to prevent this to happen
you must write the logic yourself. In C++ you seldom get code you have not asked for.

Exercise

#include <iostream>

void foo(void)
{
 bool b;
 if (b)
 std::cout << "true" << std::endl;
 if (!b)
 std::cout << "false" << std::endl;
}

foo.cpp

This program is UB because b is used without being initialized. But in
practice, what do you think might happen when this function is called?

(thanks to Mark Shroyer for blogging about this very interesting gcc behavior http://markshroyer.com/2012/06/c-both-true-and-false/)

Exercise

#include <iostream>

void foo(void)
{
 bool b;
 if (b)
 std::cout << "true" << std::endl;
 if (!b)
 std::cout << "false" << std::endl;
}

foo.cpp

This program is UB because b is used without being initialized. But in
practice, what do you think might happen when this function is called?

void bar();
void foo();

int main()
{
 bar();
 foo();
}

main.cpp

(thanks to Mark Shroyer for blogging about this very interesting gcc behavior http://markshroyer.com/2012/06/c-both-true-and-false/)

Exercise

#include <iostream>

void foo(void)
{
 bool b;
 if (b)
 std::cout << "true" << std::endl;
 if (!b)
 std::cout << "false" << std::endl;
}

foo.cpp

This program is UB because b is used without being initialized. But in
practice, what do you think might happen when this function is called?

void bar();
void foo();

int main()
{
 bar();
 foo();
}

main.cpp

void bar()
{
 char c = 2;
}

bar.cpp

(thanks to Mark Shroyer for blogging about this very interesting gcc behavior http://markshroyer.com/2012/06/c-both-true-and-false/)

Exercise

#include <iostream>

void foo(void)
{
 bool b;
 if (b)
 std::cout << "true" << std::endl;
 if (!b)
 std::cout << "false" << std::endl;
}

foo.cpp

This program is UB because b is used without being initialized. But in
practice, what do you think might happen when this function is called?

void bar();
void foo();

int main()
{
 bar();
 foo();
}

main.cpp

void bar()
{
 char c = 2;
}

bar.cpp

This is what I get on my computer (Mac OS 10.8.3, gcc since 4.7)

(thanks to Mark Shroyer for blogging about this very interesting gcc behavior http://markshroyer.com/2012/06/c-both-true-and-false/)

Exercise

$ g++ foo.cpp bar.cpp main.cpp

#include <iostream>

void foo(void)
{
 bool b;
 if (b)
 std::cout << "true" << std::endl;
 if (!b)
 std::cout << "false" << std::endl;
}

foo.cpp

This program is UB because b is used without being initialized. But in
practice, what do you think might happen when this function is called?

void bar();
void foo();

int main()
{
 bar();
 foo();
}

main.cpp

void bar()
{
 char c = 2;
}

bar.cpp

This is what I get on my computer (Mac OS 10.8.3, gcc since 4.7)

(thanks to Mark Shroyer for blogging about this very interesting gcc behavior http://markshroyer.com/2012/06/c-both-true-and-false/)

Exercise

$ g++ foo.cpp bar.cpp main.cpp
$./a.out

#include <iostream>

void foo(void)
{
 bool b;
 if (b)
 std::cout << "true" << std::endl;
 if (!b)
 std::cout << "false" << std::endl;
}

foo.cpp

This program is UB because b is used without being initialized. But in
practice, what do you think might happen when this function is called?

void bar();
void foo();

int main()
{
 bar();
 foo();
}

main.cpp

void bar()
{
 char c = 2;
}

bar.cpp

This is what I get on my computer (Mac OS 10.8.3, gcc since 4.7)

(thanks to Mark Shroyer for blogging about this very interesting gcc behavior http://markshroyer.com/2012/06/c-both-true-and-false/)

Exercise

$ g++ foo.cpp bar.cpp main.cpp
$./a.out
true

#include <iostream>

void foo(void)
{
 bool b;
 if (b)
 std::cout << "true" << std::endl;
 if (!b)
 std::cout << "false" << std::endl;
}

foo.cpp

This program is UB because b is used without being initialized. But in
practice, what do you think might happen when this function is called?

void bar();
void foo();

int main()
{
 bar();
 foo();
}

main.cpp

void bar()
{
 char c = 2;
}

bar.cpp

This is what I get on my computer (Mac OS 10.8.3, gcc since 4.7)

(thanks to Mark Shroyer for blogging about this very interesting gcc behavior http://markshroyer.com/2012/06/c-both-true-and-false/)

Exercise

$ g++ foo.cpp bar.cpp main.cpp
$./a.out
true
false

#include <iostream>

void foo(void)
{
 bool b;
 if (b)
 std::cout << "true" << std::endl;
 if (!b)
 std::cout << "false" << std::endl;
}

foo.cpp

This program is UB because b is used without being initialized. But in
practice, what do you think might happen when this function is called?

void bar();
void foo();

int main()
{
 bar();
 foo();
}

main.cpp

void bar()
{
 char c = 2;
}

bar.cpp

This is what I get on my computer (Mac OS 10.8.3, gcc since 4.7)

(thanks to Mark Shroyer for blogging about this very interesting gcc behavior http://markshroyer.com/2012/06/c-both-true-and-false/)

Exercise

$ g++ foo.cpp bar.cpp main.cpp
$./a.out
true
false
$

#include <iostream>

void foo(void)
{
 bool b;
 if (b)
 std::cout << "true" << std::endl;
 if (!b)
 std::cout << "false" << std::endl;
}

foo.cpp

This program is UB because b is used without being initialized. But in
practice, what do you think might happen when this function is called?

void bar();
void foo();

int main()
{
 bar();
 foo();
}

main.cpp

void bar()
{
 char c = 2;
}

bar.cpp

This is what I get on my computer (Mac OS 10.8.3, gcc since 4.7)

(thanks to Mark Shroyer for blogging about this very interesting gcc behavior http://markshroyer.com/2012/06/c-both-true-and-false/)

bool b;
if (b)
 printf("b is true\n");
if (!b)
 printf("b is false\n");

A real story of “anything can happen”

bool b;
if (b)
 printf("b is true\n");
if (!b)
 printf("b is false\n");

 ; the following code assumes that $b is either 0 or 1

 load_reg_a $b
 compare_reg_a 0
 jump_equal label1
 call_proc print_b_is_true
label1:
 load_reg_a $b
 xor_reg_a 1
 compare_reg_a 0
 jump_equal label2
 call_proc print_b_is_false
label2:

A real story of “anything can happen”

bool b;
if (b)
 printf("b is true\n");
if (!b)
 printf("b is false\n");

 ; the following code assumes that $b is either 0 or 1

 load_reg_a $b
 compare_reg_a 0
 jump_equal label1
 call_proc print_b_is_true
label1:
 load_reg_a $b
 xor_reg_a 1
 compare_reg_a 0
 jump_equal label2
 call_proc print_b_is_false
label2:

A real story of “anything can happen”

this is approximately the code generated by
one actual version of gcc, try to imagine what
will happen if the garbage value of b is 2

bool b;
if (b)
 printf("b is true\n");
if (!b)
 printf("b is false\n");

 ; the following code assumes that $b is either 0 or 1

 load_reg_a $b
 compare_reg_a 0
 jump_equal label1
 call_proc print_b_is_true
label1:
 load_reg_a $b
 xor_reg_a 1
 compare_reg_a 0
 jump_equal label2
 call_proc print_b_is_false
label2:

true
false

A real story of “anything can happen”

this is approximately the code generated by
one actual version of gcc, try to imagine what
will happen if the garbage value of b is 2

So what’s wrong with this code?
#include <iostream>

int main()
{
 int v[] = {0,2,4,6,8};
 int i = 1;
 int n = i + v[++i] + v[++i];
 std::cout << n << std::endl;
}

So what’s wrong with this code?

It is crap code

#include <iostream>

int main()
{
 int v[] = {0,2,4,6,8};
 int i = 1;
 int n = i + v[++i] + v[++i];
 std::cout << n << std::endl;
}

So what’s wrong with this code?

It is crap code

The standard says that
this is invalid code

#include <iostream>

int main()
{
 int v[] = {0,2,4,6,8};
 int i = 1;
 int n = i + v[++i] + v[++i];
 std::cout << n << std::endl;
}

So what’s wrong with this code?

It is crap code

The standard says that
this is invalid code

Update a variable
multiple times between

two semicolons

#include <iostream>

int main()
{
 int v[] = {0,2,4,6,8};
 int i = 1;
 int n = i + v[++i] + v[++i];
 std::cout << n << std::endl;
}

So what’s wrong with this code?

It is crap code

The standard says that
this is invalid code

Update a variable
multiple times between

two semicolons

According to §1.9.15 in the standard: On line 7, the evaluations of the
operands are unsequenced. The side effects on the scalar object i is

unsequenced relative to the other side effect on i, as well as the value
computation of i, so the behavior is undefined.

#include <iostream>

int main()
{
 int v[] = {0,2,4,6,8};
 int i = 1;
 int n = i + v[++i] + v[++i];
 std::cout << n << std::endl;
}

So what’s wrong with this code?

It is crap code

The standard says that
this is invalid code

Update a variable
multiple times between

two semicolons

According to §1.9.15 in the standard: On line 7, the evaluations of the
operands are unsequenced. The side effects on the scalar object i is

unsequenced relative to the other side effect on i, as well as the value
computation of i, so the behavior is undefined.

In C++ (and C), unlike most other languages, within a full
expression the order in which subexpressions are evaluated is

mostly unspecified. Therefore the expression
i + v[++i] + v[++i]

does not make sense and yields undefined behavior.
When we have UB then anything can happen.

#include <iostream>

int main()
{
 int v[] = {0,2,4,6,8};
 int i = 1;
 int n = i + v[++i] + v[++i];
 std::cout << n << std::endl;
}

So what’s wrong with this code?

It is crap code

The standard says that
this is invalid code

Update a variable
multiple times between

two semicolons

According to §1.9.15 in the standard: On line 7, the evaluations of the
operands are unsequenced. The side effects on the scalar object i is

unsequenced relative to the other side effect on i, as well as the value
computation of i, so the behavior is undefined.

In C++ (and C), unlike most other languages, within a full
expression the order in which subexpressions are evaluated is

mostly unspecified. Therefore the expression
i + v[++i] + v[++i]

does not make sense and yields undefined behavior.
When we have UB then anything can happen.

#include <iostream>

int main()
{
 int v[] = {0,2,4,6,8};
 int i = 1;
 int n = i + v[++i] + v[++i];
 std::cout << n << std::endl;
}

So what’s wrong with this code?

It is crap code

The standard says that
this is invalid code

Update a variable
multiple times between

two semicolons

According to §1.9.15 in the standard: On line 7, the evaluations of the
operands are unsequenced. The side effects on the scalar object i is

unsequenced relative to the other side effect on i, as well as the value
computation of i, so the behavior is undefined.

In C++ (and C), unlike most other languages, within a full
expression the order in which subexpressions are evaluated is

mostly unspecified. Therefore the expression
i + v[++i] + v[++i]

does not make sense and yields undefined behavior.
When we have UB then anything can happen.

?

#include <iostream>

int main()
{
 int v[] = {0,2,4,6,8};
 int i = 1;
 int n = i + v[++i] + v[++i];
 std::cout << n << std::endl;
}

So what’s wrong with this code?

It is crap code

The standard says that
this is invalid code

Update a variable
multiple times between

two semicolons

According to §1.9.15 in the standard: On line 7, the evaluations of the
operands are unsequenced. The side effects on the scalar object i is

unsequenced relative to the other side effect on i, as well as the value
computation of i, so the behavior is undefined.

In C++ (and C), unlike most other languages, within a full
expression the order in which subexpressions are evaluated is

mostly unspecified. Therefore the expression
i + v[++i] + v[++i]

does not make sense and yields undefined behavior.
When we have UB then anything can happen.

?

#include <iostream>

int main()
{
 int v[] = {0,2,4,6,8};
 int i = 1;
 int n = i + v[++i] + v[++i];
 std::cout << n << std::endl;
}

So what’s wrong with this code?

It is crap code

The standard says that
this is invalid code

Update a variable
multiple times between

two semicolons

According to §1.9.15 in the standard: On line 7, the evaluations of the
operands are unsequenced. The side effects on the scalar object i is

unsequenced relative to the other side effect on i, as well as the value
computation of i, so the behavior is undefined.

In C++ (and C), unlike most other languages, within a full
expression the order in which subexpressions are evaluated is

mostly unspecified. Therefore the expression
i + v[++i] + v[++i]

does not make sense and yields undefined behavior.
When we have UB then anything can happen.

?

#include <iostream>

int main()
{
 int v[] = {0,2,4,6,8};
 int i = 1;
 int n = i + v[++i] + v[++i];
 std::cout << n << std::endl;
}

So what’s wrong with this code?

It is crap code

The standard says that
this is invalid code

Update a variable
multiple times between

two semicolons

According to §1.9.15 in the standard: On line 7, the evaluations of the
operands are unsequenced. The side effects on the scalar object i is

unsequenced relative to the other side effect on i, as well as the value
computation of i, so the behavior is undefined.

In C++ (and C), unlike most other languages, within a full
expression the order in which subexpressions are evaluated is

mostly unspecified. Therefore the expression
i + v[++i] + v[++i]

does not make sense and yields undefined behavior.
When we have UB then anything can happen.

?

#include <iostream>

int main()
{
 int v[] = {0,2,4,6,8};
 int i = 1;
 int n = i + v[++i] + v[++i];
 std::cout << n << std::endl;
}

But, seriously, who is releasing code with undefined behavior?

But, seriously, who is releasing code with undefined behavior?

But, seriously, who is releasing code with undefined behavior?

But, seriously, who is releasing code with undefined behavior?

But, seriously, who is releasing code with undefined behavior?

But, seriously, who is releasing code with undefined behavior?

But, seriously, who is releasing code with undefined behavior?

...
 /* if both are imag, store value, otherwise store 0.0 */
 if (!(li && ri)) {
 tfree(r);
 r = bcon(0);
 }
 p = buildtree(ASSIGN, l, r);
 p->n_type = p->n_type += (FIMAG-FLOAT);
....

snippet from pftn.c in pcc 1.0.0.RELEASE 20110221

But, seriously, who is releasing code with undefined behavior?

...
 /* if both are imag, store value, otherwise store 0.0 */
 if (!(li && ri)) {
 tfree(r);
 r = bcon(0);
 }
 p = buildtree(ASSIGN, l, r);
 p->n_type = p->n_type += (FIMAG-FLOAT);
....

snippet from pftn.c in pcc 1.0.0.RELEASE 20110221

C and C++ are not really high level languages, they are more
like portable assemblers. When programming in C and C++
you must have a understanding of what happens under the
hood! And if you don’t have a decent understanding of it, then
you are doomed to create lots of bugs...

C and C++ are not really high level languages, they are more
like portable assemblers. When programming in C and C++
you must have a understanding of what happens under the
hood! And if you don’t have a decent understanding of it, then
you are doomed to create lots of bugs...

But if you do have a useful conceptual model of
what happens under the hood, then...

http://www.sharpshirter.com/assets/images/sharkpunchashgrey1.jpg

http://www.sharpshirter.com/assets/images/sharkpunchashgrey1.jpg
http://www.sharpshirter.com/assets/images/sharkpunchashgrey1.jpg

!

The spirit of C

trust the programmer
• let them do what needs to be done
• the programmer is in charge not the compiler

keep the language small and simple
• small amount of code → small amount of assembler
• provide only one way to do an operation
• new inventions are not entertained

make it fast, even if its not portable
• target efficient code generation
• int preference, int promotion rules
• sequence points, maximum leeway to compiler

rich expression support
• lots of operators
• expressions combine into larger expressions

•C++ is designed to be a statically typed, general-purpose language
that is as efficient and portable as C

•C++ is designed to directly and comprehensively support multiple
programming styles (procedural programming, data abstraction,
object-oriented programming, and generic programming)

•C++ is designed to give the programmer choice, even if this makes
it possible for the programmer to choose incorrectly

•C++ is designed to be as compatible with C as possible, therefore
providing a smooth transition from C

•C++ avoids features that are platform specific or not general
purpose

•C++ does not incur overhead for features that are not used (the
"zero-overhead principle")

•C++ is designed to function without a sophisticated programming
environment

Design principles for C++

http://en.wikipedia.org/wiki/Statically_typed
http://en.wikipedia.org/wiki/Statically_typed
http://en.wikipedia.org/wiki/Procedural_programming
http://en.wikipedia.org/wiki/Procedural_programming
http://en.wikipedia.org/wiki/Data_abstraction
http://en.wikipedia.org/wiki/Data_abstraction
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Generic_programming
http://en.wikipedia.org/wiki/Generic_programming
http://en.wikipedia.org/wiki/Programmer
http://en.wikipedia.org/wiki/Programmer
http://en.wikipedia.org/wiki/Computational_overhead
http://en.wikipedia.org/wiki/Computational_overhead

