Feedback-driven Product Development

how we do it at Lysaker and how you can design your own system

code coverage

module tests deployment
engme
@ continuous
integration
‘
static code
static code analysis

analysis

module tests
@ scenario testlng software

dynamic code analysis dlstrlbutlon

Cisco’s development and innovation centre in Norway (Lysaker) develops videoconferencing products, telepresence technology and collaboration solutions.
This is embedded product development involving advanced mechanics, customised electronics, movable parts and millions of lines of software mostly written
in C and C++. Over the last two decades we have gradually established a workflow that very much supports lean and agile product development for
hundreds of engineers working closely together. A lot of effort goes into establishing effective feedback loops guiding the whole development process.VWe are
not only talking about rapid feedback from build systems and continuous integration, but also from regression tests, advanced scenario testing and real users.
The focus on establishing feedback loops goes beyond the product development workflow, it is a principle applicable to the whole organization.

This talk will present a concrete insight into the software development workflow that we are using today, before discussing what you need to consider if you
want to set up an equally effective feedback-driven product development workflow in your organization. The talk is relevant for everyone involved product
development where software is a key component.

Olve Maudal, Cisco Systems Norway

a 60 minute keynote at Equinor Developer Conference, Sola, Norway, September 26, 2018

Innovation Center

g
. -
O
Z
(&
g O
E
es
P T N
) =
DN
W
O
C
2]

C

H\%# A

i/ it
‘%@sﬂ

{'}

Telepresence

Telepresence o

Some of the stuff we develop at Lysaker

- | Bxiswak . .

Hi\ina 2 Eommean

Lise the taich nznel or your Cisea Webes [eam3ann
Look “or 1ess

.| oo Wweror

Meeting Sprint Review = O 9 . ! f]

k

Il i ||”||"|l||m!"""""

0924

gl

Bl

at Lysaker we are ~350 engineers

we do...

Electronics / Hardware

= = e PRS-l
LT R e i S e S

, ‘Uﬁ\l; 'u“bi :f-r;:::::::- » AUALE , B - .Uﬂb.b

‘e

indn

o
Y
:
5 i

1110 4

JALTL TN
CyoioneP mr

DO e ™
J AAC A0 A

‘‘‘‘‘

Ly

.........

R
AARAAN

Mechanics

Industrial Design

reddot award 2015

winner

User Experience Design

Chat Meet Whiteboard

Schedule Files

Unboxing and Logistics

/

| V A

| ——————

b s

-

Machine Learning and Artificial Intelligene

Webex Assistant (June, Teams)

Noise suppression* Speaker tracking Best view

‘74

: - o1 Hpind -

Looking into

the future

but, by far, most of us work with

software developement

‘ ‘;&1 wi

. \h\\ o’ ‘?;iﬁﬁ
(C‘,\i\?

At Lysaker we have been developing telepresence products and
collaboration solutions for more than two decades (since ~1991)

“... an organization that develops spectacular products and
outperforms all competitors™

The secret sauce

The most important ingrediences

Effective feedback loops
Slack

Professionalism

Focus on value

Systems thinking
Transparency

Release early, release often

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg

The secret sauce

The most important ingrediences

.

Effective feedback loops)
Slack

Professionalism

Focus on value

Systems thinking
Transparency

Release early, release often

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg

The secret sauce

The most important ingrediences

.

® Effective feedback loops
Slack)
Professionalism

Focus on value

Systems thinking
Transparency

Release early, release often

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg

The secret sauce

The most important ingrediences

® Effective feedback loops

® Slack

Professionalism)
Focus on value

Systems thinking
Transparency

Release early, release often

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg

The secret sauce

The most important ingrediences

® Effective feedback loops

® Slack

® Professionalism

(0 Focus on value)
® Systems thinking

® [ransparency

® Release early, release often

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg

The secret sauce

The most important ingrediences

Effective feedback loops
Slack

Professionalism

Focus on value

® Systems thinking)
® [ransparency

® Release early, release often

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg

The secret sauce

The most important ingrediences

Effective feedback loops
Slack

Professionalism

Focus on value

Systems thinking

Transparency)
® Release early, release often

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg

The secret sauce

The most important ingrediences

Effective feedback loops
Slack

Professionalism

Focus on value

Systems thinking
Transparency

Release early, release often)

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg

The secret sauce

The most important ingrediences

® Effective feedback loops
® Slack

Professionalism

Focus on value

Systems thinking
Transparency

Release early, release often

http://www.seriouseats.com/recipes/images/20101007-pizza-lab-sauce.jpg

Facts about advanced product development

Few high tech projects are like running
down on a paved road where you can see the ...

SINCE 1900

J) 'RUNNER's

ovents

raceplace

goal in the end of the road.

1"

z
7]
Q
-
4

[ESSS
—

@

[

W

-

2

S

x

-

-

'S

'RUNNER
DEN SINCE 1978

1

vents

e

12

raceplace

Most projects are more like...

b0
=

. . .M Q.. --
\fwc‘s. .

2% A8
o m,ﬂ_

-

extreme orienteer

in impossible terrain

~with a group of people

L N SN

- & :.

- - " S,
s

P

in the dark

G)(ge MHutes de Jamon Q0 o |
"’\(Ir AT ¢ Mf-q-' A "hc (t‘\l

“ \,Q' L.t.-\n’ " ".c ‘0” y-na.,,.\‘(‘.

|
/
Cis Aheve ‘L- ", JC\MO.‘\ \’ q\,(')o

oldh evoisiand

with only a sketchy map as guidance

| | 1%, and

CoOner
Svall 4o 0)

"L (r\w;wh;." "'“)Q‘

a TS — m——
T — —
@R
o
»
15
-
> 4

‘ Yoy 1 &‘ ¢ J.wlij“f-c &.:-W} e,
i . - e i

B(A_?'Ldt’l 50\'

Ctl‘ CroA -&D "'h ﬁ-}hor 'S-r\o-
aee Mo 5}\)‘!’”\, \f{-‘.

there S aQ f‘l._,.u(.f

Hher all ((,M.M.,'t/‘fq‘-,u

Ples —FoLL oF e NGIIY
T AMC(CaL BT b

("\(0!\“ 9 o tha j{('lT'

Placei WMMN{:‘W

»(Al e ‘(‘ v tffrog‘l (Ay

bo" Mﬁua‘ﬂ(hl

21aad e bas

X .

Sider A boll e o f Clon

q_,l)\' e iy .",‘
e
r'v‘. oy { € YUMM\,

\""') N v
et Ty K

http://www.youtube.com/watch?v=oetF3UTIwbc

http://www.youtube.com/watch?v=oetF3UTIwbc

http://www.youtube.com/watch?v=oetF3UTIwbc

http://www.youtube.com/watch?v=oetF3UTIwbc

The main codebase

— —
, P e et — ot
——— e ———
- ————, g
——
—

embedded software development

about 200 active software developers
typically more than 100 commits per day
4-5 million lines of code, mostly C and C++

visible traces back to the late 1980’s
~20 products, ~50 builds

||||"ﬁ‘_ﬂ!ﬂﬂn T .- _
Gy i rac RSk TRy
: » - 'm' o <\ o QHH;; .’,—

software development
workflow

Continuous integration
and deployment
system

CE>

Continuous integration
and deployment
system

gulator

o
<g

Continuous integration
and deployment
system

emulator

unit tests>¢
<target

continuous
integration

QA staD

Continuous integration
and deployment
system

emulator

unit tests>¢
code base
N—
target

QA staD

continuous
integration

Continuous integration
and deployment
system

emulator

unit tests>¢
code base
N—
target

QA staD

continuous
integration

Continuous integration
and deployment
system

Qit teSD\
continuous
integration

emulator
unit tests>¢ K
code base

SN—
target
QA staD

Continuous integration
and deployment
system

Qlt tesD\ /@me t@

conUnuous
mtegratlon

emulator

Qit tests>¢

‘ code base

\
target
QA staD

Continuous integration
and deployment
system

Qit tesD\ module t@

continuous

emulator

integration

builds
\

Qit tests>¢

‘ code base

\
target
QA staD

Continuous integration
and deployment
system

continuous
integration

emulator

‘

<target

Qit tesD /Qodule t@ dePoym?
\ engine

K — M

code b;
\
QA staD

>

system tests

Continuous integration
and deployment
system

continuous
integration

emulator

‘ code base

\
target

QA status

Qit tesD module t@ dePoym?
\ engine

builds
e

>

system tests

Continuous integration
and deployment
system

continuous
integration

emulator

‘ code base

\
target

QA status

Qit tesD /Qodule t@ dePoym?
\ engine

builds
=

>

system tests

Continuous integration
and deployment
system

continuous
integration

emulator

‘ code base

SN—
target
system tests
QA status . .
scenario testing software
distribution

Qit tesD /Qodule t@ dePoym?
\ engine

builds
T

(

>

Continuous integration
and deployment code coverage

system
Qit tesD /Qodule t@ dePoym?
\ engine

continuous
integration

emulator

‘ code base

SN—
target
system tests
QA status . .
scenario testing software
distribution

builds
T

(

>

Continuous integration
and deployment code coverage

system
Qit tesD /Qodule t@ dePoym?
\ engine

continuous
integration

emulator

‘ code base

N—
target v
static code system tests
analysis

QA status < . >
scenario testing software
distribution

builds
T

(

>

Continuous integration
and deployment code coverage

system
Qit tesD /Qodule t@ dePoym?
\ engine

continuous
integration

emulator

‘ code base

SN—
target v
static code system tests
static code analysis

analysis 7 7

QA status . .
scenario testing software
distribution

builds
T

(

>

Continuous integration
and deployment
system

emulator

‘

<target

code coveraE
Qit t)\ /ch . t>

deployment
engine

continuous
integration
builds
N—
s \/ \//
code base
N—

v

static code system tests
static code analysis
analysis J

@ule tests

QA status

@rio t@ software
distribution

.....

- -~

Continuous integration .

and deployment e code coverage
system
q
q
! . deployment
! unit tests \ /@'ule t@ zn;ne
emulator " continuous
\ integration
)}
L builds
T e
unit tests - V
‘ code base
SN—

v

static code

static code analysis

analysis J
module tests
QA status . .
scenario testing software
distribution

dynamic code analysis

target
system tests

u T e e - ERar s i O e - e
PR e e Ty s - R e L)
xam e of visual feedbac ages use all/most developers): - ;= = =
L e - L
B v B rva frsetas fer s LS Terwane
L I e b e B U A
T T L e - -
b I - e AL A e ——— - BHIT e I e AR s o R e
Taswe MR S W WA AR S - L ww WTCEINC i e W et
= B e e at Diff of /trunk/main/functional/'me/DatalnputGate.cpp RIS < B peahielabge —a ropevimmany henis ey
S —————— Bhs et e b
Tempar M Fe8 § wassess peds desevmsmers s wees $osolooes) Aokes s e fas L . R
Tavar - - LR = . L N e L Bl B e e L)
Tateanie O Vea W e e te Ly o8 Pl [EETE LR o sraniiasiNialng i e
Buoue e s @ e e e e e e B e ke R .-l oy : P T e o - S n e
E N .
— h Pt = [y ey Tp—" :; : : Pranirase b inlemy - : “h::::-l--u-.u‘
R e e -
| “y—— B I L R) ’wl—“(‘MI R e B e B A - A
Jetts ww e = e - haas L T v RCTIL | P e
M teh o tpeyesm !) WA e B Semearr ey s Seme
km WL W K rees e e e -
D e i e e - P L —— s Boesl mtsmng (54h bue
Tsws e e
Ve . e . -
R

R)~ dwm o ;= a e

- -~

viewvec — audio delay trend bugzilla

*

L

diff from viewvc

888
f

!
‘
i

I
.
b4+

A) e L T T
- O ———

PESQ trend

.-

H.264 delay trend

e
b menn e
R e

... v .*- .-'é'
e - g

- .

e e
'y t § z =
v ——r

oontlnuous integration T R S

e , lipsync trend
= endpoint timing = | EESERE
. — —— = = ===
.] 3 i—t— ! e
S defect trends coverity QA Status

. -
code coverage
-~

deployment
engine

’,
module tests

continuous
integration

static code
analysis

static code

analysis
module tests

dynamic code analysis

)
Y-
o

software

scenario testing

distribution

........

————
-~
-~

module tests deployment

engine
continuous
integration

target

static code
analysis
module tests o
dynamic code analysis distribution

We want something like that! VWhere do we start?

We want something like that! VWhere do we start?

® Create a robust build system

We want something like that! VWhere do we start?

® Create a robust build system
® |ntegrate continuously

We want something like that! VWhere do we start?

® Create a robust build system
® |ntegrate continuously
® Grow professionalism

Create a robust build system

Create a robust build system

® Embedded! Create your own build system!

Create a robust build system

® Embedded! Create your own build system!
® Check in build system with your code

Create a robust build system

® Embedded! Create your own build system!
® Check in build system with your code
® Aim for a clean build, eg get rid of warnings (-VVerror)

Create a robust build system

Embedded? Create your own build system!

Check in build system with your code

Aim for a clean build, eg get rid of warnings (-Verror)
Superfast, incremental and partial builds

Create a robust build system

Embedded? Create your own build system!

Check in build system with your code

Aim for a clean build, eg get rid of warnings (-Verror)
Superfast, incremental and partial builds

Heterogeneous development environment (avoid the V$6 effect)

Create a robust build system

Embedded? Create your own build system!

Check in build system with your code

Aim for a clean build, eg get rid of warnings (-Verror)
Superfast, incremental and partial builds

Heterogeneous development environment (avoid the V$6 effect)
Invest in writing good emulators

Create a robust build system

Embedded? Create your own build system!

Check in build system with your code

Aim for a clean build, eg get rid of warnings (-Verror)

Superfast, incremental and partial builds

Heterogeneous development environment (avoid the V$6 effect)
Invest in writing good emulators

Make sure unit tests can run on dev machine, emulator and target

Create a robust build system

Embedded? Create your own build system!

Check in build system with your code

Aim for a clean build, eg get rid of warnings (-Verror)

Superfast, incremental and partial builds

Heterogeneous development environment (avoid the V$6 effect)
Invest in writing good emulators

Make sure unit tests can run on dev machine, emulator and target
Integrate your test systems into your build system (--test-all)

Integrate continuously

Integrate continuously

® Beware of sandboxes (comfortable developers are leathal!)

Integrate continuously

® Beware of sandboxes (comfortable developers are leathal!)
® Continuous pain is the key to success

Integrate continuously

® Beware of sandboxes (comfortable developers are leathal!)
® Continuous pain is the key to success
® Feature branches are evil! Try feature toggles instead.

Integrate continuously

® Beware of sandboxes (comfortable developers are leathal!)
® Continuous pain is the key to success

® Feature branches are evil! Try feature toggles instead.

® Test everything, for all commits

Integrate continuously

® Beware of sandboxes (comfortable developers are leathal!)
® Continuous pain is the key to success

® Feature branches are evil! Try feature toggles instead.

® Test everything, for all commits

® Focus on superfast feedback

Integrate continuously

Beware of sandboxes (comfortable developers are leathal!)
Continuous pain is the key to success

Feature branches are evil! Try feature toggles instead.

Test everything, for all commits

Focus on superfast feedback

Invest in equipment for fast and complete system testing

Integrate continuously

Beware of sandboxes (comfortable developers are leathal!)
Continuous pain is the key to success

Feature branches are evil! Try feature toggles instead.

Test everything, for all commits

Focus on superfast feedback

Invest in equipment for fast and complete system testing
Prune unused metrics and feedback mechanisms

Integrate continuously

Beware of sandboxes (comfortable developers are leathal!)
Continuous pain is the key to success

Feature branches are evil! Try feature toggles instead.

Test everything, for all commits

Focus on superfast feedback

Invest in equipment for fast and complete system testing
Prune unused metrics and feedback mechanisms

Slim down your QA department

Grow professionalism

Grow professionalism

® make sure you have enough slack in the system

Grow professionalism

® make sure you have enough slack in the system
® avoid staged or gated commits, some broken builds are acceptable

Grow professionalism

® make sure you have enough slack in the system
® avoid staged or gated commits, some broken builds are acceptable
® focus on the flow of changes

Grow professionalism

make sure you have enough slack in the system
avoid staged or gated commits, some broken builds are acceptable

focus on the flow of changes
make everything visible and advocate collective ownership

Grow professionalism

make sure you have enough slack in the system

avoid staged or gated commits, some broken builds are acceptable
focus on the flow of changes

make everything visible and advocate collective ownership
encourage code reviews, but avoid mandatory formal code reviews

Grow professionalism

make sure you have enough slack in the system

avoid staged or gated commits, some broken builds are acceptable
focus on the flow of changes

make everything visible and advocate collective ownership
encourage code reviews, but avoid mandatory formal code reviews
beware of the observer effect

Grow professionalism

make sure you have enough slack in the system

avoid staged or gated commits, some broken builds are acceptable
focus on the flow of changes

make everything visible and advocate collective ownership
encourage code reviews, but avoid mandatory formal code reviews
beware of the observer effect

optimize for your top 80% developers

e code coverage .
'O ~5~
L4 5
4 >
q
; dule tests deployment
N unit tests modd P)'
: \ engine
emulator " continuous
\ integration
)}
“s bUlIdS
T e
unit tests - V
‘ code base
N—

v

target
static code system tests
static code analysis
analysis J 7

module tests
QA status . .
scenario testing software
distribution

dynamic code analysis

The more you tighten your grip, Tarkin, the more
star systems will slip through your fingers.
(Princess Leia)

The more you tighten your grip, Tarkin, the more
star systems will slip through your fingers.
(Princess Leia)

About Agile Principles

There used to be a time, where we believed that anyone could do software development

| [W VI
Python's Flying Circus (page 40)

after all, it was just about programming a computer...

|) get some smart people to analyze the problem

wmﬂaﬁuauu..g

2o =3

NOV cEC pec JaN JAN
msk S0 07 14 21 28 04 M W 25

Approve Pan
Drawirgs
Sty Market ———
Write Specs
Mkt Steat - —
Prowtype -5
Meserinis
Fecility

Irit. Prod
Evalune
Test Market
Merketirg
Crarges
Production

-_—
-

LEGEND — Durion of a Nomal Job
—

Sack Tire for a Normral Job

— Ourstion of a Critical Job

2) create a pl

an

g pm———
=]

b

Rd

.:-'a;'

NOV cec DEC JAaN JAaN
Job msk S0 07 4 21 28 1" 25 O

1 Approve Fan

2 Deawirgs

3 Swdy Market Q -—

4 Write Specs

5 Mkt St — —
6 Prooiype |-

7 Meerinis

8 Fecility

o Init. Prod

10 Evelune .

N Test Market —
12 Marketing

/- W
s U \ Y 2 ¢ s X
- A i ~ . N PR D 3
= B i3 | - - { 9 V& DO A \
13 Crarges - S s - Y b | | = \
¥y a 4 < . ¥ 1 \g) \
. ot [ad “n . A 4 < 2 g
P o 3 S X = W e
= %= ¢l B L \ } N g
ANE .
\ 0t I
- - — S

14 Production

2) create a plan
the plan

and when the projects failed

the respons was always:

do more up-front analysis

create a more detailed plan

:-Somqanubwm_.g

- e s
O)

NOV
3007

msk

cec
14 21 26 04 11 B

Approve Pan
Deawirgs
Sy Market
Wrte Specs
Mkt Sttt
Prooiype
Mecerinis
Facility

Imit. Prod.
Evelune

st Market
Marketirg
Crarges
Progduction

LEGEND

Our=gion a Crtical Job
Srenk due o Holday
Actual Scredule

® MNiesore

| e— of

m Sack Tire for a Nomad Jobs
e— of

=

find more resources

and make sure that everyone followed the plan

but the projects still failed

and the respons was, as usual:

65:60mqmuamm..§

A

S0
Approve Fan
Deavw irgs
Sty Market
Wrte Specs
Mkt St
Frooiype
Meterinis
Facility

Irit. Prod.
Evaune

st Market
Marketirg
Charnges
Production

FEB

o7 14 2

o

15

LEGEND

Nomad Job

or & Normad Job
a Cntical Job

0 Holday

reou e

£

1T
i
08

;
;

but of course...

Dark ages of software development (early 80’s to late 90’s)

NOV cec DEC JAaN JAaN
Job msk S0 07 4 21 28 1" 25 O

1 Approve Fan

2 Deawirgs

3 Swdy Market Q -—

4 Write Specs

5 Mkt St — —
6 Prooiype |-

7 Meerinis

8 Fecility

o Init. Prod

10 Evelune .

N Test Market —
12 Marketing

/- W
s U \ Y 2 ¢ s X
- A i ~ . N PR D 3
= B i3 | - - { 9 V& DO A \
13 Crarges - S s - Y b | | = \
¥y a 4 < . ¥ 1 \g) \
. ot [ad “n . A 4 < 2 g
P o 3 S X = W e
= %= ¢l B L \ } N g
ANE .
\ 0t I
- - — S

14 Production

2) create a plan
the plan

We had only discovered a fancy way of playing the “scabby queen”
game, also known as the “Old Maid” or “Svarte Per”, always try to
“save your ass’’ by delegating responsibility to someone else.

-

: '/‘V.J b
ld maid

PLAYING CARDS

There must be a better way...

The Agile Manifesto (2001)

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Kent Beck James Grenning Robert C. Martin
Mike Beedle Jim Highsmith Steve Mellor
Arie van Bennekum Andrew Hunt Ken Schwaber
Alistair Cockburn Ron Jeffries Jeff Sutherland
Ward Cunningham Jon Kern Dave Thomas
Martin Fowler Brian Marick

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

The agile manifesto started a huge
awakening process in the software industry...

(picture from the 1990 film Awakenings)

processes and tools
comprehensive documentation
contract negotiation
following a plan

processes and tools
comprehensive documentation
contract negotiation
following a plan

Individuals and interactions
Working solutions
Customer collaboration
Responding to change

Individuals and interactions
Working solutions
Customer collaboration
Responding to change

Seven Enemies of Agile

Plans
Commitments
Pressure
Objectives
Documentation
Inspection
Procedures

Plan

Everyone has a plan 'till they get punched in the mouth.
Mike Tyson

http://www.brainyquote.com/quotes/quotes/m/miketyson382439.html

WE'VE HAD A BAD YEAR
BUT MANAGEMENT IS

COMMITTED TO STAY-
ING THE COURSE.

www.dilbert.com scottadame®aocl.com

Commitments

QUESTION: DID YOU
JUST SAY OUR LEADERS
ARE RECEIVING HUGE
COMPENSATION PACK-
AGES TO KEEP DOING
WHAT DOESN'T WORK?

¥-31-04 02004 Scott Adams, Inc./Dist. by UFS, Inc.

NO. THE
WAY 1
SAID IT,
THEY'RE
VISION-
ARIES.

SO...THEY
KEEP DOING
WHAT DOESN'T
WORK...AND
THEY SEE

VISIONS?

Pressure

Documentation

Inspection

Procedures

SYSTEM
REQUIREMENTS
SOFTWARE
REQUIREMENTS \
PROGRAM
DESIGN \
OPERATIONS

Seven Enemies of Agile

Plans
Commitments
Pressure
Objectives
Documentation
Inspection
Procedures

Seven Friends of Agile

Seven Friends of Agile

Planning

Seven Friends of Agile

Planning
Collaboration

Seven Friends of Agile

Planning
Collaboration

Slack

Seven Friends of Agile

Planning
Collaboration

Slack
Direction

Seven Friends of Agile

Planning
Collaboration
Slack

Direction
Communication

Seven Friends of Agile

Planning
Collaboration
Slack

Direction
Communication
Reflection

Seven Friends of Agile

Planning
Collaboration
Slack

Direction
Communication
Reflection
Principles

Planning

Collaboration
Slack

Direction
Communication
Reflection
Principles

Plans

Commitments
Pressure
Objectives
Documentation
Inspection

Procedures

Planning
Collaboration
Slack

Direction
Communication
Reflection
Principles

oww i L

Plans

Commitments
Pressure
Obijectives
Documentation
Inspection
Procedures

