Feedback-driven Product Development

how we do it at Lysaker and how you can design your own system
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Cisco’s development and innovation centre in Norway (Lysaker) develops videoconferencing products, telepresence technology and collaboration solutions.
This is embedded product development involving advanced mechanics, customised electronics, movable parts and millions of lines of software mostly written
in C and C++. Over the last two decades we have gradually established a workflow that very much supports lean and agile product development for
hundreds of engineers working closely together. A lot of effort goes into establishing effective feedback loops guiding the whole development process.VWe are
not only talking about rapid feedback from build systems and continuous integration, but also from regression tests, advanced scenario testing and real users.
The focus on establishing feedback loops goes beyond the product development workflow, it is a principle applicable to the whole organization.

This talk will present a concrete insight into the software development workflow that we are using today, before discussing what you need to consider if you
want to set up an equally effective feedback-driven product development workflow in your organization. The talk is relevant for everyone involved product
development where software is a key component.

Olve Maudal, Cisco Systems Norway

a 60 minute keynote at Equinor Developer Conference, Sola, Norway, September 26, 2018
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Some of the stuff we develop at Lysaker
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at Lysaker we are ~350 engineers



we do...



Electronics / Hardware
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Mechanics




Industrial Design

reddot award 2015

winner




User Experience Design

Chat Meet Whiteboard

Schedule Files



Unboxing and Logistics
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Machine Learning and Artificial Intelligene

Webex Assistant (June, Teams)

Noise suppression* Speaker tracking Best view
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but, by far, most of us work with



software developement
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At Lysaker we have been developing telepresence products and
collaboration solutions for more than two decades (since ~1991)

“... an organization that develops spectacular products and
outperforms all competitors™



The secret sauce

The most important ingrediences

Effective feedback loops
Slack

Professionalism

Focus on value

Systems thinking
Transparency

Release early, release often
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Facts about advanced product development



Few high tech projects are like running
down on a paved road where you can see the ...
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Most projects are more like...
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The main codebase
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embedded software development

about 200 active software developers
typically more than 100 commits per day
4-5 million lines of code, mostly C and C++

visible traces back to the late 1980’s
~20 products, ~50 builds
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software development
workflow
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Create a robust build system

Embedded? Create your own build system!

Check in build system with your code

Aim for a clean build, eg get rid of warnings (-Verror)

Superfast, incremental and partial builds

Heterogeneous development environment (avoid the V$6 effect)
Invest in writing good emulators

Make sure unit tests can run on dev machine, emulator and target
Integrate your test systems into your build system (--test-all)
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Integrate continuously

Beware of sandboxes (comfortable developers are leathal!)
Continuous pain is the key to success

Feature branches are evil! Try feature toggles instead.

Test everything, for all commits

Focus on superfast feedback

Invest in equipment for fast and complete system testing
Prune unused metrics and feedback mechanisms

Slim down your QA department
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Grow professionalism

make sure you have enough slack in the system

avoid staged or gated commits, some broken builds are acceptable
focus on the flow of changes

make everything visible and advocate collective ownership
encourage code reviews, but avoid mandatory formal code reviews
beware of the observer effect

optimize for your top 80% developers
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About Agile Principles



There used to be a time, where we believed that anyone could do software development

| [ W VI
Python's Flying Circus (page 40)

after all, it was just about programming a computer...






|) get some smart people to analyze the problem
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and when the projects failed

the respons was always:



do more up-front analysis




create a more detailed plan
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find more resources




and make sure that everyone followed the plan




but the projects still failed

and the respons was, as usual:
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but of course...






Dark ages of software development (early 80’s to late 90’s)
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We had only discovered a fancy way of playing the “scabby queen”
game, also known as the “Old Maid” or “Svarte Per”, always try to
“save your ass’’ by delegating responsibility to someone else.

-
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PLAYING CARDS




There must be a better way...




The Agile Manifesto (2001)

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Kent Beck James Grenning Robert C. Martin
Mike Beedle Jim Highsmith Steve Mellor
Arie van Bennekum  Andrew Hunt Ken Schwaber
Alistair Cockburn Ron Jeffries Jeff Sutherland
Ward Cunningham Jon Kern Dave Thomas
Martin Fowler Brian Marick
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The agile manifesto started a huge
awakening process in the software industry...

(picture from the 1990 film Awakenings)
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Plan

Everyone has a plan 'till they get punched in the mouth.
Mike Tyson


http://www.brainyquote.com/quotes/quotes/m/miketyson382439.html

WE'VE HAD A BAD YEAR
BUT MANAGEMENT IS

COMMITTED TO STAY-
ING THE COURSE.

www.dilbert.com scottadame®aocl.com

Commitments

QUESTION: DID YOU
JUST SAY OUR LEADERS
ARE RECEIVING HUGE
COMPENSATION PACK-
AGES TO KEEP DOING
WHAT DOESN'T WORK?

¥-31-04 02004 Scott Adams, Inc./Dist. by UFS, Inc.

NO. THE
WAY 1
SAID IT,
THEY'RE
VISION-
ARIES.

SO...THEY
KEEP DOING
WHAT DOESN'T
WORK...AND
THEY SEE

VISIONS?




Pressure







Documentation




Inspection




Procedures

SYSTEM
REQUIREMENTS
SOFTWARE
REQUIREMENTS \
PROGRAM
DESIGN \
OPERATIONS
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