
FizzBuzz EDSAC
Olve Maudal

A 5 minute lightning talk at ACCU 2015, April 24, Bristol, UK

https://youtu.be/x-vS0WcJyNM

EDSAC Initial Orders and Squares Program

Martin Richards Computer Laboratory

EDSAC
EDSAC (Electronic Delay Storage Automatic Computer), pictured below, was the world’s first stored-program computer to
operate a regular computing service. Maurice Wilkes lead the team responsible for its design and construction. It ran its
first program successfully on May 6, 1949.

EDSAC’s main memory used mercury delay lines to hold 512 words of 35 bits. We will use the notation: w[0],
w[2],...,w[1022] to refer to these words of memory. Each word could be split into two 17-bit halves, separated by a
padding bit. We will use the notation m[a], a = 0, 1, .., 1023 to represent these 17-bit memory locations. The word
at address 2n, namely w[2n], consisted of the concatenation of m[2n + 1], a padding bit, and m[2n]. Note that
m[1] is the senior half of w[0].

17 1 17
w[2n]: *

m[2n + 1] m[2n]

The machine had two central registers visible to the user: the 71-bit accumulator and the 35-bit multiplier register. We will
use the notation ABC to represent the whole accumulator, and A and AB to represent its senior 17 and 35 bits, respectively.
We will use RS to represent the whole multiplier register and R to represent its senior 17 bits. The leftmost bit of each
register was the sign bit and the remaining bits form a binary fraction.

EDSAC’s machine instructions (also called orders) occupied 17 bits. The leftmost 5 bits was the operation code, the next
bit was unused, the following 10 bits was the address field and the last bit specified (where appropriate) whether the order
used 17 or 35-bit operands.

5 1 10 1
Order format: * * * * * * * * * * * * * * * * *

Op Unused Address S/L

Orders were punched on paper tape and consisted of: a character that directly gave the 5-bit operation code, followed by
zero or more decimal digits giving the address, and terminated by S or L specifying the operand length bit. For example,

R16S assembled to 00100 0 0000010000 0 and T11L to 00101 0 0000001011 1 . Note that the characters R and

T had codes 4 and 5, respectively.

The Character Set
EDSAC used 5-bit integers (0 to 31) to represent characters using two shifts: letters and figures. In letter shift the codes 0
to 31 respectively represented: P, Q, W, E, R, T, Y, U, I, O, J, figs, S, Z, K, lets, null, F, cr, D, sp, H, N, M, lf, L, X, G, A, B, C and
V. In figure shift the encoding was as follows: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ?, figs, ", +, (, lets, null, $, cr, ;, sp, £, ,, ., lf,
), /, #, −, ?, : and =. In these tables, figs, cr, sp and lf denote figure shift, carriage return, space and line feed, and on the
paper tape perforator their keys were labelled π, θ, φ and ∆, respectively. In this document, these codes correspond to the
ASCII characters #, @, ! and &. The paper tape reader complemented the high order bit of each 5-bit character, so the rows

, and are read as codes 0(P), 7(U) and 27(G), respectively. The machine could read paper
tape at a rate of 50 characters per second and output to a Creed teleprinter at nearly 7 characters per second.

The 1949 Instruction set
EDSAC’s instructions in 1949 was very simple and were executed at a rate of about 600 per second. They were as follows:

AnS: A += m[n] AnL: AB += w[n]
SnS: A −= m[n] SnL: AB −= w[n]
HnS: R += m[n] HnL: RS += w[n]
VnS: AB += m[n] * R VnL: ABC += w[n] * RS
NnS: AB −= m[n] * R NnL: ABC −= w[n] * RS
TnS: m[n] = A; ABC = 0 TnL: w[n] = AB; ABC = 0
UnS: m[n] = A UnL: w[n] = AB
CnS: AB += m[n] & R CnL: ABC += w[n] & RS
RnS, RnL: Shift ABC right arithmetically by the number of places corresponding to the

position of the least significant one in the shift instruction. For example,
R0L, R1S, R16S and R0S shift by 1, 2, 6 and 15 places, respectively.

LnS, LnL: Shift ABC left arithmetically by the number of places corresponding to the
position of the least significant one in the shift instruction. For example,
L0L, L1S, L16S, L64S and L0S shift by 1, 2, 6, 8 and 13 places, respec-
tively.

EnS: if A >= 0 goto n
GnS: if A < 0 goto n
InS: Place the next paper tape character in the least significant 5 bits of m[n].
OnS: Output the character in the most significant 5 bits of m[n].
FnS: Verify the last character output.
XnS: No operation.
YnS: Add a one to bit position 35 of ABC, counting the sign bit as bit zero. This

effectively rounds ABC up to 34 fractional bits.
ZnS: Stop the machine and ring a bell.

The numerical values in the accumulator and multiplier registers are normally thought of as signed binary fractions, but
integer operations could also be done easily. For example, the order V1S can be interpreted as adding the product of the
17-bit signed integer in m[1] and to the 17-bit integer in RS and adding the result into bits 0 to 32 of the ABC. With a
suitable shift, the integer result can be placed in the senior 17 bits of A ready for storing in memory.

Initial Orders
The four glass panels on your right contain 20 segments of 5 track paper tape. Reading from right to left and from top to
bottom, the first five segments correspond to the initial orders, and the remaining 15 to a program to compute squares. The
glass panels contain errors so a corrected version of the panels are given below.

The initial orders were written by David Wheeler in May 1949 to load and enter a paper tape represention of a program.
When EDSAC was started, these initial orders were placed in memory locations 0 to 30 by a mechanism involving uniselec-
tors before execution stared from location 0.

The glass panels give a paper tape representation of these orders even though no such paper tape ever existed. The following
is an annotated listing of this program.

Order bit pattern Loc Order Meaning Comment

00101 0 0000000000 0 0: T0S m[0]=A; ABC=0
10101 0 0000000010 0 1: H2S R=m[2] Put 10<<11 in R
00101 0 0000000000 0 2: T0S m[0]=A; ABC=0
00011 0 0000000110 0 3: E6S goto 6 Jump to main loop

00000 0 0000000001 0 4: P1S data 2 The constant 2
00000 0 0000000101 0 5: P5S data 10 The constant 10

00101 0 0000000000 0 6: T0S m[0]=A; ABC=0 Start of the main loop
01000 0 0000000000 0 7: I0S m[0]=rdch() Get operation code
11100 0 0000000000 0 8: A0S A+=m[0] Put it in A
00100 0 0000010000 0 9: R16S ABC>>=6 Shift and store it
00101 0 0000000000 1 10: T0L w[0]=AB; ABC=0 so that it becomes the

senior 5 bits of m[0]
m[1] is now zero

01000 0 0000000010 0 11: I2S m[2]=rdch() Put next ch in m[2]
11100 0 0000000010 0 12: A2S A+=m[2] Put ch in A
01100 0 0000000101 0 13: S5S A−=m[5] A=ch−10
00011 0 0000010101 0 14: E21S if A>=0 goto 21 Jump to 21, if ch>=10

00101 0 0000000011 0 15: T3S m[3]=A; ABC=0 Clear A, m[3] is junk
11111 0 0000000001 0 16: V1S AB+=m[1]*R A = m[1]*(10<<11)
11001 0 0000001000 0 17: L8S A<<=5 Shift 5 more places
11100 0 0000000010 0 18: A2S A+=m[2] Add the new digit
00101 0 0000000001 0 19: T1S m[1]=A; ABC=0 Store back in m[1]
00011 0 0000001011 0 20: E11S goto 11 Repeat from 11

A=2, if ch=‘S’(=12)
A=15, if ch=‘L’(=25)

00100 0 0000000100 0 21: R4S ABC>>=4 lenbit=0, if ch=‘S’
lenbit=1, if ch=‘L’

11100 0 0000000001 0 22: A1S A+=m[1] Add in the address
11001 0 0000000000 1 23: L0L ABC<<=1 Shift to correct position
11100 0 0000000000 0 24: A0S A+=m[0] Add in the operation field
00101 0 0000011111 0 25: T31S m[31]= A; ABC=0 Store the order

in next location
11100 0 0000011001 0 26: A25S A+=m[25] Increment the address

field of m[25]
11100 0 0000000100 0 27: A4S A+=m[4] m[4] holds 2
00111 0 0000011001 0 28: U25S m[25]=A Update m[25]

01100 0 0000011111 0 29: S31S A−=m[31] Jump to 6, if there are
11011 0 0000000110 0 30: G6S if A<0 goto 6 more orders to load

The instruction at location 0 does nothing useful, but the instruction at 1 loads the multiplier register R with a 17-bit
pattern 00101000000000000 which is also 10 shifted left 11 places. The instruction instruction at 2 (T0S) assembles into
exactly this bit pattern, so is used both as data and as an instruction to clear m[0]. The instruction at 3 skips to location 6
over the instructions at 4 and 5 that assemble as the 17-bit constants 2 and 10, respectively.

The main assembly loop starts at 6, leaving locations m[0] to m[5] available as variables and constants in the program.
They are used as follows:

m[0] uses include holding the first character of an order,
m[1] used to hold the address field of the current order,
m[2] initially 001010...0 as discussed above but also

used for characters other than the first of an order,
m[3] used as a junk register when the instruction at 15 clears ABC,
m[4] the constant 2 used at 27 to add one to an address field,
m[5] the constant 10 used to check for the end of address digits.

The order at 25 is of the form TnS, initially T31S. It is used to store an order at location n. This instruction is modified
by the code in locations 26 to 28 which adds one to its address field, so the next time it is executed it will update the
next location. Location 31 is the first order to be loaded and must be of the form TnS where n−1 is the address of last
instruction of the program. It is used by the code in locations 29 and 30 which compares it with the current version of TnS
in 25. If loading is not yet complete execution jumps to 11, otherwise it fall through to 31. Note that the instruction at 31
will do no damage, since it just writes a value to the first location following the loaded program. The first real instruction
of the program is in m[32].

M.V Wilkes and W.A. Renwick

The Squares Program
This program, written by Maurice Wilkes in June 1949, outputs the following table of squares and differences of the
numbers 1 to 100.

1 1 1
2 4 3
3 9 5

....
98 9604 195
99 9801 197

100 10000 199

The following is an annotated listing of the program.

Order bit pattern Loc Order Meaning Comment

00101 0 0001111011 0 31: T123S m[123]=A; ABC=0 The required first word
00011 0 0001010100 0 32: E84S goto 84 Jump to start

00000 0 0000000000 0 33: PS data 0 For the next decimal digit
00000 0 0000000000 0 34: PS data 0 For the current power of ten

00100 1 1100010000 0 35: P10000S data 10000<<1 The table of 16-bit
00000 0 1111101000 0 36: P1000S data 1000<<1 powers of ten
00000 0 0001100100 0 37: P100S data 100<<1
00000 0 0000001010 0 38: P10S data 10<<1
00000 0 0000000001 0 39: P1S data 1<<1

00001 0 0000000000 0 40: QS data 1<<12 00001 in MS 5 bits,
used to form digits

01011 0 0000000000 0 41: #S data 11<<12 Figure shift character
11100 0 0000101000 0 42: A40S End limit for values

placed in m[52]
10100 0 0000000000 0 43: !S data 20<<12 Space character
11000 0 0000000000 0 44: &S data 24<<12 Line feed character
10010 0 0000000000 0 45: @S data 18<<12 Carriage return character
01001 0 0000101011 0 46: O43S wr(m[43]) Write a space
01001 0 0000100001 0 47: O33S wr(m[33]) Write a digit
00000 0 0000000000 0 48: PS data 0 The number to print

11100 0 0000101110 0 49: A46S A+=m[46] Print subroutine entry point
00101 0 0001000001 0 50: T65S m[65]=A; ABC=0 Put O43S in m[65]

00101 0 0010000001 0 51: T129S m[129]=A; ABC=0 Clear A
11100 0 0000100011 0 52: A35S A+=m[35] A is next power of ten.

m[52] cycles through
A35S, A36S, A37S,
A38S and A39S

00101 0 0000100010 0 53: T34S m[34]=A; ABC=0 Store it in m[34]
00011 0 0000111101 0 54: E61S goto 61
00101 0 0000110000 0 55: T48S m[48]=A; ABC=0 Store value to be printed

11100 0 0000101111 0 56: A47S A+=m[47] Store instruction O33S
00101 0 0001000001 0 57: T65S m[65]=A; ABC=0 in m[65]
11100 0 0000100001 0 58: A33S A+=m[33] Increment the decimal digit
11100 0 0000101000 0 59: A40S A+=m[40] held in the MS 5 bits
00101 0 0000100001 0 60: T33S m[33]=A; ABC=0 of m[33]

11100 0 0000110000 0 61: A48S A+=m[48]; ABC=0 Get value to print
11100 0 0000100010 0 62: S34S A−=m[34] Subtract a power of 10
00011 0 0000110111 0 63: E55S if A>=0 goto 55 Repeat, if positive

11100 0 0000100010 0 64: A34S A+=m[34] Add back the power of 10
00000 0 0000000000 0 65: PS data 0 This is replaced by either

O43S to write a space, or
O33S to write a digit

00101 0 0000110000 0 66: T48S m[48]=A; ABC=0 Set the value to print
00101 0 0000100001 0 67: T33S m[33]=A; ABC=0 Set digit to 0
11100 0 0000110100 0 68: A52S A+=m[52] Increment the address field
11100 0 0000000100 0 69: A4S A+=m[4] of the instruction
00111 0 0000110100 0 70: U52S m[52]=A in m[52]
01100 0 0000101010 0 71: S42S A−=m[42] Compare with A40S and
11011 0 0000110011 0 72: G51S if A<0 goto 51 Repeat, if more digits

11100 0 0001110101 0 73: A117S A+=m[117] Put A35S back
00101 0 0000110100 0 74: T52S m[52]=A; ABC=0 in m[52]
00000 0 0000000000 0 75: PS data 0 To hold the return jump

instruction which is
E95S, E110S or E118S

00000 0 0000000000 0 76: PS data 0 Holds x
00000 0 0000000000 0 77: PS data 0 Holds x2

00000 0 0000000000 0 78: PS data 0 Holds previous x2

00000 0 0000000000 0 79: PS data 0 Holds ∆x2

00011 0 0001101110 0 80: E110S goto 110 Order to place in m[52]
00011 0 0001110110 0 81: E118S goto 118 Order to place in m[52]
00000 0 0001100100 0 82: P100S data 100<<1 End limit for x
00011 0 0001011111 0 83: E95S goto 95 Order to place in m[52]

01001 0 0000101001 0 84: O41S wr(m[41]) Write figure shift

00101 0 0010000001 0 85: T129S m[129]=A; ABC=0 Start of main loop
01001 0 0000101100 0 86: O44S wr(m[44]) Write line feed
01001 0 0000101101 0 87: O45S wr(m[45]) Write carriage return
11100 0 0001001100 0 88: A76S A+=m[76]; ABC=0 Get x
11100 0 0000000100 0 89: A4S A+=m[4] Increment it
00111 0 0001001100 0 90: U76S m[76]=A and store it back in x
00101 0 0000110000 0 91: T48S m[48]=A; ABC=0 Put it also in m[48]

for printing
11100 0 0001010011 0 92: A83S A+=m[83] Put return jump E95S
00101 0 0001001011 0 93: T75S m[75]=A; ABC=0 into m[75]
00011 0 0000110001 0 94: E49S goto 49 Enter the print subroutine
01001 0 0000101011 0 95: O43S wr(m[43]) Write a space
01001 0 0000101011 0 96: O43S wr(m[43]) Write a space
10101 0 0001001100 0 97: H76S R=m[76] Multiply x by
11111 0 0001001100 0 98: V76S ABC+=m[76]*RS itself and
11001 0 0001000000 0 99: L64S ABC<<8 re-position
11001 0 0000100000 0 100: L32S ABC<<7 the result
00111 0 0001001101 0 101: U77S m[77]=A Store in location for x2
01100 0 0001001110 0 102: S78S A−=m[78] Subtract the previous value
00101 0 0001001111 0 103: T79S m[79]=A; ABC=0 and store the new ∆x2
11100 0 0001001101 0 104: A77S A+=m[77] Update variable holding
00111 0 0001001110 0 105: U78S m[78]=A the previous x2

00101 0 0000110000 0 106: T48S m[48]=A; ABC=0 Put x2
in m[48] for printing

11100 0 0001010000 0 107: A80S A+=m[80] Put return jump E110S
00101 0 0001001011 0 108: T75S m[75]=A; ABC=0 into m[75]
00011 0 0000110001 0 109: E49S goto 49 Enter the print subroutine

01001 0 0000101011 0 110: O43S wr(m[43]) Write a space
01001 0 0000101011 0 111: O43S mr(m[43]) Write a space
11100 0 0001001111 0 112: A79S A+=m[79] Get ∆x2
00101 0 0000110000 0 113: T48S m[48]=A; ABC=0 Put it in m[48] for printing
11100 0 0001010001 0 114: A81S A+=m[81] Put return jump E118S
00101 0 0001001011 0 115: T75S m[75]=A; ABC=0 into m[75]
00011 0 0000110001 0 116: E49S goto 49 Enter the print subroutine

11100 0 0000100011 0 117: A35S A+=m[35] Order to place in m[52]

11100 0 0001001100 0 118: A76S A+=m[76] Get x
01100 0 0001010010 0 119: S82S A−=m[82] Subtract the end limit (=100)
11011 0 0001010101 0 120: G85S if A<0 goto 85 Repeat, if more to do
01001 0 0000101001 0 121: O41S wr(m[41]) Write figure shift
01101 0 0000000000 0 122: ZS Stop Stop the machine

The Green Door
The green door on your left was the Corn Exchange Street entrance to the Mathematical Laboratory where EDSAC was
built. By convention, the brass plaque on this door holds the engraved names of those retired members of the Laboratory
who used the door in its original location.

Links

http://www.dcs.warwick.ac.uk/~edsac/
This links to Martin Campbell-Kelly’s excellent EDSAC simulator and related documents.

http://www.cl.cam.ac.uk/U0CCL/misc/EDSAC99
This links to pages relating to the celebration, held in Cambridge in April 1999, of the 50th anniversary of the
EDSAC 1 Computer.

http://www.cl.cam.ac.uk/~mr/Edsac.html
This links to a shell based EDSAC simulator that runs on Pentium based Linux systems. It was designed to
be educational having a built-in interactive debugger allowing single step execution, the setting of breakpoints
and convenient inspection and setting of memory and register values. It can be used to explore the execution of
the programs described in this poster. This simulator also appears as a demonstration program in the Cintcode
BCPL system (http://www.cl.cam.ac.uk/~mr/BCPL.html).

http://www.cl.cam.ac.uk/~mr/edsacposter.pdf
This is a PDF version of this poster on two A4 pages.

A2 S 1 3 T S 0 A 0 L S 1 A S 4 R S 1 1 E SL ST 2 A S 8 L S 1 S 3 T S 1 2 E S 5 S S 2 AV1 S LI 0 T S 6 1 R S A S 0 I S 0 S 5 P S 1 P02 ST E6 S 0 S 2 H S T0T

T6 S 6 4 A S P S 3 O S 3 4 O S @ S & S ! S3 A4 S # S Q S 1 P 0 1 P S 0 0 1 P S 0 0 0 1S0 P 00 0 0 1 P S P S S 4 8 E S 3 2 1 TPS S 6 S 1 3 S S 5 2 U S 4 A S 5G

52 T S 7 1 1 A S 5 G S 2 4 S S 2 5 U S 4 A1 52 A S 3 3 T S 8 T S P S 4 3 A S 5 5 E S 44S 3 8S 4 A S 3 3 T S 4 A S 3 3 A S 5 6 T 7 40S AS 8S 4 T S 1 6 E S 3 T S 5 3 A S 9 2 1 T S 54

L3 S 4 6 L S 6 7 S 6 7 H S 3 4 O S 3 4 O SV E4 S 5 7 T S 3 8 S 8 4 T S 6 7 U S 4 A S 6A9 7 5S 4 O S 4 4 O S 2 1 T S 1 4 O S 5 9 E S 09A 0 P1 S 8 1 1 E S 0 1 E S P S P S P S P S P S1

S S 1 4 O S 5 8 G S 2 8 S SZ A7 S 5 3 A S 9 4 S 5 7 T S 1 8 A S 8 4 T SE6 9 SA 3 4 O S 3 4 O 9 4 E S 5 7 T S 0 8 A S 8S7 4 ST 8 7 U S 7 7 A 9 7 T S 8 7 S S 7 7 U S 2S

The corrected tape segments etched on the Tea Room glass panels

http://www.cl.cam.ac.uk/~mr10/edsacposter.pdf

AnS Acc += Mem[n]
SnS Acc -= Mem[n]
EnS if Acc >= 0 goto n
GnS if Acc < 0 goto n
LnS leftshift
OnS output
TnS Mem[n] = Acc; Acc = 0
UnS Mem[n] = Acc
XnS No operation
ZnS Stop the machine and ring a bell

http://www.tnmoc.org/special-projects/edsac

http://nhiro.org/learn_language/EDSAC-on-browser.html

T44S 31 T _end+1 mark end of program
E38S 32 E _start jump to beginning of program
*S 33 lshift * letter shift
HS 34 _H H letter H
IS 35 _I I letter I
&S 36 lf & LF - line feed character
@S 37 cr @ CR - carriage return character
O33S 38 _start O lshift prepare for printing lettersn
O34S 39 O _H print H
O35S 40 O _I print I
O36S 41 O lf print lf
O37S 42 O cr print cr
ZS 43 _end Z end of program

“Hi” on the EDSAC / Initial Orders 1

T44SE38S*SHSIS&S@SO33SO34SO35SO36SO37SZS

“FizzBuzz” on the EDSAC / Initial Orders 1

written in a “primitive” 1949-like style
by Olve Maudal, Monday, April 20, 2015

I pretended I was a student, who had won a single chance to run my program
on this precious computer.

The program did actually ran on the very first attempt!

T123S 31 T L_end mark end of program
E60S 32 E L_start jump to the beginning of program
#S 33 _FS # figure shift
*S 34 _LS * letter shift
&S 35 _LF & linefeed character
@S 36 _CR @ carriage return character
P100S 37 _100 P 100 constant 100
P10S 38 _10 P 10 constant 10
P5S 39 _5 P 5 constant 5
P3S 40 _3 P 3 constant 3
P1S 41 _1 P 1 constant 1
QS 42 _'1' Q constant figure 1
PS 43 _'0' P constant figure 0
BS 44 _B B constant letter B
FS 45 _F F constant letter F
IS 46 _I I constant letter I
US 47 _U U constant letter U
ZS 48 _Z Z constant letter Z
PS 49 _dummy P used to flush and reset the accumulator
P1S 50 _cnt P 1 counter, current number to be considered, will be increased
PS 51 _num P number to be printed, negative if counter is mod 3 or mod 5
PS 52 _d P digit to be printed
O34S 53 L_next O _LS output LS, prepare for printing letters
O35S 54 O _LF output LF, linefeed
O36S 55 O _CR output CR, carriage return
T49S 56 T _dummy reset Acc
A50S 57 A _cnt load Acc with _cnt
A41S 58 A _1 increase Acc
T50S 59 T _cnt store Acc into _cnt, reset Acc
A50S 60 L_start A _cnt load Acc with _cnt (we know that Acc initially is 0)
U51S 61 U _num tentatively set number to be printed
S40S 62 L_tryFizz S _3 subtract 3
E62S 63 E L_tryFizz loop until Acc < 0
A40S 64 A _3 add 3, restore previous value
S41S 65 S _1 subtract 1, to check if Acc was 0
E73S 66 E L_notFizz jump if Acc was not 0, ie number was not divisable by 3
T51S 67 T _num set _num to negative value, flag that no value should be printed
O34S 68 O _LS prepare printing letters
O45S 69 O _F output F
O46S 70 O _I output I
O48S 71 O _Z output Z
O48S 72 O _Z output Z
T49S 73 L_notFizz T _dummy reset Acc
A50S 74 A _cnt load Acc with _cnt
S39S 75 L_Buzz S _5 subtract 5
E75S 76 E L_Buzz loop until Acc < 0
A39S 77 A _5 add 5, restore previous value
S41S 78 S _1 subtract 1, to check if Acc was 0
E86S 79 E L_notBuzz jump if Acc was not 0, ie number was not divisable by 5
T51S 80 T _num set _num to negative value, flag that no value should be printed
O34S 81 O _LS prepare printing letters
O44S 82 O _B output B
O47S 83 O _U output U
O48S 84 O _Z output Z
O48S 85 O _Z output Z
T49S 86 L_notBuzz T _dummy reset Acc
A51S 87 A _num load _num to check number to be printed
G53S 88 G L_next goto next iteration if _num is negative
O33S 89 L_printNum O _FS prepare for printing numbers
T49S 90 T _dummy reset Acc
A50S 91 A _cnt load counter
S37S 92 S _100 subtract 100, check if we should stop
G98S 93 G L_not100 jump if not 100 yet
O42S 94 O _'1' output 1
O43S 95 O _'0' output 0
O43S 96 O _'0' output 0
ZS 97 Z end the program
T49S 98 L_not100 T _dummy reset Acc
T52S 99 T _d reset digit
A50S 100 A _cnt load counter
S38S 101 L_count10s S _10 subtract 10
G109S 102 G L_print10s goto print 10s if Acc < 0
T51S 103 T _num store number
A52S 104 A _d load digit
A41S 105 A _1 increase digit
T52S 106 T _d store digit
A51S 107 A _num load number
E101S 108 E L_count10s loop unconditionally
T49S 109 L_print10s T _dummy reset Acc
A52S 110 A _d load digit
S41S 111 S _1 decrease digit by 1
G117S 112 G L_1 if negative (digit was 0), skip printing of tens digits
A41S 113 A _1 restore digit, by increasing with 1
L512S 114 L 2^(11-2) Acc << 11, create a printable figure
T52S 115 T _d save printable figure
O52S 116 O _d print figure / digit
T49S 117 L_1: T _dummy reset Acc
A51S 118 A _num load number
L512S 119 L 2^(11-2) Acc << 11, create a printable figure
T52S 120 T _d save printable figure
O52S 121 O _d print figure / digit
E53S 122 E L_next unconditional jump
XS 123 L_end X

“FizzBuzz” on the EDSAC / Initial Orders 1

T123S 31 T L_end mark end of program
E60S 32 E L_start jump to the beginning of program
#S 33 _FS # figure shift
*S 34 _LS * letter shift
&S 35 _LF & linefeed character
@S 36 _CR @ carriage return character
P100S 37 _100 P 100 constant 100
P10S 38 _10 P 10 constant 10
P5S 39 _5 P 5 constant 5
P3S 40 _3 P 3 constant 3
P1S 41 _1 P 1 constant 1
QS 42 _'1' Q constant figure 1
PS 43 _'0' P constant figure 0
BS 44 _B B constant letter B
FS 45 _F F constant letter F
IS 46 _I I constant letter I
US 47 _U U constant letter U
ZS 48 _Z Z constant letter Z
PS 49 _dummy P used to flush and reset the accumulator
P1S 50 _cnt P 1 counter, current number to be considered, will be increased
PS 51 _num P number to be printed, negative if counter is mod 3 or mod 5
PS 52 _d P digit to be printed

T123S 31 T L_end mark end of program
E60S 32 E L_start jump to the beginning of program
#S 33 _FS # figure shift
*S 34 _LS * letter shift
&S 35 _LF & linefeed character
@S 36 _CR @ carriage return character
P100S 37 _100 P 100 constant 100
P10S 38 _10 P 10 constant 10
P5S 39 _5 P 5 constant 5
P3S 40 _3 P 3 constant 3
P1S 41 _1 P 1 constant 1
QS 42 _'1' Q constant figure 1
PS 43 _'0' P constant figure 0
BS 44 _B B constant letter B
FS 45 _F F constant letter F
IS 46 _I I constant letter I
US 47 _U U constant letter U
ZS 48 _Z Z constant letter Z
PS 49 _dummy P used to flush and reset the accumulator
P1S 50 _cnt P 1 counter, current number to be considered, will be increased
PS 51 _num P number to be printed, negative if counter is mod 3 or mod 5
PS 52 _d P digit to be printed
O34S 53 L_next O _LS output LS, prepare for printing letters
O35S 54 O _LF output LF, linefeed
O36S 55 O _CR output CR, carriage return
T49S 56 T _dummy reset Acc
A50S 57 A _cnt load Acc with _cnt
A41S 58 A _1 increase Acc
T50S 59 T _cnt store Acc into _cnt, reset Acc
A50S 60 L_start A _cnt load Acc with _cnt (we know that Acc initially is 0)
U51S 61 U _num tentatively set number to be printed
S40S 62 L_tryFizz S _3 subtract 3
E62S 63 E L_tryFizz loop until Acc < 0
A40S 64 A _3 add 3, restore previous value
S41S 65 S _1 subtract 1, to check if Acc was 0
E73S 66 E L_notFizz jump if Acc was not 0, ie number was not divisable by 3
T51S 67 T _num set _num to negative value, flag that no value should be printed
O34S 68 O _LS prepare printing letters
O45S 69 O _F output F
O46S 70 O _I output I
O48S 71 O _Z output Z
O48S 72 O _Z output Z
T49S 73 L_notFizz T _dummy reset Acc
A50S 74 A _cnt load Acc with _cnt
S39S 75 L_Buzz S _5 subtract 5
E75S 76 E L_Buzz loop until Acc < 0
A39S 77 A _5 add 5, restore previous value
S41S 78 S _1 subtract 1, to check if Acc was 0
E86S 79 E L_notBuzz jump if Acc was not 0, ie number was not divisable by 5
T51S 80 T _num set _num to negative value, flag that no value should be printed
O34S 81 O _LS prepare printing letters
O44S 82 O _B output B
O47S 83 O _U output U
O48S 84 O _Z output Z
O48S 85 O _Z output Z
T49S 86 L_notBuzz T _dummy reset Acc
A51S 87 A _num load _num to check number to be printed
G53S 88 G L_next goto next iteration if _num is negative
O33S 89 L_printNum O _FS prepare for printing numbers
T49S 90 T _dummy reset Acc
A50S 91 A _cnt load counter
S37S 92 S _100 subtract 100, check if we should stop
G98S 93 G L_not100 jump if not 100 yet
O42S 94 O _'1' output 1
O43S 95 O _'0' output 0
O43S 96 O _'0' output 0
ZS 97 Z end the program
T49S 98 L_not100 T _dummy reset Acc
T52S 99 T _d reset digit
A50S 100 A _cnt load counter
S38S 101 L_count10s S _10 subtract 10
G109S 102 G L_print10s goto print 10s if Acc < 0
T51S 103 T _num store number
A52S 104 A _d load digit
A41S 105 A _1 increase digit
T52S 106 T _d store digit
A51S 107 A _num load number
E101S 108 E L_count10s loop unconditionally
T49S 109 L_print10s T _dummy reset Acc
A52S 110 A _d load digit
S41S 111 S _1 decrease digit by 1
G117S 112 G L_1 if negative (digit was 0), skip printing of tens digits
A41S 113 A _1 restore digit, by increasing with 1
L512S 114 L 2^(11-2) Acc << 11, create a printable figure
T52S 115 T _d save printable figure
O52S 116 O _d print figure / digit
T49S 117 L_1: T _dummy reset Acc
A51S 118 A _num load number
L512S 119 L 2^(11-2) Acc << 11, create a printable figure
T52S 120 T _d save printable figure
O52S 121 O _d print figure / digit
E53S 122 E L_next unconditional jump
XS 123 L_end X

“FizzBuzz” on the EDSAC / Initial Orders 1

O34S 53 L_next O _LS output LS, prepare for printing letters
O35S 54 O _LF output LF, linefeed
O36S 55 O _CR output CR, carriage return
T49S 56 T _dummy reset Acc
A50S 57 A _cnt load Acc with _cnt
A41S 58 A _1 increase Acc
T50S 59 T _cnt store Acc into _cnt, reset Acc
A50S 60 L_start A _cnt load Acc with _cnt (we know that Acc initially is 0)
U51S 61 U _num tentatively set number to be printed
S40S 62 L_tryFizz S _3 subtract 3
E62S 63 E L_tryFizz loop until Acc < 0
A40S 64 A _3 add 3, restore previous value
S41S 65 S _1 subtract 1, to check if Acc was 0
E73S 66 E L_notFizz jump if Acc was not 0, ie number was not divisable by 3
T51S 67 T _num set _num to negative value, flag that no value should be printed
O34S 68 O _LS prepare printing letters
O45S 69 O _F output F
O46S 70 O _I output I
O48S 71 O _Z output Z
O48S 72 O _Z output Z

T123S 31 T L_end mark end of program
E60S 32 E L_start jump to the beginning of program
#S 33 _FS # figure shift
*S 34 _LS * letter shift
&S 35 _LF & linefeed character
@S 36 _CR @ carriage return character
P100S 37 _100 P 100 constant 100
P10S 38 _10 P 10 constant 10
P5S 39 _5 P 5 constant 5
P3S 40 _3 P 3 constant 3
P1S 41 _1 P 1 constant 1
QS 42 _'1' Q constant figure 1
PS 43 _'0' P constant figure 0
BS 44 _B B constant letter B
FS 45 _F F constant letter F
IS 46 _I I constant letter I
US 47 _U U constant letter U
ZS 48 _Z Z constant letter Z
PS 49 _dummy P used to flush and reset the accumulator
P1S 50 _cnt P 1 counter, current number to be considered, will be increased
PS 51 _num P number to be printed, negative if counter is mod 3 or mod 5
PS 52 _d P digit to be printed
O34S 53 L_next O _LS output LS, prepare for printing letters
O35S 54 O _LF output LF, linefeed
O36S 55 O _CR output CR, carriage return
T49S 56 T _dummy reset Acc
A50S 57 A _cnt load Acc with _cnt
A41S 58 A _1 increase Acc
T50S 59 T _cnt store Acc into _cnt, reset Acc
A50S 60 L_start A _cnt load Acc with _cnt (we know that Acc initially is 0)
U51S 61 U _num tentatively set number to be printed
S40S 62 L_tryFizz S _3 subtract 3
E62S 63 E L_tryFizz loop until Acc < 0
A40S 64 A _3 add 3, restore previous value
S41S 65 S _1 subtract 1, to check if Acc was 0
E73S 66 E L_notFizz jump if Acc was not 0, ie number was not divisable by 3
T51S 67 T _num set _num to negative value, flag that no value should be printed
O34S 68 O _LS prepare printing letters
O45S 69 O _F output F
O46S 70 O _I output I
O48S 71 O _Z output Z
O48S 72 O _Z output Z
T49S 73 L_notFizz T _dummy reset Acc
A50S 74 A _cnt load Acc with _cnt
S39S 75 L_Buzz S _5 subtract 5
E75S 76 E L_Buzz loop until Acc < 0
A39S 77 A _5 add 5, restore previous value
S41S 78 S _1 subtract 1, to check if Acc was 0
E86S 79 E L_notBuzz jump if Acc was not 0, ie number was not divisable by 5
T51S 80 T _num set _num to negative value, flag that no value should be printed
O34S 81 O _LS prepare printing letters
O44S 82 O _B output B
O47S 83 O _U output U
O48S 84 O _Z output Z
O48S 85 O _Z output Z
T49S 86 L_notBuzz T _dummy reset Acc
A51S 87 A _num load _num to check number to be printed
G53S 88 G L_next goto next iteration if _num is negative
O33S 89 L_printNum O _FS prepare for printing numbers
T49S 90 T _dummy reset Acc
A50S 91 A _cnt load counter
S37S 92 S _100 subtract 100, check if we should stop
G98S 93 G L_not100 jump if not 100 yet
O42S 94 O _'1' output 1
O43S 95 O _'0' output 0
O43S 96 O _'0' output 0
ZS 97 Z end the program
T49S 98 L_not100 T _dummy reset Acc
T52S 99 T _d reset digit
A50S 100 A _cnt load counter
S38S 101 L_count10s S _10 subtract 10
G109S 102 G L_print10s goto print 10s if Acc < 0
T51S 103 T _num store number
A52S 104 A _d load digit
A41S 105 A _1 increase digit
T52S 106 T _d store digit
A51S 107 A _num load number
E101S 108 E L_count10s loop unconditionally
T49S 109 L_print10s T _dummy reset Acc
A52S 110 A _d load digit
S41S 111 S _1 decrease digit by 1
G117S 112 G L_1 if negative (digit was 0), skip printing of tens digits
A41S 113 A _1 restore digit, by increasing with 1
L512S 114 L 2^(11-2) Acc << 11, create a printable figure
T52S 115 T _d save printable figure
O52S 116 O _d print figure / digit
T49S 117 L_1: T _dummy reset Acc
A51S 118 A _num load number
L512S 119 L 2^(11-2) Acc << 11, create a printable figure
T52S 120 T _d save printable figure
O52S 121 O _d print figure / digit
E53S 122 E L_next unconditional jump
XS 123 L_end X

“FizzBuzz” on the EDSAC / Initial Orders 1

T49S 73 L_notFizz T _dummy reset Acc
A50S 74 A _cnt load Acc with _cnt
S39S 75 L_Buzz S _5 subtract 5
E75S 76 E L_Buzz loop until Acc < 0
A39S 77 A _5 add 5, restore previous value
S41S 78 S _1 subtract 1, to check if Acc was 0
E86S 79 E L_notBuzz jump if Acc was not 0, ie number was not divisable by 5
T51S 80 T _num set _num to negative value, flag that no value should be printed
O34S 81 O _LS prepare printing letters
O44S 82 O _B output B
O47S 83 O _U output U
O48S 84 O _Z output Z
O48S 85 O _Z output Z
T49S 86 L_notBuzz T _dummy reset Acc
A51S 87 A _num load _num to check number to be printed
G53S 88 G L_next goto next iteration if _num is negative
O33S 89 L_printNum O _FS prepare for printing numbers
T49S 90 T _dummy reset Acc
A50S 91 A _cnt load counter
S37S 92 S _100 subtract 100, check if we should stop
G98S 93 G L_not100 jump if not 100 yet
O42S 94 O _'1' output 1
O43S 95 O _'0' output 0
O43S 96 O _'0' output 0
ZS 97 Z end the program

T123S 31 T L_end mark end of program
E60S 32 E L_start jump to the beginning of program
#S 33 _FS # figure shift
*S 34 _LS * letter shift
&S 35 _LF & linefeed character
@S 36 _CR @ carriage return character
P100S 37 _100 P 100 constant 100
P10S 38 _10 P 10 constant 10
P5S 39 _5 P 5 constant 5
P3S 40 _3 P 3 constant 3
P1S 41 _1 P 1 constant 1
QS 42 _'1' Q constant figure 1
PS 43 _'0' P constant figure 0
BS 44 _B B constant letter B
FS 45 _F F constant letter F
IS 46 _I I constant letter I
US 47 _U U constant letter U
ZS 48 _Z Z constant letter Z
PS 49 _dummy P used to flush and reset the accumulator
P1S 50 _cnt P 1 counter, current number to be considered, will be increased
PS 51 _num P number to be printed, negative if counter is mod 3 or mod 5
PS 52 _d P digit to be printed
O34S 53 L_next O _LS output LS, prepare for printing letters
O35S 54 O _LF output LF, linefeed
O36S 55 O _CR output CR, carriage return
T49S 56 T _dummy reset Acc
A50S 57 A _cnt load Acc with _cnt
A41S 58 A _1 increase Acc
T50S 59 T _cnt store Acc into _cnt, reset Acc
A50S 60 L_start A _cnt load Acc with _cnt (we know that Acc initially is 0)
U51S 61 U _num tentatively set number to be printed
S40S 62 L_tryFizz S _3 subtract 3
E62S 63 E L_tryFizz loop until Acc < 0
A40S 64 A _3 add 3, restore previous value
S41S 65 S _1 subtract 1, to check if Acc was 0
E73S 66 E L_notFizz jump if Acc was not 0, ie number was not divisable by 3
T51S 67 T _num set _num to negative value, flag that no value should be printed
O34S 68 O _LS prepare printing letters
O45S 69 O _F output F
O46S 70 O _I output I
O48S 71 O _Z output Z
O48S 72 O _Z output Z
T49S 73 L_notFizz T _dummy reset Acc
A50S 74 A _cnt load Acc with _cnt
S39S 75 L_Buzz S _5 subtract 5
E75S 76 E L_Buzz loop until Acc < 0
A39S 77 A _5 add 5, restore previous value
S41S 78 S _1 subtract 1, to check if Acc was 0
E86S 79 E L_notBuzz jump if Acc was not 0, ie number was not divisable by 5
T51S 80 T _num set _num to negative value, flag that no value should be printed
O34S 81 O _LS prepare printing letters
O44S 82 O _B output B
O47S 83 O _U output U
O48S 84 O _Z output Z
O48S 85 O _Z output Z
T49S 86 L_notBuzz T _dummy reset Acc
A51S 87 A _num load _num to check number to be printed
G53S 88 G L_next goto next iteration if _num is negative
O33S 89 L_printNum O _FS prepare for printing numbers
T49S 90 T _dummy reset Acc
A50S 91 A _cnt load counter
S37S 92 S _100 subtract 100, check if we should stop
G98S 93 G L_not100 jump if not 100 yet
O42S 94 O _'1' output 1
O43S 95 O _'0' output 0
O43S 96 O _'0' output 0
ZS 97 Z end the program
T49S 98 L_not100 T _dummy reset Acc
T52S 99 T _d reset digit
A50S 100 A _cnt load counter
S38S 101 L_count10s S _10 subtract 10
G109S 102 G L_print10s goto print 10s if Acc < 0
T51S 103 T _num store number
A52S 104 A _d load digit
A41S 105 A _1 increase digit
T52S 106 T _d store digit
A51S 107 A _num load number
E101S 108 E L_count10s loop unconditionally
T49S 109 L_print10s T _dummy reset Acc
A52S 110 A _d load digit
S41S 111 S _1 decrease digit by 1
G117S 112 G L_1 if negative (digit was 0), skip printing of tens digits
A41S 113 A _1 restore digit, by increasing with 1
L512S 114 L 2^(11-2) Acc << 11, create a printable figure
T52S 115 T _d save printable figure
O52S 116 O _d print figure / digit
T49S 117 L_1: T _dummy reset Acc
A51S 118 A _num load number
L512S 119 L 2^(11-2) Acc << 11, create a printable figure
T52S 120 T _d save printable figure
O52S 121 O _d print figure / digit
E53S 122 E L_next unconditional jump
XS 123 L_end X

“FizzBuzz” on the EDSAC / Initial Orders 1

T49S 98 L_not100 T _dummy reset Acc
T52S 99 T _d reset digit
A50S 100 A _cnt load counter
S38S 101 L_count10s S _10 subtract 10
G109S 102 G L_print10s goto print 10s if Acc < 0
T51S 103 T _num store number
A52S 104 A _d load digit
A41S 105 A _1 increase digit
T52S 106 T _d store digit
A51S 107 A _num load number
E101S 108 E L_count10s loop unconditionally
T49S 109 L_print10s T _dummy reset Acc
A52S 110 A _d load digit
S41S 111 S _1 decrease digit by 1
G117S 112 G L_1 if negative (digit was 0), skip printing of tens digits
A41S 113 A _1 restore digit, by increasing with 1
L512S 114 L 2^(11-2) Acc << 11, create a printable figure
T52S 115 T _d save printable figure
O52S 116 O _d print figure / digit
T49S 117 L_1: T _dummy reset Acc
A51S 118 A _num load number
L512S 119 L 2^(11-2) Acc << 11, create a printable figure
T52S 120 T _d save printable figure
O52S 121 O _d print figure / digit
E53S 122 E L_next unconditional jump
XS 123 L_end X

T123SE60S#S*S&S@SP100SP10SP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPSO34SO35SO36ST49SA50SA41ST50SA50SU5
1SS40SE62SA40SS41SE73ST51SO34SO45SO46SO48SO48S
T49SA50SS39SE75SA39SS41SE86ST51SO34SO44SO47SO4
8SO48ST49SA51SG53SO33ST49SA50SS37SG98SO42SO43S
O43SZST49ST52SA50SS38SG109ST51SA52SA41ST52SA51
SE101ST49SA52SS41SG117SA41SL512ST52SO52ST49SA5
1SL512ST52SO52SE53SXS

“FizzBuzz” on the EDSAC / Initial Orders 1

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

!

T123SE60S#S*S&S@SP100SP10SP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPSO34SO35SO36ST49SA50SA41ST50SA50SU5
1SS40SE62SA40SS41SE73ST51SO34SO45SO46SO48SO48S
T49SA50SS39SE75SA39SS41SE86ST51SO34SO44SO47SO4
8SO48ST49SA51SG53SO33ST49SA50SS37SG98SO42SO43S
O43SZST49ST52SA50SS38SG109ST51SA52SA41ST52SA51
SE101ST49SA52SS41SG117SA41SL512ST52SO52ST49SA5
1SL512ST52SO52SE53SXS

“FizzBuzz” on the EDSAC / Initial Orders 1

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

T123SE60S#S*S&S@SP100SP10SP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPSO34SO35SO36ST49SA50SA41ST50SA50SU5
1SS40SE62SA40SS41SE73ST51SO34SO45SO46SO48SO48S
T49SA50SS39SE75SA39SS41SE86ST51SO34SO44SO47SO4
8SO48ST49SA51SG53SO33ST49SA50SS37SG98SO42SO43S
O43SZST49ST52SA50SS38SG109ST51SA52SA41ST52SA51
SE101ST49SA52SS41SG117SA41SL512ST52SO52ST49SA5
1SL512ST52SO52SE53SXS

“FizzBuzz” on the EDSAC / Initial Orders 1

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

There is a small bug in the program. Did you notice?

T123SE60S#S*S&S@SP100SP10SP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPSO34SO35SO36ST49SA50SA41ST50SA50SU5
1SS40SE62SA40SS41SE73ST51SO34SO45SO46SO48SO48S
T49SA50SS39SE75SA39SS41SE86ST51SO34SO44SO47SO4
8SO48ST49SA51SG53SO33ST49SA50SS37SG98SO42SO43S
O43SZST49ST52SA50SS38SG109ST51SA52SA41ST52SA51
SE101ST49SA52SS41SG117SA41SL512ST52SO52ST49SA5
1SL512ST52SO52SE53SXS

“FizzBuzz” on the EDSAC / Initial Orders 1

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

T123SE60S#S*S&S@SP100SP10SP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPSO34SO35SO36ST49SA50SA41ST50SA50SU5
1SS40SE62SA40SS41SE73ST51SO34SO45SO46SO48SO48S
T49SA50SS39SE75SA39SS41SE86ST51SO34SO44SO47SO4
8SO48ST49SA51SG53SO33ST49SA50SS37SG98SO42SO43S
O43SZST49ST52SA50SS38SG109ST51SA52SA41ST52SA51
SE101ST49SA52SS41SG117SA41SL512ST52SO52ST49SA5
1SL512ST52SO52SE53SXS

“FizzBuzz” on the EDSAC / Initial Orders 1

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

Here is a quick and dirty fix!

T123SE60S#S*S&S@SP100SP10SP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPSO34SO35SO36ST49SA50SA41ST50SA50SU5
1SS40SE62SA40SS41SE73ST51SO34SO45SO46SO48SO48S
T49SA50SS39SE75SA39SS41SE86ST51SO34SO44SO47SO4
8SO48ST49SA51SG53SO33ST49SA50SS37SA41SG98SZSO4
3SO43ST49ST52SA50SS38SG109ST51SA52SA41ST52SA51
SE101ST49SA52SS41SG117SA41SL512ST52SO52ST49SA5
1SL512ST52SO52SE53SXS

“FizzBuzz” on the EDSAC / Initial Orders 1

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

T123SE60S#S*S&S@SP100SP10SP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPSO34SO35SO36ST49SA50SA41ST50SA50SU5
1SS40SE62SA40SS41SE73ST51SO34SO45SO46SO48SO48S
T49SA50SS39SE75SA39SS41SE86ST51SO34SO44SO47SO4
8SO48ST49SA51SG53SO33ST49SA50SS37SA41SG98SZSO4
3SO43ST49ST52SA50SS38SG109ST51SA52SA41ST52SA51
SE101ST49SA52SS41SG117SA41SL512ST52SO52ST49SA5
1SL512ST52SO52SE53SXS

“FizzBuzz” on the EDSAC / Initial Orders 1

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

T123SE60S#S*S&S@SP100SP10SP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPSO34SO35SO36ST49SA50SA41ST50SA50SU5
1SS40SE62SA40SS41SE73ST51SO34SO45SO46SO48SO48S
T49SA50SS39SE75SA39SS41SE86ST51SO34SO44SO47SO4
8SO48ST49SA51SG53SO33ST49SA50SS37SA41SG98SZSO4
3SO43ST49ST52SA50SS38SG109ST51SA52SA41ST52SA51
SE101ST49SA52SS41SG117SA41SL512ST52SO52ST49SA5
1SL512ST52SO52SE53SXS

“FizzBuzz” on the EDSAC / Initial Orders 1

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

Enjoy!

