FizzBuzz EDSAC

Olve Maudal

miinil

\
CHILE y : o JL L
e SR E N Ty g
ALLUAIETY

Ty

A 5 minute lightning talk at ACCU 2015, April 24, Bristol, UK

https://youtu.be/x-vSOWcJyNM

The EDSAC 1951 film
abridged version

Commentary by
M. V. Wilkes

EDSAC Initial Orders and Squares Program

Martin Richards

EDSAC

EDSAC (Electronic Delay Storage Automatic Computer), pictured below, was the world’s first stored-program computer to
operate a regular computing service. Maurice Wilkes lead the team responsible for its design and construction. It ran its
first program successfully on May 6, 1949.

RTLLILL

EDSAC’s main memory used mercury delay lines to hold 512 words of 35 bits. We will use the notation: w[0],
w[2],...,w[1022] to refer to these words of memory. Each word could be split into two 17-bit halves, separated by a
padding bit. We will use the notation m[a], a = 0, 1, .., 1023 to represent these 17-bit memory locations. The word
at address 2n, namely w[2n], consisted of the concatenation of m[2n + 1], a padding bit, and m [2n]. Note that
m [1] is the senior half of w[0].

17 1 17
wi2nl [Frrrrrrrrrrrrrrrr|[x][Frrrrrrrr iy
mi2n + 1] mi2n]

The machine had two central registers visible to the user: the 71-bit accumulator and the 35-bit multiplier register. We will
use the notation ABC to represent the whole accumulator, and A and AB to represent its senior 17 and 35 bits, respectively.
We will use RS to represent the whole multiplier register and R to represent its senior 17 bits. The leftmost bit of each
register was the sign bit and the remaining bits form a binary fraction.

EDSAC’s machine instructions (also called orders) occupied 17 bits. The leftmost 5 bits was the operation code, the next
bit was unused, the following 10 bits was the address field and the last bit specified (where appropriate) whether the order
used 17 or 35-bit operands.

5 10
Order format: [xx*x+= K F KKK K x X % x|
Op Unused Address

Orders were punched on paper tape and consisted of: a character that directly gave the S-bit operation code, followed by
zero or more decimal digits giving the address, and terminated by S or L specifying the operand length bit. For example,
R16S assembled to 00100 0 0000010000 0 and T1iLto 00101 O 0000001011 1 . Note that the characters R and
T had codes 4 and 5, respectively.

The Character Set

EDSAC used 5-bit integers (0 to 31) to represent characters using two shifts: letters and figures. In letter shift the codes 0
to 31 respectively represented: P, Q, W, E, R, T, Y, U, 1, 0, J, figs, S, Z, K, lets, null, F, cr, D, sp, H, N, M, If, L, X, G, A, B, C and
V. In figure shift the encoding was as follows: 0, 1, 2, 3, 4,5, 6,7, 8,9, ?, figs, ", +, (, lets, null, $, cr, 5, sp, £, ,, -, If,
), /,#,-,7, : and =. In these tables, figs, cr, sp and If denote figure shift, carriage return, space and line feed, and on the
paper tape perforator their keys were labelled 7, 6, ¢ and A, respectively. In this document, these codes correspond to the
ASCII characters #, @, ! and &. The paper tape reader complemented the high order bit of each 5-bit character, so the rows
[I, Jand] are read as codes 0(P), 7(U) and 27(G), respectively. The machine could read paper
tape at a rate of 50 characters per second and output to a Creed teleprinter at nearly 7 characters per second.

The 1949 Instruction set

EDSAC’s instructions in 1949 was very simple and were executed at a rate of about 600 per second. They were as follows:

Ans: A += m[n] AnL: w(n]

Sns: SnL: = win]

HnS: HnL: RS += wn]

Vns: VnL: wn] * RS
NnS: NnL: ABC -= w(n] * RS
TnS: 0 TnL: wln] = AB; ABC = 0
Uns: UnL: wln] = AB

Cns: AB += m(n] & R CnL: ABC += w(n] & RS

RnS, RnL: Shift ABC right arithmetically by the number of places corresponding to the
position of the least significant one in the shift instruction. For example,
ROL, R1S, R168S and ROS shift by 1, 2, 6 and 15 places, respectively.

LnS, LnL: Shift ABC left arithmetically by the number of places corresponding to the
position of the least significant one in the shift instruction. For example,
LOL, L1S, L168S, L64S and LOS shift by 1, 2, 6, 8 and 13 places, respec-

tively.

EnS: ifA >= 0goton

GnS: ifA < 0goton

InS: Place the next paper tape character in the least significant 5 bits of m[n].

ons: Output the character in the most significant 5 bits of m.[n].

FnS: Verify the last character output.

XnsS: No operation.

YnsS: Add a one to bit position 35 of ABC, counting the sign bit as bit zero. This
effectively rounds ABC up to 34 fractional bits.

Zns: Stop the machine and ring a bell.

The numerical values in the accumulator and multiplier registers are normally thought of as signed binary fractions, but
integer operations could also be done casily. For example, the order V1S can be interpreted as adding the product of the
17-bit signed integer in m[1] and to the 17-bit integer in RS and adding the result into bits 0 to 32 of the ABC. With a
suitable shift, the integer result can be placed in the senior 17 bits of A ready for storing in memory.

UNIVERSITY OF
CAMBRIDGE

Computer Laboratory

Initial Orders

The four glass panels on your right contain 20 segments of 5 track paper tape. Reading from right to left and from top to
bottom, the first five segments correspond to the initial orders, and the remaining 15 to a program to compute squares. The
glass panels contain errors so a corrected version of the panels are given below.

The initial orders were written by David Wheeler in May 1949 to load and enter a paper tape represention of a program.
When EDSAC was started, these initial orders were placed in memory locations 0 to 30 by a mechanism involving uniselec-
tors before execution stared from location 0.

The glass panels give a paper tape representation of these orders even though no such paper tape ever existed. The following
is an annotated listing of this program.

Order bit pattern Order Meaning Comment

00101 0 0000000000 O TOS m[0]=A; ABC=0
10101 0 0000000010 O H2S =m[2] Put 10<<11 in R
00101 0 0000000000 O TOS ABC=0
00011 0 0000000110 O E6S Jump to main loop
00000 0 0000000001 O 4: P1S The constant 2
00000 0 0000000101 0O 5B P58 The constant 10
00101 0 0000000000 O TOS ABC=0 Start of the main loop
01000 0 0000000000 O 108 rdch () Get operation code
11100 0 0000000000 O A0S [0] Putitin A
00100 0 0000010000 O R16S ABC>>=6 Shift and store it
00101 0 0000000000 1 TOL w[0]=AB; ABC=0 so that it becomes the
senior S bits of m [0]
m[1] is now zero
01000 0 0000000010 0 125 m[2]=rdch () Put next ch in m 2]
11100 0 0000000010 O A28 A [2] Put ch in A
01100 0 0000000101 O S5S A [5] A=ch-10
00011 0 0000010101 O E21S if A>=0 goto 21 Jump to 21, if ch>=10
00101 0 0000000011 O T3S m[3]=A; ABC=0 Clear A, m [3] is junk
11111 0 0000000001 O V1S AB+=m [1]+R A = m[1]*(10<<11)
11001 0 0000001000 O L8s A<<=5 Shift 5 more places
11100 0 0000000010 O A28 A+=m[2] Add the new digit
00101 0 0000000001 O T1S ‘m[1]=A; ABC=0 Store back in 1 [1]
00011 0 0000001011 O E118 goto 11 Repeat from 11
00100 0 0000000100 O 21: R4S ABC>>=4
11100 0 0000000001 O A1S A+=m[1] Add in the address
11001 0 0000000000 1 LOL ABC<<=1 Shift to correct position
11100 0 0000000000 O A0S A+=m[0] Add in the operation field
00101 0 0000011111 O 25: T31S m[31]= A; ABC=0 Store the order
in next location
11100 0 0000011001 O 26: A258 A+=m[25] Increment the address
field of m [25]
11100 0 0000000100 0 27: A48 A+=m [4] m[4] holds 2
00111 0 0000011001 O 28: U258 m[25]=A Update m [25]
01100 0 0000011111 O S318 A-=m[31] Jump to 6, if there are
11011 0 0000000110 O GBS if A<O goto 6 more orders to load

The instruction at location 0 does nothing useful, but the instruction at 1 loads the multiplier register R with a 17-bit
pattern 00101000000000000 which is also 10 shifted left 11 places. The instruction instruction at 2 (TOS) assembles into
exactly this bit pattern, so is used both as data and as an instruction to clear m [0]. The instruction at 3 skips to location 6
over the instructions at 4 and 5 that assemble as the 17-bit constants 2 and 10, respectively.

The main assembly loop starts at 6, leaving locations 1m.[0] to m[5] available as variables and constants in the program.
They are used as follows:

m[0] uses include holding the first character of an order,
m[1] used to hold the address field of the current order,
m([2] initially 001010. . .0 as discussed above but also

used for characters other than the first of an order,
m[3] used as a junk register when the instruction at 15 clears ABC,
m[4] the constant 2 used at 27 to add one to an address field,
m[5] the constant 10 used to check for the end of address digits.

The order at 25 is of the form TnS, initially T318S. It is used to store an order at location n. This instruction is modified
by the code in locations 26 to 28 which adds one to its address ficld, so the next time it is executed it will update the
next location. Location 31 is the first order to be loaded and must be of the form TnS where n-1 is the address of last
instruction of the program. It is used by the code in locations 29 and 30 which compares it with the current version of TnS
in 25. If loading is not yet complete execution jumps to 11, otherwise it fall through to 31. Note that the instruction at 31
will do no damage, since it just writes a value to the first location following the loaded program. The first real instruction
of the program is in m [32].

M.V Wilkes and W.A. Renwick

The Squares Program

This program, written by Maurice Wilkes in June 1949, outputs the following table of squares and differences of the

numbers 1 to 100.

(RN

98 9604

99 9801
100 10000

The following is an annotated listing of the program.

Order bit pattern

00101
00011

00000
00000

00100
00000
00000
00000
00000

00001

01011
11100

10100
11000
10010
01001
01001
00000

11100
00101

00101
11100

00101
00011
00101

11100
00101
11100
11100
00101

11100
11100
00011

11100
00000

00101
00101
11100
11100
00111
01100
11011

11100
00101
00000

co oo

oo oo 000000 ©0O O ocOoOoOR

oo ooo ooooo ooo

0001111011
0001010100

0000000000
0000000000

1100010000
1111101000
0001100100
0000001010
0000000001

0000000000

0000000000
0000101000

0000000000
0000000000
0000000000
0000101011
0000100001
0000000000

0000101110
0001000001

0010000001
0000100011

0000100010
0000111101
0000110000

0000101111
0001000001
0000100001
0000101000
0000100001

0000110000
0000100010
0000110111

0000100010
0000000000

0000110000
0000100001
0000110100
0000000100
0000110100
0000101010
0000110011

0001110101
0000110100
0000000000

00 00 000000 ©O0O ©O 00000 OO OO

©o ooo ooooco ooo

©coo ooocoocoo

Order

T1238
E84S

PS
PS

P10000S
P1000S
P100S
P10S
P1S

[

Meaning

m[123]=A; ABC=0
goto 84

data 0
data 0

data 10000<<1
data 1000<<1
data 100<<1
data 10<<1
data 1<<1

data 1<<12
data 11<<12
data 20<<12
data 24<<12
data 18<<12
wr (m[43])
wr (m[33])
data 0

A+=n[46]
m[65]=A; ABC=0

m[129]=A; ABC=0
A+=m[35]

m[34]=A; ABC=0
goto
m[48]=A; ABC=0

A+=m[47]
m[65]=A; ABC=0
A 33

A 40
m[33]=A; ABC=0

A+=mn[48]; ABC=0

A
if A>=0 goto 55

A+=m[34]
data 0

if A<O goto 51

A+=m[117]
m[52]=A; ABC=0
data 0

Comment

The required first word
Jump to start

For the next decimal digit
For the current power of ten

The table of 16-bit
powers of ten

00001 in MS 5 bits,
used to form digits

Figure shift character

End limit for values
placed in m [52]

Space character

Line feed character

Carriage return character

Write a space

Write a digit

The number to print

Print subroutine entry point
Put 0438 in m [65]

Clear A

A is next power of ten.
m[52] cycles through
A35S, A368, A37S,
A38S and A39S

Store it in m [34]

Store value to be printed

Store instruction 0338
inm

Increment the decimal digit
held in the MS § bits
of m[33]

Get value to print
Subtract a power of 10
Repeat, if positive

Add back the power of 10

This is replaced by either
0438 to write a space, or
0338 to write a digit

Set the value to print

Set digit to 0

Increment the address field
of the instruction
inm([52]

Compare with A40S and

Repeat, if more digits

Put A35S back
inm[52]
To hold the return jump

instruction which is
E95S, E110S or E1185

00000 0 0000000000 O 76: PS data 0 Holds =
00000 0 0000000000 O 77: PS data 0 Holds a;2
00000 0 0000000000 O 78: PS data 0 Holds previous zz
00000 0 0000000000 O 79: PS data 0 Holds Azz
00011 0 0001101110 O 80: E110S goto 110 Order to place in m [52]
00011 0 0001110110 O 81: E118S goto 118 Order to place in m[52]
00000 0 0001100100 O 82: P100S data 100<<1 End limit for
00011 0 0001011111 O 83: E958 goto 95 Order to place in 'm,[52]
01001 0 0000101001 O 84: 0418 wr(m[41]) Write figure shift
00101 0 0010000001 O 85: T129S m[129]=A; ABC=0 Start of main loop
01001 0 0000101100 O 86: 044s wr(m[44]) Write line feed
01001 0 0000101101 O 87: 0458 wr(m/[45]) ‘Write carriage return
11100 0 0001001100 O 88: A76S A+=m/|[76]; ABC=0 Get
11100 0 0000000100 O 89: A4S A+=m[4] Increment it
00111 0 0001001100 O 90: u76s and store it back in =
00101 0 0000110000 O 91 T48S Put it also in m. [48]

for printing,
11100 0 0001010011 O 92: A83s A+=m 83] Put return jump E958
00101 0 0001001011 O 93: T758 m[75 =A; ABC=0 into 'm,[75]
00011 0 0000110001 O 94 E49s goto 49 Enter the print subroutine
01001 0 0000101011 O 95: 0438 wr(m[43]) Write a space
01001 0 0000101011 O 96: 0438 wr(m[43]) Write a space
10101 0 0001001100 O 97: H76S R=m[76] Multiply « by
11111 0 0001001100 O 98: V76S ABC+=m[76]*RS itself and
11001 0 0001000000 O 99: L64S ABC<<8 re-position
11001 0 0000100000 O 100: L32s ABC<<7 the result
00111 0 0001001101 O 101 U778 m[77]=A Store in location for 22
01100 0 0001001110 O 102 S788 A-=m[78] Subtract the previous value
00101 0 0001001111 O 103: T798 m[79 =A; ABC=0 and store the new Ax
11100 0 0001001101 O 104: A7TS A+=m[77] Update variable holding
00111 0 0001001110 O 105: u78s m[78]=A the previous x
00101 0 0000110000 O 106: T48S m[48]=A; ABC=0 Put =

in 7n.[48] for printing
11100 0 0001010000 0 107; 4808 A+=m [80] Put return jump E110S
00101 0 0001001011 0 108: T75S m[75]=A; ABC=0 into m[75]
00011 0 0000110001 O 109: E495 goto 49 Enter the print subroutine
01001 0 0000101011 O 110: 043s wr(m[43]) Write a space
01001 0 0000101011 O 111 0438 mr (m[43]) ‘Write a space
11100 0 0001001111 O 112: A798 A+=m[79] Get Az
00101 0 0000110000 O 113: T48S m[48]=A; ABC=0 Put it in m.[48] for printing
11100 0 0001010001 O 114: A81S A+=m 81] Put return jump E118S
00101 0 0001001011 O 115: T758 m[75 =A; ABC=0 into m[75
00011 0 0000110001 O 116: E498 goto 49 Enter the print subroutine
11100 0 0000100011 0 117; A358 A+=m [35] Order to place in m [52]
11100 0 0001001100 O 118: A76S A+=m[T76 Get x
01100 0 0001010010 O 119: 8828 A-=m|82 Subtract the end limit (=100)
11011 0 0001010101 O 120: G858 if A<O goto 85 Repeat, if more to do
01001 0 0000101001 O 121: 0418 wr(m[41]) Write figure shift
01101 0 0000000000 O 122: zs Stop Stop the machine

The Green Door

The green door on your left was the Corn Exchange Street entrance to the Mathematical Laboratory where EDSAC was
built. By convention, the brass plaque on this door holds the engraved names of those retired members of the Laboratory
who used the door in its original location.

Links

http://www.dcs.warwick.ac.uk/"edsac/
This links to Martin Campbell-Kelly’s excellent EDSAC simulator and related documents.

http://www.cl.cam.ac.uk/UOCCL/misc/EDSAC99
This links to pages relating to the celebration, held in Cambridge in April 1999, of the 50th anniversary of the
EDSAC 1 Computer.

http://waw.cl.cam.ac.uk/ mr/Edsac.html
This links to a shell based EDSAC simulator that runs on Pentium based Linux systems. It was designed to
be educational having a built-in interactive debugger allowing single step execution, the setting of breakpoints
and convenient inspection and setting of memory and register values. It can be used to explore the execution of
the programs described in this poster. This simulator also appears as a demonstration program in the Cintcode
BCPL system (http://www.cl.cam.ac.uk/ mr/BCPL.html).

http://uww.cl.can.ac.uk/“nr/edsacposter. pdf
This is a PDF version of this poster on two A4 pages.

2AS13TSOALOLS1IAS4RS11ES

1TS2AS8LS1VS3TS12ES5SS2AS

2ILOTS61RSOASOISOTS5PS1PS 6ESOTS2HSOT

6TS64ASPS330S340SQ@S&sS!S

04AS#SQS1PS01PS001PS0001P

S00001PSPSPS48ES321T S6GS13SS52US4AS5

25TS711AS15GS24SS25US4A

S25AS33TS84TSPS43AS55ES43

SS84AS33TS04AS33AS56TS74A S84TS16ES43TS53AS921TS5

3LS46LS67VS67HS340S340S

94ES57TS38AS84TS67US4AS67

AS540S440S921TS140S59ES00 1PS811ESO11ESPSPSPSPSPS

S$2S140858GS28SS

67AS53AS94ES57TS18AS84TS9

7AS340S340S94ES57TS08AS84 TS87US77AS97TS87SS77US2

The corrected tape segments etched on the Tea Room glass panels

http://www.cl.cam.ac.uk/~mr|0/edsacposter.pdf

numomomom;m oo ;g O,

Acc +=
Acc —-=
it Acc
1t Acc

leftshift

output
Mem|n
Mem| n

Mem
Mem
>= 0 goto n

<

© goto n

Acc; Acc
Acc

No operation

Stop the machine and ring a bell

0

T H € About us Support

NATIONAL

MUSEUM Visit Projects &’

’ '. v ‘
OF COMPUTING Explore Latest News

S aneEn e Learn Easter Bytes

’;’\

Projects
EDSAC

History

EDSAC News

EDSAC in the news 4 | s

Project Aims o | XU 08 LTI 1
Project Organisation EDSAC ' 3 .,,j ' - v ST _____| :
Recreating EDSAC pesmsaassit ST TTTIT] 111 1 5N B T ree sougal 1...(1. I[] e

Helping the Project

.Ja.djtl".‘--mu l"ﬂl‘

Project Videos

EDSAC Remembered , , , . - -
The EDSAC Replica Project aims to reconstruct one of the most important early British digital computers.

Harwell Dekatron / , , . : - :
WITCH Designed in 1947 by a team lead by Maurice Wilkes, the original EDSAC computer operated for almost 10 years, starting

from its first successful program run on 6th May 1949, at the Cambridge University Mathematical Laboratory.

ICL 2966

The Colossus Rebuild We are now initially targeting to have a working reconstruction of EDSAC as it was in 1951 (when it was in everyday
Robinson service at the University of Cambridge Mathematical Laboratory) operational by late 2015.

Transputer The EDSAC Replica Project is a registered charity and is affiliated to the UK's Computer Conservation Society.
Project Block H

ICT 1301 / Flossie Please help the next stage of the EDSAC Project

http://www.tnmoc.org/special-projects/edsac

http://nhiro.org/learn_language/EDSAC-on-browser.htmi
EDSAC on browser

Back to '/EDSAC on browser' project. Copyright (C) 2012 NISHIO Hirokazu. GPLv3. Short guide: Click 'Load source' and 'Run'. You can
click memory view on the left column. Click 'Source' tab and click 'Load Wada Sieve' button. It is very beautiful program of Sieve of
Eratosthenes by Eiiti Wada. Back to 'Machine' tab, click 'Reset', 'Load source' and 'Run'.

Machine Source

SCR = 0000 Tank #0 (0-31)

ABC: [00000000000000000 O OOOOOOOOOOOOOOOOO O
00000000OO000O0O0000 O 00000000000000000)
ABC = 0, AB=0, A =0

RS: [00000000000000000 0O 000OOOOOOOOOOOOO00)
RS =0, R=0
Run Step Reset

Input tape: Load source
Switch to Initial Orders 2

0 0000000000 0 = 0 Output:

0001: [10101 O 0000000010 0] [H2S] R = m[2]
0002: [00101 0 0000000000 0] [TS]) m(0] = A; ABC = 0
0003: [00011 0 0000000110 0] [E6S] if A >= 0 goto 6
0004: [00000 0 0000000001 0] [P1S]

0005: [00000 0 0000000101 0] [P5S]

0006: [00101 O 0000000000 0] [TS] m{0] = A; ABC = 0
0007: [01000 0 0000000000 0] [IS] m[0] = read()
0008: [11100 0 0000000000 0] [AS]) A += m[0])

T44S
E38S
*S
HS
IS
&S
@S
033S
034S
O35S
036S
037S
ZS

“Hi” on the EDSAC / Initial Orders |

31
32
33
34
35
36
37
38
39
40
41
42
43

lshift
H

T
Lf
cr

_start

end

N O O O OOMm®m®LHIT*xXm -

_end+1
_start

lshift
H

I

1f
cr

mark end of program

jump to beginning of program
letter shift

letter H

letter I

LF - line feed character

CR - carriage return character
prepare for printing lettersn
print H

print I

print 1f

print cr

end of program

T44SE38S*SHS1S&S@50335034503550365037S54S

“FizzBuzz” on the EDSAC / Initial Orders |

written in a “primitive” 1949-like style
by Olve Maudal, Monday, April 20,2015

| pretended | was a student, who had won a single chance to run my program
on this precious computer.

The program did actually ran on the very first attempt!

T123S 31 T L_end mark end of program

E60S 32 E L_start jump to the beginning of program

#S 33 _FS # figure shift ‘ ‘ i ’ ’ o o

*S 34 _LS * letter shift

&S 35 _LF & linefeed character

@S 36 _CR Q@ carriage return character

P100S 37 _100 P 100 constant 100

P10S 38 _10 P 10 constant 10

P5S 39 _5 P 5 constant 5

P3sS 40 _3 P 3 constant 3

P1S 41 _1 P1 constant 1

Qs 42 _'1' Q constant figure 1

PS 43 _'0' P constant figure 0

BS 44 _B B constant letter B

FS 45 _F F constant letter F

Is 46 _I I constant letter I

us 47 _U U constant letter U

Zs 48 _Z Z constant letter Z

PS 49 _dummy P used to flush and reset the accumulator

P1S 50 _cnt P1 counter, current number to be considered, will be 1increased

PS 51 _num P number to be printed, negative if counter is mod 3 or mod 5

PS 52 _d P digit to be printed

034s 53 L_next 0 _LS output LS, prepare for printing letters T123S 31 T L—end mark end Of program

0358 54 0 _LF output LF, linefeed]]]

oses o8 o R outout (R carrisge return E6OS 32 E L_start jump to the beginning of program

T49S 56 T _dummy reset Acc . .

A50S 57 A _cnt load Acc with _cnt #S 33 FS # -F-l gu re sh-l ft

A41S 58 A _1 increase Acc - .

T50S 59 T _cnt store Acc into _cnt, reset Acc *S 34 LS * -Lette r Sh-l 'Ft

A50S 60 L_start A _cnt load Acc with _cnt (we know that Acc initially is 0) -

Us1s 61 U _num tentatively set number to be printed 7

O i o) rentativel &S 35 _LF & linefeed character

E62S 63 E L_tryFizz loop until Acc < 0 °

A40S 64 A _3 add 3, restore previous value @S 36 _CR @ Carr1age return CharaCter

S41S 65 S _1 subtract 1, to check if Acc was 0

E73S 66 E L_notFizz jump if Acc was not 0, ie number was not divisable by 3 Ploos 37 loo P loo Constant loo

T51S 67 T _num set _num to negative value, flag that no value should be printed -

034S 68 0 _LS prepare printing letters Plos 38 lo P lo Constant lo

045S 69 0 _F output F -

046S 70 0 _I output I

gres ¢ o i P5S 39 _5 P 5 constant 5

048S 72 0 _7Z output Z

T49S 73 L_notFizz T _dummy reset Acc P3S 40 _3 P 3 ConStant 3

A50S 74 A _cnt load Acc with _cnt

S39S 75 L_Buzz S _5 subtract 5 PlS 41 l P l Constant l

E75S 76 E L_Buzz loop until Acc < © - .

A39S 77 A _5 add 5, restore previous value QS 42 ! l ! Q Constant 'F" gu r’e l

S41S 78 S _1 subtract 1, to check if Acc was 0 -

E86S 79 E L_notBuzz jump if Acc was not 0, ie number was not divisable by 5 1 1 7

T51S 80 T _num set _num to negative value, flag that no value should be printed PS 43 —_ O P ConStant -F-I gu re O

034s 81 0 _LS repare printing letters

oass 82 o6 bt B BS 44 _B B constant letter B

047S 83 o _u output U

oass a4 0z output Z FS 45 _F F constant letter F

048S 85 0.z output Z -

T49S 86 L_notBuzz T _dummy reset Acc IS 46 I I Constant letter I

A51S 87 A _num load _num to check number to be printed -

G53S 88 G L_next goto next qdteration if _num is negative

033S 89 L_printNum O _FS prepare for printing numbers US 47 —U U ConStant -l'etter U

T49S 90 T _dumm reset Acc

asos o1 Alent. load counter ZS 48 _Z Z constant letter Z

S37S 92 S _100 subtract 100, check if we should stop

coss 93 6 Lnotioo jump if not 100 yet PS 49 _dummy P used to flush and reset the accumulator

042S 94 o _'1' output 1 . . .

035 95 oo utput @ P1S 50 _cnt P 1 counter, current number to be considered, will be increased
- outpu

zs 97 z end the program 7 7 7 7

Bres o Lnotioo + cumy end the PS 51 _num P number to be printed, negative if counter is mod 3 or mod 5

T52S 99 T _d reset digit ° ° °

A50S 100 A _cnt load couﬁter PS 52 _d P d-l g-l t to be pr-l nted

S38S 101 L_countles S _10 subtract 10

G109S 102 G L_printloes goto print 10s if Acc < 0

T51S 103 T _num store number

A52S 104 A _d load digit

A41S 105 A1l increase digit

T52S 106 T _d store digit

A51S 107 A _num load number

E101S 108 E L_countl@s loop unconditionally

T49S 109 L_printles T _dummy reset Acc

A52S 110 A _d load digit

S41S 111 S _1 decrease digit by 1

G117S 112 G L_1 if negative (digit was 0), skip printing of tens digits

A41S 113 A _1 restore digit, by increasing with 1

L512S 114 L 27A(11-2) Acc << 11, create a printable figure

T52S 115 T _d save printable figure

052S 116 0 _d print figure / digit

T49S 117 L_1: T _dummy reset Acc

A51S 118 A _num load number

L512S 119 L 27 (11-2) Acc << 11, create a printable figure

T52S 120 T _d save printable figure

052S 121 0 _d print figure / digit

E53S 122 E L_next unconditional jump

XS 123 L_end X

31
32

33 _

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

L_start

L_tryFizz

L_notFizz

L_Buzz

L_notBuzz

L_printNum

L_notle0

L_countlOs

L_printl0s

L_1:

L_end

XmMO-A4r>» 40 -4Ar>»oun>»>—-AmMm>»—A4>»>»r —400n>» 4 4ANO0OO0OCO0OCOHNW»» 40O 400000 --MuLI>>PM0N» {00000 --TMuL>>DM0NC>» 4>»>» 4000 TVTTVTTVTITNCHTT® UTO T T TV IUT®R *x #*mMm-—

L_end
L_start

100
10

_LS
_LF
_CR
_dummy
_cnt
_1
_cnt
_cnt
_num
_3
L_tryFizz
3

_1
L_notFizz
_num

_LS

L_notBuzz
_num
_LS

_dummy
_num
L_next
_FS
_dummy
_cnt
_loo
L_notl00
X
Iy
Iy

_dummy

_d

_cnt

_1o
L_printl0s

_num

L_countl0Os
_dummy

mark end of program

jump to the beginning of program

figure shift

letter shift

linefeed character

carriage return character

constant 100

constant 10

constant 5

constant 3

constant 1

constant figure 1

constant figure 0

constant letter B

constant letter F

constant letter I

constant letter U

constant letter Z

used to flush and reset the accumulator
counter, current number to be considered, will be 1increased
number to be printed, negative if counter is mod 3 or mod 5
digit to be printed

output LS, prepare for printing letters
output LF, linefeed

output CR, carriage return

reset Acc

load Acc with _cnt

increase Acc

store Acc into _cnt, reset Acc

load Acc with _cnt (we know that Acc initially is 0)
tentatively set number to be printed
subtract 3

Tloop until Acc < 0

add 3, restore previous value

subtract 1, to check if Acc was 0

jump if Acc was not 0, ie number was not divisable by 3
set _num to negative value, flag that no value should be printed
prepare printing letters

output F

output I

output Z

output Z

reset Acc

load Acc with _cnt

subtract 5

loop until Acc < 0

add 5, restore previous value

subtract 1, to check if Acc was 0

jump if Acc was not 0, ie number was not divisable by 5
set _num to negative value, flag that no value should be printed
prepare printing letters

output B

output U

output Z

output Z

reset Acc

load _num to check number to be printed
goto next qdteration if _num is negative
prepare for printing numbers

reset Acc

load counter

subtract 100, check if we should stop
jump if not 100 yet

output 1

output 0

output 0

end the program

reset Acc

reset digit

load counter

subtract 10

goto print 10s if Acc < 0

store number

load digit

increase digit

store digit

load number

loop unconditionally

reset Acc

load digit

decrease digit by 1

if negative (digit was 0), skip printing of tens digits
restore digit, by increasing with 1

Acc << 11, create a printable figure
save printable figure

print figure / digit

reset Acc

load number

Acc << 11, create a printable figure
save printable figure

print figure / digit

unconditional jump

“FizzBuzz” on the EDSAC / Initial Orders |

034S
035S
036S
T49S
A50S
A41S
T50S
A50S
U51S
S40S
E62S
A40S
S41S
E73S
T51S
034S
045S
046S
048S
048S

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

L_next

L_start

L_tryFizz

Oo0oOo0oo0oOo0oO -"4ImMmwun>>»mMmununcr 4>»r>r»r 400O0

_LS
_LF
_CR
_dummy
_cnt

_cnt
_cnt
_num

L_tryFizz

L_notFizz
_num
_LS

1

3

3

F

I
VA
VA

output LS, prepare for printing letters

output LF, linefeed

output CR, carriage return

reset Acc

load Acc with _cnt

increase Acc

store Acc into _cnt, reset Acc

load Acc with _cnt (we know that Acc initially is 0)
tentatively set number to be printed

subtract 3

loop until Acc < 0

add 3, restore previous value

subtract 1, to check if Acc was 0

jump if Acc was not 0, ie number was not divisable by 3
set _num to negative value, flag that no value should be printed
prepare printing letters

output F

output I

output Z

output Z

31

32

33 _FS
34 _LS
35 _LF
36 _CR
37 _100
38 _10
39 _5
40 _3
41 _1
42 _'1'
43 _'o’
44 _B
45 _F
46 _I
47 _U
48 _Z
49 _dummy
50 _cnt
51 _num
52 _d
53 L_next
54

55

56

57

58

59

60 L_start
61

62 L_tryFizz

73 L_notFizz

75 L_Buzz

86 L_notBuzz

89 L_printNum

98 L_notle0

101 L_countl@s

107

108

109 L_printloes
110

111

112

113

114

115

116

117 L_1:
118

119

120

121

122

123 L_end

XmMO-—Ar>» 40 4Ar>»oun>»>—-AmMm>»—A4>»>»r—400n>»4—4ANO0OO0CO0OOHMNW»» 40O 400000 --MuLIEPMON» 4000001 MuLI>DM0NC>» 4>»>» 4000 TVTUTTUTINCHTT® UTO T T TV IUT®R *x #*mMm—

L_end
L_start

100
10

_LS
_LF
_CR
_dummy
_cnt
_1
_cnt
_cnt
_num
_3
L_tryFizz
3

_1
L_notFizz
_num

_LS

L_notBuzz
_num
_LS
_B

u
_Z
_Z
_dummy
_num
L_next
_FS
_dummy
_cnt
_loo
L_notl00

X

Iy

Iy

_dummy

_d

_cnt

_1o
L_printl0s
_num

L_countl0Os
_dummy

mark end of program

jump to the beginning of program
figure shift

letter shift

linefeed character

carriage return character
constant 100

constant 10

constant 5

constant 3

constant 1

constant figure 1

constant figure 0

constant letter B

constant letter F

constant letter I

constant letter U

constant letter Z

used to flush and reset the accumulator

counter, current number to be considered, will be 1increased
number to be printed, negative if counter is mod 3 or mod 5

digit to be printed

output LS, prepare for printing letters

output LF, linefeed

output CR, carriage return

reset Acc

load Acc with _cnt

increase Acc

store Acc into _cnt, reset Acc

load Acc with _cnt (we know that Acc initially is 0)
tentatively set number to be printed

subtract 3

Tloop until Acc < 0

add 3, restore previous value

subtract 1, to check if Acc was 0

jump if Acc was not 0, ie number was not divisable by 3

set _num to negative value, flag that no value should be printed

prepare printing letters

output F

output I

output Z

output Z

reset Acc

load Acc with _cnt

subtract 5

loop until Acc < 0

add 5, restore previous value
subtract 1, to check if Acc was 0
jump if Acc was not 0, ie number was not divisable by 5

set _num to negative value, flag that no value should be printed

prepare printing letters

output B

output U

output Z

output Z

reset Acc

load _num to check number to be printed
goto next qdteration if _num is negative
prepare for printing numbers

reset Acc

load counter

subtract 100, check if we should stop
jump if not 100 yet

output 1

output 0

output ©

end the program

reset Acc

reset digit

load counter

subtract 10

goto print 10s if Acc < 0

store number

load digit

increase digit

store digit

load number

loop unconditionally

reset Acc

load digit

decrease digit by 1

if negative (digit was 0), skip printing of tens digits
restore digit, by increasing with 1
Acc << 11, create a printable figure
save printable figure

print figure / digit

reset Acc

load number

Acc << 11, create a printable figure
save printable figure

print figure / digit

unconditional jump

“FizzBuzz” on the EDSAC / Initial Orders |

T49S
A50S
S39S
E75S
A39S
S41S
E86S
T51S
034S
044S
047S
048S
048S
T49S
A51S
G53S
033S
T49S
A50S
S37S
G98S
042S
043S
043S
ZS

73 L_notFizz
74

75 L_Buzz

76

77

78

79

80

81

82

83

84

85

86 L_notBuzz
87

88

89 L_printNum
90

91

92

93

94

95

96

97

NOOOOMmWw>»»r 1060 >r»r 100000 1mMmum=>E=mMmm >

_dummy
_cnt

_5

L_Buzz

_5
L_notBuzz
_nhum

_LS

_dummy
_num
L_next
_FS
_dummy
_cnt
_100
L_notl0O0

1]_l

1 ()|

1 ()|

reset Acc

load Acc with _cnt

subtract 5

loop until Acc < 0

add 5, restore previous value

subtract 1, to check if Acc was 0

jump if Acc was not 0, ie number was not divisable by 5
set _num to negative value, flag that no value should be printed
prepare printing letters

output B

output U

output Z

output Z

reset Acc

load _num to check number to be printed
goto next iteration if _num 1is negative
prepare for printing numbers

reset Acc

load counter

subtract 100, check if we should stop
jump if not 100 yet

output 1

output 0

output 0

end the program

31

32

33 _FS
34 _LS
35 _LF
36 _CR
37 _100
38 _10
39 _5
40 _3
41 _1
42 _'1'
43 _'o’
44 _B
45 _F
46 _I
47 _U
48 _Z
49 _dummy
50 _cnt
51 _num
52 _d
53 L_next
54

55

56

57

58

59

60 L_start
61

62 L_tryFizz

73 L_notFizz

75 L_Buzz

86 L_notBuzz

89 L_printNum

98 L_notle0

101 L_countl@s

107

108

109 L_printloes
110

111

112

113

114

115

116

117 L_1:
118

119

120

121

122

123 L_end

XmMO-Ar>» 40 -4Ar>»oun>»>—-AmMm>»—A4>»>»r —400n>»r44ANO0OO0CO0OOHMNW»» 406> 400000 --MOLI>PMWNMI» 400000 --TMuI>DM0NC>» 4>»>» 4000 TVTTUVTTVTINCHTT® UTO T T TV IUT®R *x #*mM-—

L_end
L_start

100
10

_LS
_LF
_CR
_dummy
_cnt
_1
_cnt
_cnt
_num
_3
L_tryFizz
3

_1
L_notFizz
_num

_LS

L_notBuzz
_num
_LS
_B

u
_Z
_Z
_dummy
_num
L_next
_FS
_dummy
_cnt
_loo
L_notl00

X

Iy

Iy

_dummy

_d

_cnt

_1o
L_printl0s
_num

L_countl0Os
_dummy

mark end of program

jump to the beginning of program
figure shift

letter shift

linefeed character

carriage return character
constant 100

constant 10

constant 5

constant 3

constant 1

constant figure 1

constant figure 0

constant letter B

constant letter F

constant letter I

constant letter U

constant letter Z

used to flush and reset the accumulator

counter, current number to be considered, will be 1increased
number to be printed, negative if counter is mod 3 or mod 5

digit to be printed

output LS, prepare for printing letters
output LF, linefeed

output CR, carriage return

reset Acc

load Acc with _cnt

increase Acc

store Acc into _cnt, reset Acc

load Acc with _cnt (we know that Acc initially is 0)

tentatively set number to be printed
subtract 3

Tloop until Acc < 0

add 3, restore previous value
subtract 1, to check if Acc was 0

jump if Acc was not 0, ie number was not divisable by 3
value should be printed

set _num to negative value, flag that no
prepare printing letters

output F

output I

output Z

output Z

reset Acc

load Acc with _cnt

subtract 5

loop until Acc < 0

add 5, restore previous value
subtract 1, to check if Acc was 0

jump if Acc was not 0, ie number was not divisable by 5
set _num to negative value, flag that no value should be printed

prepare printing letters
output B

output U

output Z

output Z

reset Acc

load _num to check number to be printed
goto next qdteration if _num is negative
prepare for printing numbers
reset Acc

load counter

subtract 100, check if we should stop
jump if not 100 yet

output 1

output 0

output ©

end the program

reset Acc

reset digit

load counter

subtract 10

goto print 10s if Acc < 0
store number

load digit

increase digit

store digit

load number

loop unconditionally

reset Acc

load digit

decrease digit by 1

if negative (digit was 0), skip printing of tens digits

restore digit, by increasing with 1
Acc << 11, create a printable figure
save printable figure

print figure / digit

reset Acc

load number

Acc << 11, create a printable figure
save printable figure

print figure / digit

unconditional jump

“FizzBuzz” on the EDSAC / Initial Orders |

T49S
T52S
A50S
S38S
G109S
T51S
A52S
A41S
T52S
A51S
E101S
T49S
A52S
S41S
G117S
A41S
L512S
T52S
052S
T49S
A51S
L512S
T52S
052S
E53S
XS

98 L_notl0O0
99
100

101 L_countlOs

102
103
104
105
106
107
108

109 L_printl0Os

110

111

112

113

114

115

116

117 L_1:
118

119

120

121

122

123 L_end

X MO -dr» 40 4dr>»>oaunun>» -4 m>»4>»>» 40 u0nxrx» -4

_dummy
d

_cnt

_10
L_printl0s
_num

_num
L_countl@s
_dummy

2A(11-2)
d

d

_dummy

_num

27A(11-2)
d

d

L_next

reset Acc

reset digit
load counter
subtract 10

goto print 10s if Acc < 0O

store number
load digit

increase digit

store digit
load number

loop unconditionally

reset Acc
load digit

decrease digit by 1

if negative (digit was 0), skip printing of tens digits
restore digit, by increasing with 1

Acc << 11, create a printable figure

save printable figure

print figure / digit

reset Acc
load number

Acc << 11, create a printable figure
save printable figure

print figure / digit

unconditional jump

“FizzBuzz” on the EDSAC / Initial Orders |

T123SE6OSH#S*S&SE@SP1OOSP1OSP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPS034S03550365T49SA50S5A41ST50SA505U5
1SS40SE62SA40SS41SE73ST1T515034504550465048S048S
T49SA50SS39SET75SA395S541SE865T51503450445047504
8S048ST49SA515G53S0335T49S5A5055375G9850425043S
043SZST49ST525A50SS38SG10O9ST51S5A525A41ST52S5A51
SE101ST49SA525541S5G117SA415L5125T5250525T49S5A5
1SL512S5T525052SE535XS

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

“FizzBuzz” on the EDSAC / Initial Orders |

T123SE6OSH#S*S&SE@SP1OOSP1OSP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPS034S03550365T49SA50S5A41ST50SA505U5
1SS40SE62SA40SS41SE73ST1T515034504550465048S048S
T49SA50SS39SET75SA395S541SE865T51503450445047504
8S048ST49SA515G53S0335T49S5A5055375G9850425043S
043SZST49ST525A50SS38SG10O9ST51S5A525A41ST52S5A51
SE101ST49SA525541S5G117SA415L5125T5250525T49S5A5
1SL512S5T525052SE535XS

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

“FizzBuzz” on the EDSAC / Initial Orders |

T123SE6OSH#S*S&SE@SP1OOSP1OSP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPS034S03550365T49SA50S5A41ST50SA505U5
1SS40SE62SA40SS41SE73ST1T515034504550465048S048S
T49SA50SS39SET75SA395S541SE865T51503450445047504
8S048ST49SA515G53S0335T49S5A5055375G9850425043S
043SZST49ST525A50SS38SG10O9ST51S5A525A41ST52S5A51
SE101ST49SA525541S5G117SA415L5125T5250525T49S5A5
1SL512S5T525052SE535XS

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

There is a small bug in the program. Did you notice!

“FizzBuzz” on the EDSAC / Initial Orders |

T123SE6OSH#S*S&SE@SP1OOSP1OSP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPS034S03550365T49SA50S5A41ST50SA505U5
1SS40SE62SA40SS41SE73ST1T515034504550465048S048S
T49SA50SS39SET75SA395S541SE865T51503450445047504
85S048ST49SA515G53S0335T49S5A5055375G9850425043S
0435Z5T49ST525A50SS38SG109ST51S5A525A41ST52S5A51
SE101ST49SA525541S5G117SA415L5125T5250525T49S5A5
1SL512S5T525052SE535XS

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

“FizzBuzz” on the EDSAC / Initial Orders |

T123SE6OSH#S*S&SE@SP1OOSP1OSP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPS034S03550365T49SA50S5A41ST50SA505U5
1SS40SE62SA40SS41SE73ST1T515034504550465048S048S
T49SA50SS39SET75SA395S541SE865T51503450445047504
85S048ST49SA515G53S0335T49S5A5055375G9850425043S
0435Z5T49ST525A50SS38SG109ST51S5A525A41ST52S5A51
SE101ST49SA525541S5G117SA41S5L5125T5250525T49S5A5

lS L512$T525052SE53SXS Here iS 1 qUiCk and dil’t)’ ﬁX’

SEmaaaa.

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

“FizzBuzz” on the EDSAC / Initial Orders |

T123SE6OSH#S*S&SE@SP1OOSP1OSP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPS034S03550365T49SA50S5A41ST50SA505U5
1SS40SE62SA40SS41SE73ST1T515034504550465048S048S
T49SA50SS39SET75SA395S541SE865T51503450445047504
85S048ST49SA515G53S0335T49SA505S37SA415G9852504
350435T49ST525A50SS385G109ST51S5A525A41ST52S5A51
SE101ST49SA525541S5G117SA415L5125T5250525T49S5A5
1SL512S5T525052SE535XS

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

“FizzBuzz” on the EDSAC / Initial Orders |

T123SE6OSH#S*S&SE@SP1OOSP1OSP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPS034S03550365T49SA50S5A41ST50SA505U5
1SS40SE62SA40SS41SE73ST1T515034504550465048S048S
T49SA50SS39SET75SA395S541SE865T51503450445047504
85S048ST49SA515G53S0335T49S5A505S37SA415G9852504
3S043S5T49ST525A50SS385SG109ST51S5A525A41ST52S5A51
SE101ST49SA525541S5G117SA415L5125T5250525T49S5A5
1SL512S5T525052SE535XS

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

“FizzBuzz” on the EDSAC / Initial Orders |

T123SE6OSH#S*S&SE@SP1OOSP1OSP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPS034S03550365T49SA50S5A41ST50SA505U5
1SS40SE62SA40SS41SE73ST1T515034504550465048S048S
T49SA50SS39SET75SA395S541SE865T51503450445047504
85S048ST49SA515G53S0335T49S5A505S37SA415G9852504
3S043S5T49ST525A50SS385SG109ST51S5A525A41ST52S5A51
SE101ST49SA525541S5G117SA415L5125T5250525T49S5A5

1SL512ST52S5052SE53SXS
E@Eﬂ

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

