History and Spirit of C

Olve Maudal, Cisco Systems

swisslmeeting

Embedded Computing Conference

opening keynote at ECC 2017, Sep 5,Winterthur, Switzerland

At Bell Labs.

http://www3.nd.edu/~atrozzol/BellLabs 1959.jpg

Back in 1969.

'4' ." -~
<. <

.

http://www.multicians.org/picnics.html

Ken Thompson wanted to play.

Ken Space Travel

http://upload.wikimedia.org/wikipedia/commons/3/36/Ken_n_dennis.jpg

1w

AAAAAAA

At

.......................

e

e —

’—-’ _-
—= EX o
& g TR ’
|
— 1 | - !
\ £
U ™
X Y »
- =~ ¢ —
} "-fi‘ :1%“
- { . {“'3
‘
D://e pedia.org PDP-/H ed e:Pdp/-0

Ended up writing a nearly complete operating system from scratch.

TEXT PROCESSING

TEXT FORMATTERS TYPESETTING
LINE AND SCREEN EDITORS

SPELLING CHECKER MEMO MACROS FILE AND
STRING

MANIPULATION

SORT AND SELECT -
FILES AND STRINGS

LANGUAGES
C AND FORTRAN 77

COMMON OBJECT CODE
FILE FORMAT

(COFF) PIPES AND HIERARCHICAL
FILTERS FOREGROUND FILE SYSTEM
AND
BACKGROUND DATABASE
EXECUTION BUILDING

BLOCKS

CONFIGURABLE
ENVIRONMENT

THE
KERNEL

PROGRAMMER'S

ADDITIONAL
UTILITIES WORKBENCH
FLEXIB
DEVICE DRIVERS CLOEMMA';‘ED SC FILE TIME AND
DATE STAMPING
LANGUAGE ,
\ SAMES SOURCE CODE {
GRAPHICS 170 REDIRECTION CONTROL . SYSTEM
CALENDAR COMMAND CHAINING >
: (sccs)
e svaTEMi INCREASE PROGRAMMER'S
PRODUCTIVITY

COMMUNICATIONS AND NETWORKING

UUCP MAIL
NETWORKING STANDARDS

TERMINAL DRIVERS

https://archive.org/stream/byte-magazine-1983-08/1983_08 BYTE_08-08_The_C_Language#page/n|90/mode/lup

In about 4 weeks.

"Essentially one person for a month, it was just my self”
(Ken Thompson, 1989 Interview)

In pure assembler of course.

cloll LAS
SPA 'CMA J/EXAMINE AC SWITCHES
JMP GO /WAIT UNTIL ACS0=0
DAC CNTSET
LAC ONE /115 A CONSTANT
DAC BIT
all | /CLEAR THE LINK
LOOP, LAC CNTSET
DAC CNT
LAC BIT
LOOPI, 1SZ CNT /LOOP UNTIL CNT GOES TO ZERO
JMP LOOPI /JUMP TO PRECEDING LOCATION
RAL
DAC BIT /ROTATE BIT
LAS
SMA /IF ACSO=1, RESET TIME CONSTANT
JMP LOOP
JMP GO
/STORAGE FOR PROGRAM DATA
@Rl 0
BIT, 0
CNTSET, 0
ONE,]
START GO

http://bitsavers.trailing-edge.com/pdf/dec/pdp7/PDP-7_AsmMan.pdf

Dennis Ritchie soon joined the effort.

http://upload.wikimedia.org/wikipedia/commons/3/36/Ken_n_dennis.jpg

Dennis

Ken

http://cm.bell-labs.com/who/dmr/picture.html

they invented C,

main() {
printf("hello, world");
}

http://cm.bell-labs.com/cm/cs/who/dmr/ctut.pdf

heavily inspired by Martin Richards’ portable
systems programming language BCPL.

GET “LIBHDR"”
LET START() BE WRITES(“Hello, World”)

Martin Richards, Dec 2014

http://cm.bell-labs.com/cm/cs/who/dmr/ctut.pdf

In 1972 Unix was rewritten in C.

137 printf(fmt,x1,x2,x3,x4,x5,x6,x7,x8,x9)
138 char fmt[]; {

139
1490
141
142
143
144 loop:
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

extern printn, putchar, namsiz, ncpw;
char s[];
auto adx[], x, ¢, i[];

adx = &x1; /* argument pointer */

while((c = *fmt++) = "%") {

1f(c == "\Q@'")
return;
putchar(c);

}
X = *adx++;
switch (c = *fmt++) {

case 'd': /* decimal */
case 'o': /* octal */

if(x < @) {
X = -X;
1f(x<@) { /* - infinity */
if(c=="0")
printf("100000");
else
printf("-32767");
goto loop;
}

putchar('-");

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

printn(x, c=='0'78:10);

goto loop;

case 's': /* string */

S = X;

while(c = *s++)
putchar(c);

goto loop;

case 'p':
S = X;

putchar('_");

C = namsiz;

while(c--)
1f(*s)

goto loop;
¥
putchar('%");
fmt--;
adx--;
goto loop;

putchar(*s++);

https://code.google.com/p/unix-jun72/source/browse/trunk/src/c/c03.c

Due to Steve Johnsons Portable C Compiler,

Fact: from “The Development of the C Language” by Dennis Ritchie

Unix and C could be ported to all kinds of computer architectures.

http://www.computerhistory.org/collections/catalog/ 102691249 http://www.technikum29.de/en/computer/early-computers http://en.wikipedia.org/wiki/IBM_System/370 http://alegion63.tripod.com/bob/id6.html

C became the most successful programming language ever.

Initially K&R and PCC was the only reference for C.

K&R
(1978)

http://blogs.ibmsonline.com/wb-content/uploads/2014/1 1/

With significant contributions from C++ (Bjarne Stroustrup), the C language
got standardized

/ 2
’

1. INTRODUCTION
1.1 PURPOSE

This Standa rd specifies :
* the reépresentation of C Programs;
* the syntax and constraints of the ¢ Ianguage;

* the semantic ryles for interpreting C Programs;
* the representation of input data

This Standard does not Specify:

* the mechanisp by which ¢ Programs are transformeq for use by a
data-p rocessing System;

* the mech

anism by which
data

C programs are invoked for use by a
~Processing system;

Sm by which output datga

produced by a ¢ program;

* the size of complexity of @ program ang its ¢
the capacit

y of any Specific data—processing
a particula

ata that wity exceed
I processor;

System or the Capacity of
* all minimal re,

Quirements of a d
Capable of sup,

Processing System that jg
pPorting a conform

ing implementation .

ata-,

ANSI/ISO C

(C89/C90)

NTERNATI
STANDARp "NAL IS0/
9899
Soong g
1990550

oo Materiglg o, 5 sy Council 1z
Totechy, © Subject 1,

mercas, o ermag,
. Ay

i ") Stangr,
lcation mgy 72! Stangersy Marcizage, Organ;

May po Insai Zation (i
euest Y 28 repro urnwvf,é ang " (1S0),
ia

. N any 1
1910 thi gape ¥ fom
"andard shoy, be Slectroyry
Sbmitte g <.

12]

1120
C 9899-201.
VCITS/ISO/E 20
['l;gITEC 9899-2011,1DT)

amming
ogy — Progr

jonal Standard

bybnnaﬁontechnal

languages — €

peveloped by

American Nat

ol14/11/
http://blogs.ibmsonline.com/wb-content/uploads/2
ttD:

At Bell Labs. Back In 1969. Ken Thompson wanted to play. He found a
little used PDP-7. Ended up writing a nearly complete operating
system from scratch. In about 4 weeks. In pure assembler of course.
Dennis Ritchie soon joined the effort.While porting Unix to a

PDP-1 1 they invented C, heavily inspired by Martin Richards’ portable
systems programming language BCPL. In 1972 Unix was rewritten in
C. Due to Steve Johnsons Portable C Compiler (PCC), Unix and C
could be ported to all kinds of computer architectures. C became
the most successful programming language ever. Initially the K&R and
PCC was only reference for C.With significant contributions from
C++ (Bjarne Stroustrup), the C language got standardized in

1989/1990, and thereafter updated in 1999 and 201 I.

Ken Thompson, Dennis Ritchie and 20+ more technical staff from Bell Labs
had been working on the very innovative Multics project for several years.

GE-645 SYSTEM

http://web.mit.edu/saltzer/www/multics.html

While working on the Multics projects, Dennis and Ken had also been exposed
to the very portable and efficient systems programming language BCPL.

GET “LIBHDR"”
LET START() BE WRITES(“Hello, World”)

"Both of us were really taken by the language and did a lot of work
with it." (Ken Thompson, 1989 interview)

http://www.princeton.edu/~hos/mike/transcripts/thompson.htm

BCPL (1967) was the brainchild of Martin Richards from the University of
Cambridge

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Project MAC

\ Memorandum-}-352
July 21, 1967-

To: Project MAC Participants

Froms: Martin Richards

Subject: The BCPL Reference Manual
ABSTRACT

BCPL is a simple recursive programming language
designed for compiler writing and system programming: it
was derived from true CPL (Combined Programing Eanguage)
by removing those features of the full language which make
compilation difficult namely, the type and mode matbhing
rules and the variety of definition structures with their

associated scope rules.

(This is a copy of the original document)

BCPL was a very much simplified version of CPL (1963).

function Euler [function Fct, real Eps; integer Tim]= result of
§1 dec §l.1 real Mn, Ds, Sum
integer i, ¢
index n=0
m = Array [real, (0, 15)] §1.1
i, t, m[0] := 0,0, Fct[0]

Sum = m[0]/2
§1.2i:=i+1
Mn = Fct[i]

for kK = step 0, 1, n do
m(k], Mn := Mn, (Mn + m[k])/2
test Mod[Mn]) < Mod[m[n]] A n < 15
then do Ds, n, m[n-+1] := Mn/2, n+1, Mn
ordo Ds := Mn
Sum := Sum + Ds
t := (Mod[Ds] < Eps) -t +1,0§..2
repeat while 1 < Tim
result := Sum §1.

CPL was the language initially designed for the Atlas computer to be
installed in Cambridge (ordered in 1961, operational in 1964).

A replacement for EDSAC 2,

EDSAC 2 users in 1960

http://en.wikipedia.org/wiki/EDSAC_2

which was an

upgrade of the original EDSAC computer (1949)

ALEELEY
LEILE

s

;;llll""l

(AN} |lllLa- ‘

b - gly

TR [HH |'i

http://en.wikipedia.org/wiki/Electronic_Delay Storage Automatic_Calculator

EDSAC was arguably, the first electronic digital stored-program
computer. It ran its first program May 6, 1949

...............

ALEILEY
LEILE
LT

lﬂdlg

““""""e'i,:_!,li

* 11
A ...,.""l'v~,

—~—

Maurice Wilkes and Bill Renwick in front of the complete EDSAC

http://en.wikipedia.org/wiki/Electronic_Delay Storage Automatic_Calculator

Maurice Wilkes' himself commenting on the 1951 film about how EDSAC was
used in practice:

https://youtu.be/x-vSOWcJyNM

The EDSAC 1951 film
abridged version

Commentary by
M. V. Wilkes

ALEELEY
LEILE

ullﬂ'!"lﬂi
A AL

7
| | l
gy
. . .
. N =

Y i
LU LT
Uil

nnnlnr{ L
. - .

EDSAC 2 users in 1960

http://en.wikipedia.org/wiki/EDSAC_2

A scaled down version of Atlas (called Titan / Atlas2) was ordered
in 1961, delivered to Cambridge in 1963, but not usable until early 1964

“How BCPL evolved from CPL”, Martin Richards

http://en.wikipedia.org/wiki/Titan_(computer)

a programming language was needed!

Many existing programming languages was concidered....

Atlas Autocode

(designed by Tony Brooker and Derrick Morris)

begin

real a, b, ¢, Sx, Sy, Sxx, Sxy, Syy, nextx, nexty
integer n

read (nextx)

SX = 0; Sy = 0; Sxx = 0; Sxy = 0; Syy = 0

n =20

read (nexty) ; n=n + 1

SX = SX + nextx; Sy = Sy + nexty

SXx = SxX + nextx? ; Syy = Syy + nexty?

SXy = Sxy + nextx*nexty

read (nextx) ; ->1 unless nextx = 999 999

a = (n*Sxy - Sx*Sy)/(n*Sxx - Sx2)

b = (Sy - a*Sx)/n

c = Syy - 2(a*Sxy + b*Sy) + a2*Sxx - 2a*b*Sx + n*b?2
newline

print fl(a,3) ; space ; print f1l(b,3) ; space ; print fl(c,3)
read (nextx) ; ->2 unless nextx = 999 999

stop
end of program

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)
http://history.dcs.ed.ac.uk/archive/docs/atlasautocode.html

an0aan

Qa0 an

Fortran

(appeared 1957, designed by John Backus)

AREA OF A TRIANGLE WITH A STANDARD SQUARE ROOT FUNCTION
INPUT - CARD READER UNIT 5, INTEGER INPUT
OUTPUT - LINE PRINTER UNIT 6, REAL OUTPUT
INPUT ERROR DISPLAY ERROR OUTPUT CODE 1 IN JOB CONTROL LISTING

READ INPUT TAPE 5, 501, IA, IB, IC
501 FORMAT (31I5)
IA, IB, AND IC MAY NOT BE NEGATIVE
FURTHERMORE, THE SUM OF TWO SIDES OF A TRIANGLE
IS GREATER THAN THE THIRD SIDE, SO WE CHECK FOR THAT, TOO

IF (Ia) 777, 777, 701

701 IF (IB) 777, 777, 702
702 1IF (IC) 777, 777, 703
703 IF (IA+IB-IC) 777,777,704
704 IF (IA+IC-IB) 777,777,705
705 IF (IB+IC-IA) 777,777,799
777 STOP 1
USING HERON'S FORMULA WE CALCULATE THE
AREA OF THE TRIANGLE
799 S = FLOATF (IA + IB + IC) / 2.0

AREA = SQRT(S * (S - FLOATF(IA)) * (S - FLOATF(IB)) *

- (S - FLOATF(IC)))

WRITE OUTPUT TAPE 6, 601, IA, IB, IC, AREA
601 FORMAT (4H A= ,I5,5H B= ,I5,5H C= ,I5,8H AREA= ,F10.2,

- 13H SQUARE UNITS)

STOP
END

Simple FORTRAN Il program

http://en.wikipedia.org/wiki/Fortran

Algol

(aka IAL, designed by Friedrich L. Bauer, Hermann Bottenbruch, Heinz Rutishauser, Klaus Samelson, John
Backus, Charles Katz, Alan Perlis, Joseph Henry VXegstein)

procedure Simps (F(), a, b, delta, V);
comment a, b are the min and max, resp. of the points def. interval of integ. F'() is theXunction to
integrated.

delta is the permissible difference between two successive Simpson sums V is grea
the maximum absolute value of F on a, b;

begin
Simps: Ibar: =VX(b—a)
n :=1
h :=(b-a)/2
J :=h XF@+Fb))
A L Heinz Rutishauser <
q =S+F (a+©@2xk~1) xh) Swiss mathematician
I :=J+4+4XhXS
if (delta < abs (I—Ibar)) V"
begin Ibar: =1
J = (I+J)/4 Heinz Rutishauser was a Swiss mathematician and a pioneer of modern
n :=2Xn;h:=h/2 numerical mathematics and computer science. Wikipedia
goto Jl end
Simps := 1/3 Born: January 30, 1918, Weinfelden, Switzerland
return Died: November 10, 1970, Zurich, Switzerland
mteg;r (k,) Education: ETH Zurich
en SImps Field:_ Mathematics

B e SeewetmmmettETT

http://en.wikipedia.org/wiki/ALGOL_58
http://www.softwarepreservation.org/projects/ALGOL/report/Algol58_preliminary_report_ CACM.pdf/

Autocode!? Fortran?! Algol? other languages?

But, hey....

In the early 1960's, it was common to think "we are building a new
computer, so we need a new programming language."

(David Hartley, in 2013 article)

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

P

Cambridge Pregramming Language —
Cambridge Plus London
Combined Programming Language
(Cristophers’ Programming Language)

"anything not explicity allowed should be forbidden ... nothing should be left
undefined"

"It was envisagd that [the language] would be sufficiently general and
versatile to dispense with machine-code programming as far as possible”

From David Hartley 's article "CPL: Failed Venture or Noble Ancestor?" (2013)

Example of CPL

function Euler [function Fct, real Eps; integer Tim]= result of
§1 dec §1.1 real Mn, Ds, Sum
integer I, ¢
index n=0
m = Array [real, (0, 15)] §1.1
i, t, m[0] := 0,0, Fct[0]

Sum := m[0]/2
§1.2i: =i+ 1
Mn = Fct[i]

for k = step 0, 1, n do
m(k], Mn := Mn, (Mn + mlk])/2
test Mod[Mn) < Mod[m[n]] A n < 15
then do Ds, n, m[n-+1] := Mn/2, n+1, Mn
ordo Ds := Mn
Sum = Sum + Ds
t .= (Mod[Ds) < Eps) -t +1,0§..2
repeat while t < Tim
result := Sum §1.

http://www.math.bas.bg/~bantchev/place/cpl/features.pdf

CPL as described in 1963

The main features of CPL

By D. W. Barron, J. N. Buxton, D. F. Hartley, E. Nixon and C. Strachey

The paper provides an informal account of CPL, a new programming language currently being
implemented for the Titan at Cambridge and the Atlas at London University. CPL is based on,
and contains the concepts of, ALGOL 60. In addition there are extended data descriptions,
command and expression structures, provision for manipulating non-numerical objects, and
comprehensive input-output facilities. However, CPL is not just another proposal for the
extension of ALGOL 60, but has been designed from first principles and has a logically coherent
structure.

http://comjnl.oxfordjournals.org/content/6/2/134.full.pdf+html

Martin Richards started as a research student in 1963

AS IVIL TIat WOTIT 1Iuchnoccd Dy Lnnmsopncer S acas.

My role in the CPL project was to help with the implementation of the Cambridge
CPL compiler. The task was daunting because we were working with a new language that
included many of the mnovatons found in Algol 60 that were Known to be difficult to
implement efficiently. But CPL was larger. It had more datatypes, and it was one of the
first languages to adopt a scheme whereby the types of vanables could be deduced without
the user having to explicitly declare them. In addition to call-by-value and call-by-name,
it had call-by-reference. It had two Kinds of procedures: fixed and free, distinguished by
whether their free vanables were effectively called by value or by reference. Italso allowed
label vanables and the passing of labels as arguments combined with a goto statement that
not only allowed jumps out of procedures (analogous to the use of long jmp in C), but also
jumps to labels in inner blocks causing the intervening declarations to be obeyed. Later

in the project the language provided structures, unions and pointers, together with runtime
garbage collection.,

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

eciLsion

" N ookt it pr
Martin Richards started ag doubte floting P ¥

suWOTE for complex numbers

AS IVILL 1At WOIT 1mnucnocd oy Lnmnstwopncer s Pctjmortpkic opexo&ors |
My role in the CPL project was to help .. functions (ako, coercion) Cambridge
CPL compiler. The task was daunting becaus . es and lamda colewl® — apoygee that
included many of the mnovations found in m difficult to
implement efficiently. But CPL was larger. It had more datatypes, and it was one of the
first languages to adopt a scheme whereby the types of vanables could be deduced without
the user having to explicitly declare them. In addition to call-by-value and call-by-name,
it had call-by-reference. It had two Kinds of procedures: fixed and free, distinguished by
whether their free vanables were effectively called by value or by reference. Italso allowed
label variables and the passing of labels as arguments combined with a goto statement that
not only allowed jumps out of procedures (analogous to the use of longjmp in C), but also
jumps to labels in inner blocks causing the intervening declarations to be obeyed. Later

in the project the language provided structures, unions and pointers, together with runtime
garbage collection,

763

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

CPL was once compared to the invention of a pill that could
cure every type of ill.

http://s3.amazonaws.com/rapgenius/Blg-Pill.jpg

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

Writing a compiler for CPL was too difficult.
Cambridge never succeeded writing a working CPL comepiler.

Development on CPL ended December |966.

Inspired by his work on CPL, Martin Richards wanted to create a language:

g X @ that was simple to compile
(:;/ e with direct mapping to machine code
® that assumes the programmer know what he is doing

"The philosophy of BCPL is not one of the tyrant who thinks he knows
best and lay down the law on what is and what is not allowed,;

rather, BCPL acts more as a servant offering his services to the

best of his ability without complaint, even when confronted with

apparent nonsense. The programmer is always assumed to know what he
is doing and is not hemmed in by petty restrictions.”

The BCPL Reference Manual, Martin Richards, July 1967

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

e BCPL is a simple recursive programming language
designed for compiler writing and system programming: it
was derived from true CPL (Combined Programming Language)

Memorandum-}-352
July 21, 1967.

Tot Project NAC Participants by removing those features of the full language which make
TFrom: Martin Richards 2 ® o
T e e Aatecece o compilation difficult namely, the type and mode matbhing

| rules and the variety of definition structures with their

associated scope rules.

BCPFL is a simple recursive programming language
designed for compiler writing and system programming: it
was derived from true CPL (Combined Programuing I_;,anguage)
by removing those features of the full language which make
compilation difficult namely, the type and mode matbhing
rules and the variety of definition structures with their

associated scope rules.

(This is a copy of the original docunent)

1.0 Introduction

BCPL is the heert of tie BCPL Compiling Systen; it is a
language which looke uuch like true CPL [1] but is, in fact, a vory
sinple larvuage which is easy to conrile into efficient codoe The
nain differences betweer BCPL and CPL eore:

(1)
(2)

(3)
(2)

(5)
(6)

A sinplifiod syntax.

A1) data itcis have Rvalues which are bit natterns of

the same length and the tyde of an Rvalue depends only

on the context of its usc and not on the declaration of
the dota iton. This sinplifies the conpiler and inproves
the object code efficicncy but as 2 rosult there is no
type checking.

BCPL has a nenifest raacd constant facility.

Tunctions and routines mey only have frec variables which
are nmanifest naicd constants or whosc Lyalues arc nanifest
constants (i.c., exglioit functions or routines, labels
or global variables)e

The user rey manipulate voth L and Rvalues explicitly.

There is a schcne for separate coapilation of segnents
.of a projratie

2.0 BCPL Syntax

The

syntactic nofation used in this panual is basically BNF

with the following extensions:

(1)

(2)

The synbols &, D and C are used as shorthand for
<oxpréssion> <definition> and <comand>e

The sr!talinsuistic brackets '<' and *>! pay be
thus used to group together more than ong cons
sequence (which may contain alternatives)s An integer
subseript nay be attached to the -atalinguistic bracket
15! and used to specify repetition; if it is the
integer n, then the scquence yithin the brackets oust

be repeated a2t jeast n tines; if the integer is followed
by a ninus sign, then the sequence "2y be repeated at
nost n tines or it may be absente

2.4 Hardwarc Syntax

The hardware syntax is the syntax of an ac

tual inpleoentation

BCPL i ;

L is the heert of tihie BCPL Comp:x.ling Systea‘ it .13
’ | >
la.ngua.be which looke nwuch like true CPL [1] but 18, in fact, a

’

sinple larymuage w
aryuage which 15 easy to connile into efficient code

The

nain differences between BCPL and CPl, are:

(1) A sinplified syntax.

2) Al .
(2) 411 data itcis have Rvalues which are bit patterns of

(3)

(5)
(6)

the r. »
on tﬁijioi33§§h ?Pd the tybe of an Rvalue depends onl
ihe Ankn Fibae o Thits use and not on the declaration gf
. 8 sinplifies the compiler and inmproves

the object code effi
c
type checking. 1enoy but as a rosult there is no

BCPL has a panifest naued constant facility.

Functi and ;
are x&:;l;est mh.ttums mey only have free variables which
na.icd constants or whosc Lvalues are ’mnifccast

constants (i.c. 1
oF diodel vartabhos) SRS SIROTIon oF FOUReN) SSUeiR

Th r
e user rey maninulate bLeth L and Rvalues explicitly

Th
ere is a schcne for sevarate coapilation of segnents

~of a prozran.

Martin Richards joined MIT’s Project MAC

and through the MULTICS project the Bell Labs people learned about this beautiful
language called BCPL - a language exactly to the taste of Ken and Dennis.

Humble fans meet Martin Richards, the inventor of BCPL

,§

Jon Jagger, Martin Richards, Olve Maudal

Computer Laboratory, Cambridge, December 2014

B was the link between BCPL and C

From an interview with Ken Thompson in 1989
Interviewer: Did you develop B?
Thompson: | did B.
Interviewer: As a subset of BCPL!
Thompson: It wasn't a subset. It was almost exactly the same.

Thompson: It was the same language as BCPL, it looked
completely different, syntactically it was, you
know, a redo. The semantics was exactly the same
as BCPL.And in fact the syntax of it was, if you
looked at, you didn't look too close, you would
say it was C. Because in fact it was C, without

types.

http://www.princeton.edu/~hos/mike/transcripts/thompson.htm

Fr '
om the HOPL article by Dennis Ritchie in 1993

The Development of the C Language™

Dennis M. Ritchie
Bell Labs/Lucent Technologies
Murray Hill, NJ 07974 USA

dmr@bel L- Labs.com
ABSTRACT

The C programming language was devised in the early 1970s as a system implcmcntation language
for the nascent Unix operating system- Derived from the typeless language BCPL, it evolved 2 type

structure; created on a tiny machine as 2 tool to improve 2 meager programming environment, it
has become one of the dominant languages of today. This paper studies its evolution.

Introduction

NOTE: *Copyright 1 993 Association for Computing Machinery, Inc. This electronic reprint made
available by the author as a courtesy- For further publication rights contact ACM or the author.
This article was presented at Second History of Programming Languages conference, Cambridge,
Mass., April, 1993.

It was then collected in the conference proceedings: History of Programming Languages-1I ed.
Thomas J. Bergin, Jr. and Richard G. Gibson, Jr. ACM Press (New York) and Addison-Wesley
(Reading, Mass), 1996; ISBN 0-201-89502-1.

This paper is about the development of the C pmgramming language, the influences on it, and the
conditions under which it was created. For the sake of brevity, 1 omit full descriptions of C itself, its
parent B [J ohnson 73] and its grandparent BCPL [Richards 79], and instead concentrate on characteristic
clements of each language and how they evolved.

C came into being in the years 1969-1973, in parallel with the early development of the Unix operating
system; the most creative period occurred during 1972. Another spate of changes peaked between 1977
and 1979, when portability of the Unix system was being demonstrated. In the middle of this second
period, the first widely available description of the language appeared: The C Programming Language,
often called the * white book' or ‘K&R' [Kernighan 78). Finally, in the middle 1980s, the language was
officially standardized by the ANSI X3J11 committee, which made further changes- Until the early
1980s, although compilers existed for a variety of machine architectures and operating systems, the
language was almost exclusively associated with Unix; more recently, its use has spread much more
widely, and today it is among the languages most commonly used throughout the computer industry-

History: the setting

The late 1960s werc 2 turbulent era for computer systems research at Bell Telephone Laboratories
[Ritchie 78] [Ritchie 84]. The company was pulling out of the Multics project [Organick 75), which had
started as a joint venture of MIT, General Electric, and Bell Labs; by 1969, Bell Labs management, and

/

The C '
arl I9p7rg§rggvg1mg Ianguage was devised in the
e et s.ystem lmplementation language
e o Iamx operating system. Derived from
e peless Zguage ECPL, it evolved a type
orove o ,m e ee on a tiny machine as a tool to
Throve a ! ger programmmg environment, it has
ne of the dominant languages of today.

R .
CI;L, B.and C differ syntactically in many
etails, but broadly they are similar.

The BCPL Reference Manual, Martin Richards, July 1967 Users’ Reference to B, Ken Thompson, January 1972

BELL TELEPHONE LA.ORAYORI(S

INCORPORATLOD

3
LARORATOmIES, |

. INCORPO,
FOR PUBLICATION RATED. AND I8 wor

COVER SHEET FOR TECHNICAL

MEMORANDUM
TITLE- Users*’ keference to B
MM=72-12714
CASE CHARGED~- 39199
TUTE OF TECHNOLOGY ——] —
MASSACHUSETTS INSTI ILING cask- 39199 - 4, ATE- Jamuary 7, 197,
AUTHOR- g Thom
-) o pson
Project MAC FILLING SUBJECTS Compi)ers Ext 2394
Languages
PDP - 14
Memorandum-H-352
S July 21, 1967-
ABSTRACT

Project MAC Participants
Small, unrestric
tive syntax tha
t is elly to com
pile,

TFrom: Martin Richards
Programs are

The BCPL Reference Manual

Tos

Subject:
| often quite Compact,

ABSTRACT

BCPL is a simple recursive programming language
r writing and system programming: it

igned for compile
desig I-‘anguage)

was derived from true CPL (Combined Programning :
ng those features of the full language which make
the type and mode matbhing

res with their

by removi
compilation difficult namely,

rules and the variety of definition structu
Text - 27 pages

ReferenCes

associated scope rules.

(This is a copy of the original document)

excerpt from the BCPL reference manual (Richards, 1967), page 6

an RVALUZE is 2 binary bit nattern of a fixed length (vhich is
inplenentation devendent), it is usuallv the size of a conputer word.
Rvalues nay be used to represent a variety of diifferent kinds of
objects such as intezers, truth valves, vectors or functionse - The

actual kind of obj:et represanted is called the TYPE of the Rvalue.

excerpt from the B reference manual (Thompson, 1972), page 6

An rvalue is a binary bit pattern of a fixed length, On the
PDP-11 it 18 16 bits., Objects are rvalues of different kinds

such as integers, labels, vectors and functions. The actual kind

Oof object represented is called the type of the rvalue.

excerpt from the BCPL reference manual (Richards, 1967), page 6

A BCPL expression can be evaluated to yield en Rvalue but its
type remains underined until the Rvalue is used in sowme definitive
context and it is then assuned to renresent an object of the required

typece Tor excmple, in the followving function application

(B*[i] » 2,) [1, 2[i]]

the expression " (B*[i] = £, g) is ovaluated to yield an Rvalue which

excerpt from the B reference manual (Thompson, 1972), page 6
A B expression can be evaluated to yigld an rvalue, but its type

is undefined until the.rvalue is used in some context, It is
then assumed to represent an object of the required type. For
example, ;n the follpwing function call

(b?f:g[i])(1,x>1) |

The expression (b?f:g[i]) is evaluated ﬁo yield an rvalue which

excerpt from the BCPL reference manual (Richards, 1967), page 6

Sn LVILUE is a bit nattern representin; o storage location
containing an Rvalues aAn Lvalue is the sanc size as an Rvalue and is
a type in DBCPlL.. There is one context vhere an Rvalue is interpreted as
an Bvalue and that is as the operand of the onadic operater xrv. For

exaniple, in the expressi.n

i)

the expression £[i] is evaluated to yield an Rvalue which is then

excerpt from the B reference manual (Thompson, 1972), page 6

~An lvalue is a bit pattern representing a storage location con-
taining an rvalue, An lvalue is a type in B. The unary operator
* can be used~to interpret an rvalue as an lvalue. Thus
*x

evaluates the expression x to yield an rvalue, which is then

BCPL

e Designed by Martin Richards, appeared in 1966, typeless (everything is a word)

e Influenced by Fortran and Algol

e Intended for writing compilers for other languages

e Simplified version of CPL by "removing those features of the full language which make
compilation difficult”

GET "LIBHDR"

GLOBAL $ (
COUNT: 200
ALL: 201

$)

LET TRY(LD, ROW, RD) BE
TEST ROW = ALL THEN

COUNT := COUNT + 1
ELSE $(
LET POSS = ALL & ~(LD | ROW | RD)
UNTIL POSS = 0 DO $(
LET P = POSS & -POSS
POSS := POSS - P
TRY(LD + P << 1, ROW + P, RD + P >> 1)
$)
$)
LET START() = VALOF $(
ALL := 1
FOR I = 1 TO 12 DO $(
COUNT := 0
TRY(0, 0, 0)
WRITEF ("%I2-QUEENS PROBLEM HAS %I5 SOLUTIONS*N", I, COUNT)
ALL := 2 * ALL + 1
$)
RESULTIS 0

PDP-7

(18-bit computer, introduced 1965)

THIS IS A SAMPLE PROGRAM

o)

OB e

START GO

LAS

SPA !CMA
JMP GO

DAC #CNTSET
LAC (1

DAC #BIT
Gy

LAC CNTSET
DAC CNT
LAC BIT
1ISZ #CNT
JMP -1
RAL

DAC BIT
LAS

SMA

JMP LOOP
JMP GO

B

Designed by Ken Thompson, appeared in ~1969, typeless (everything is a word)
"BCPL squeezed into 8K words of memory and filtered through Thompson's brain"

/* The following program will calculate the constant e-2 to about .
4000 decimal digits, and print it 50 characters to the line in 'I'f:
groups of 5 characters. */

main() { e-l_se

extrn putchar, n, v;

auto i, ¢, col, a; Wh-i -Le

i = col = 0;
while(i<n) 3

V[i++] = 1; SW-I tCh
while(col<2*n) {

a = nt+l ;

sl case

while (i<n) {

c =+ v[i] *10;

AT goto
return

}

putchar(c+'0");
if (! (++cols5))
putchar(col%50?' ': '*n');

;utchar('*n*n'); aUtO
extrn

}

v[2000];
n 2000;

PDP-1 |
e | 6-bit computer
eintroduced 1970
eorthogonal instruction set
ebyte-oriented

C

Designed by Dennis Ritchie and Ken Thompson
Developed during 1969-1972 in parallel with Unix
Data types added to the language to support the PDP-| |

/* Early C example */ if int
. 5.t) else char
mystrcpy(s, .
e S thle float
char *t; switch double
{ case struct
int i; default sizeof
f ' 0 *s++ *t++) 1= '\0'; i++ do
or (1 = 0; S = | = HE
f ()) for
return(1i); goto
}
return
main () break
{ continue
char strl1[10]; entry
char str2[] = "Hello!";
int len = mystrcpy(strl, str2);
int 1i; auto
for (i = 0; 1 < len; i++) extrn-
putchar(strl[i]); extern
) exit(0); static

register

The C Reference Manual, Dennis Ritchie, Jan 1974 (aka C74)

@ Bell Laboratories Cover Sheet for Technical Memorandum

. [
employees of Bell Laboratories and 1s not for publication. (See GEI 13.%-3)

The ! . contained herew is for the use of

Title- C Reference Manual Date- January 15, 1974

T™- 74-1273-1 - -
Other Keywords- Compiler : C . .
Languages 1S a w ' ',) .
The I'u:deam;:::lp?‘er 'dnrgugge designed for both non-numerical and numerical applications
dl al types of objects with which it de: : ,
e als are char: :
Author Locauon Extensi on Charging Case- 39199 dOUb'C'D(’CCISion numbcrs bu‘ ﬂ"e lan Je I ot rdF‘ers‘ lnlegers' and S‘ng]e- and
D.M. Ritchie MH 2C-517 3770 Filing Case- 39199-11 L . " . guage also prowdes multidimeaasional arrays, struct
. containing data of mixed type, and poiniers 10 data of all types Sy SAFRERIESS
ABSTRACT i C e . . .
1S P ‘ . . .)
tionsb:?it Z’; ‘dndearfhgr language B, from which it differs mainly in the introduction of the no-
The FL.?JLEZZ‘JFT&Z,‘“&%:‘,?;i‘i“.’f;“i,fﬁl'h"S‘ZJ.‘I“;;’C“?&Z'JE&L.l“.‘?n?:’;l‘i’.‘?n'd“i’ﬂ;‘li‘."lil : ypes ang o structures. This paper is a reference manual for the original i
double-precision numibers, but the language also provides multidimeasional arrays, structures “On Or (— Oﬂ lhe D‘g':al EqUipmenl Ccrpora‘ion PDP l 1/45 d h ‘g‘na ‘mp'emenla-
conlumingdalaofnnxcd 1ype, and poiniers 10 data of all types , § .) s - ; un er l e L.\' H N . .
C is based on an earlier language B, from whi=h it differs mainly in the introduction of the no- ‘em' The Idng‘-‘dge IS alSO avallable On lhe }‘“S 6000 and |B~‘ S/370 \ “me Sharlng S}S‘

tions of types and of structures. This paper is a reference manual for the original implementa-
tion of C on the Digital Equipment Cerporation pDP-11/45 under the UNIN time-sharing sys-
rem. The language is also available on the His 6000 and 18M S/370.

Fu .
) CIgefact.The C/74 ref.erence manual does not mention BCPL at all
s not even mention the B reference manual by Ken Thompso.n

K&R C

The seminal book "The C Programming Language" (1978) acted for a long time as the
only formal definition of the language. And PCC was the reference implementation for C.

“C became the most successful language ever.”

in the Computing Laboratory at University of Cambridge.

in the mid/late 70’

Bjarne was working on his PhD thesis

Bjarne

"The Design and Evolution of C++", Bjarne Stroustrup, 1994
Cambridge Computing, The first 75 years, Haroon Ahmed, 2013

http://computersweden.idg.se/polopoly_fs/1.346563!imageManager/132621961 | .jpg

He was working on a simulator to study alternatives for the organization of
system software for distributed systems.
The initial version of this simulator was written in Simula

Bjorn Myrhaug, Sigurd Kubosh,
Kristen Nygard and Ole Johan Dahl
by the “Simula blackboard”

Begin
Class Glyph;
Virtual: Procedure print Is Procedure print;
Begin
End;

Glyph Class Char (c);
Character c;
Begin
Procedure print;
OutChar(c);
End;

Glyph Class Line (elements);
Ref (Glyph) Array elements;
Begin
Procedure print;
Begin
Integer i;
For i:= 1 Step 1 Until UpperBound (elements, 1) Do
elements (i).print;
OutImage;
End;
End;

Ref (Glyph) rg;
Ref (Glyph) Array rgs (1 : 4);

! Main program;

rgs (1l):- New Char (
rgs (2):- New Char (
rgs (3):- New Char ('
rgs (4):- New Char (
rg:- New Line (rgs);
rg.print;

End;

object oriented programming

Simulation Begin

Class FittingRoom; Begin
Ref (Head) door;
Boolean inUse;
Procedure request; Begin

If inUse Then Begin
Wait (door);
door.First.Out;

End;

inUse:= True;

End;

Procedure leave; Begin
inUse:= False;
Activate door.First;

End;

door:- New Head;

End;

Procedure report (message); Text message; Begin
OutFix (Time, 2, 0); OutText (": " & message); OutlImage;
End;

Process Class Person (pname); Text pname; Begin
While True Do Begin
Hold (Normal (12, 4, u));
report (pname & " is requesting the fitting room");
fittingrooml.request;
report (pname & " has entered the fitting room");
Hold (Normal (3, 1, u));
fittingrooml.leave;
report (pname & " has left the fitting room");
End;
End;

Integer u;
Ref (FittingRoom) fittingRooml;

fittingRooml:- New FittingRoom;
Activate New Person ("Sam");
Activate New Person ("Sally");
Activate New Person ("Andy");
Hold (100);

End;

multitasking

http://en.wikipedia.org/wiki/Simula

and ran on the IBM 360/165 mainframe.

System/370 model 165

https://www-03.ibm.com/ibm/history/exhibits/mainframe/mainframe_PP3165.html

The concepts of Simula and object orientation became increasingly helpful as
the size of the program increased. Unfortunately, the implementation of Simula
did not scale the same way.

Eventually, he was foreced to rewrite the simulator in BCPL and run it on the
experimental CAP computer.

= CAP COMPUTER
1 :

“The experience of coding and debugging the simulator in BCPL was horrible.”

“Upon leaving Cambridge, | swore never again to attack a problem with tools as
unsuitable as those | had suffered while designing and implementing the simulator.”

After finishing his PhD Thesis in Cambridge,
Bjarne was hired by Bell Labs in April 1979

At Bell Labs, Bjarne started to analyze if the UNIX kernel could be distributed
over a network of computers connected by a local area network. Proper tools
was heeded....

Bjarne started to write a preprocessor
to C that added Simula like classes to C.

“I learned C properly from people like Stu Feldman, Steve Johnson,
Brian Kernighan, and Dennis Ritchie.”

And then Bjarne started to develop “C with Classes”. The main motivation
was to create better support for modularity and concurrency.

“The first demand from development management was that of 100% compatibility with C.”

But without a standard, that requirement did not make much sense: compatible with what
implementation of C!

The success of C++ added to the motivation for a C standard

C++ was the inspiration for the function prototypes and
several other mechanisms stronger type support.

Indeed, while an unusual perspective, it is fair to some extend to
view ANSI| C as a strict subset of C++ at the time.

Fun fact: All the examples in K&R, 2ed, was compiled with CFront 2.0

1. INTRODUCTTON

1.1 PURPOSE
This Standard Specifies the forp and €stablishes the 1nterpretat10n
of programs wWritten in the C Programming language /1/

1.2 scope
This Standard Specifies:

* the representation of C Programs;

* the syntax and constraints of the c language;

* the Semantic ryles for interpreting C Programs;

* the representation of input data to pe Processeq by ¢ programs;

* the reépresentation of output data produced by ¢ programs;

* the restrictions and limits imposed by a conforming implementation of C.
This Standarg does not Specify:

* the mechanism by which ¢ Programs are transformeq for use by a
data—processing System;

* the mechanisp by which C programs are invoked for use by a
data—processing System;

* the mechanispm by which input data are transformeq for use by a ¢ program;

* the mechanisp by which output data are transformeq after being
produced by a ¢ Program;

* the size or complexity of @ program ang its data that wily exceed
the Capacity of any specific data—processing System or the Capacity of
a particular Processor;

* all minimat Fequirements of a data—proce551ng System that jg

ANSI/ISO C (C89/C90)

SECOND EDITION

NG
PROME
 LANGUAGE.

N
ERNIGHA
BRSQS[\}?ZS‘?\A.RITCHIE

SERES
PRENTICE MALL SOFTWARE

K&R, ed 2

C99

C99 added a lot of stuff to C89, perhaps too much. Especially a lot of features for scientific
computing was added, but also a few things that made life easier for programmers.

// C99 example, ISO/IEC 9899:1999

INTE , '
STANgxggONAL 16 #include <stdio.h>
IEC
9899 size t mystrcpy(char *restrict s, const char *restrict t)
e, { . .
I size t i;

I
La”?«?gosae progy ? anQUages - ;

e~ return i;
}
int main(void)
{
char strl[lé6];
, s, char str2[] = "Hello, C99!";
e o o size t len = mystrcpy(strl, str2);
: s Gty for (size t i = 0; i < len; i++)
putchar(strl[i]);
}

Cll

The main focus:

- security, eg Anneks K (the bounds checking library, contributed by Microsoft)
- support for multicore systems (threads from WG4, memory model from WG21)

The most interesting features:

* Type-generic expressions using the _Generic keyword.
* Multi-threading support

* Improved Unicode support
* Removal of the gets() function
* Bounds-checking interfaces

* Anonymous structures and unions
e Static assertions

* Misc library improvements

in
Information technology — Programming

American National Standard

: Where IT all begins
Made a few C99 features optional.) |

WG4 meeting at Lysaker, April 2015

Cisco Systems in Norway

Next version of C - C2x!

Currently working on defect reports

There are some nasty/interesting differences between C| | and C++| |
|IEEE 754 floating point standard updated in 2008
CPLEX - C parallel language extentions (started after CI 1)

Private conversation with David Keaton, April 2015

The Spirit of C

o Trust the programmer.

e Don't prevent the programmer from doing what needs to be done.
o Keep the language small and simple.

* Provide only one way to do an operation.

 Make it fast, even if it is not guaranteed to be portable.

http://www.open-std.org/jtc | /sc22/wgl 4/www/C99RationaleV5.10.pdf

"The philosophy of BCPL is not one of the tyrant who thinks he knows
best and lay down the law on what is and what is not allowed;

rather, BCPL acts more as a servant offering his services to the

best of his ability without complaint, even when confronted with

apparent nonsense. The programmer is always assumed to know what he
is doing and is not hemmed in by petty restrictions.”

s/BCPL/C/g

(The BCPL book, 1979)

"The philosophy of C is not one of the tyrant who thinks he knows

best and lay down the law on what is and what is not allowed;

rather, C acts more as a servant offering his services to the

best of his ability without complaint, even when confronted with

apparent nonsense. The programmer is always assumed to know what he
is doing and is not hemmed in by petty restrictions.”

(a rewrite of perhaps the most important paragraph in the BCPL book, 1979)

