History and Spirit of C

Olve Maudal, Cisco Systems

45 minute session at NDC TechTown, Kongsberg, 19. October 2017

At Bell Labs.

http://www3.nd.edu/~atrozzol/BellLabs 1959.jpg

Back in 1969.

S
YN AN

T
A SaAtlr
\.‘ 2'"}

o

http://www.multicians.org/picnics.html

Ken Thompson wanted to play.

Ken Space Travel

http://upload.wikimedia.org/wikipedia/commons/3/36/Ken_n_dennis.jpg

—

o~

e

TEXT PROCESSING

TEXT FORMATTERS TYPESETTING
LINE AND SCREEN EDITORS

SPELLING CHECKER MEMO MACROS

LANGUAGES
C AND FORTRAN 77
COMMON OBJECT CODE

FILE FORMAT
(COFF)

PIPES AND

FILTERS FOREGROUND
AND
BACKGROUND

EXECUTION

CONFIGURAELE
ENVIRONMENT

THE
KERNEL

ADDITIONAL
UTILITIES
FLEXIBLE
DEVICE DRIVERS COMMAND
. GAMES LANSUAGE
GRAPHICS 1/0 REQIRECTICN
CALENDAR COMMAND CHAINING

LEARN
(Cal SYSTEM)

COMMUNICATIONS AND NETWORKING

UucCP MAIL
NETWORKING STANDARDS

TERMINAL DRIVERS

INCREASE PROGRAMMER'S

Ended up writing a nearly complete operating system from scratch.

FILE AND
STRING
MANIPULATION

SORT AND SELECT -
FILES AND STRINGS

HIERARCHICAL
FILE SYSTEM

DATABASE
BUILDING
BLOCKS

PROGRAMMER'S
WORKBENCH

SC FILE TIME AND
DATE STAMPING

SOURCE CODE /
CONTROL SYSTEM
(5CCS)

PRODUCTIVITY

https://archive.org/stream/byte-magazine-1983-08/1983_08 BYTE_08-08_The_C_Language#page/n|90/mode/lup

In about 4 weeks.

"Essentially one person for a month, it was just my self”
(Ken Thompson, 1989 Interview)

In pure assembler of course.

GO, LAS
SPA 'CMA /EXAMINE AC SWITCHES
JMP GO /WAIT UNTIL ACS0=0
DAC CNTSET
LAC ONE /115 A CONSTANT
DAC BIT
CLL /CLEAR THE LINK
LOOP, LAC CNTSET
DAC CNT
LAC BIT
LOOPI, 1SZ CNT /LOOP UNTIL CNT GOES TO ZERO
JMP LOOP] /JUMP TO PRECEDING LOCATION
RAL
DAC BIT /ROTATE BIT
LAS
SMA /IF ACS0=1, RESET TIME CONSTANT
JMP LOOP
JMP GO
/STORAGE FOR PROGRAM DATA
CNT, 0
BIT, 0
CNTSET, 0
ONE, 1
START GO

http://bitsavers.trailing-edge.com/pdf/dec/pdp7/PDP-7_AsmMan.pdf

Dennis Ritchie soon joined the effort.

http://upload.wikimedia.org/wikipedia/commons/3/36/Ken_n_dennis.jpg

While porting Unix to a PDP-1 |

Dennis

Ken

http://cm.bell-labs.com/who/dmr/picture.html

they invented C,

main() {
printf("hello, world");
}

http://cm.bell-labs.com/cm/cs/who/dmr/ctut.pdf

heavily inspired by Martin Richards’ portable
systems programming language BCPL.

GET “LIBHDR"”
LET START() BE WRITES(“Hello, World”)

Martin Richards, Dec 2014

http://cm.bell-labs.com/cm/cs/who/dmr/ctut.pdf

In 1972 Unix was rewritten in C.

137 printf(fmt,x1,x2,x3,x4,x5,x0,%x7,x8,x2)
138 char fmt[]; {

139 extern printn, putchar, namsiz, ncpw;

140 char s[];

141 auto adx[], x, c, i[];

142

143 adx = &x1; /* argument pointecr */

144 loop:

145 while({c = *fmt++) 1= "%') {

146 if(c == "\@")

147 return;

148 putchar(c);

149 }

150 X = *adx++;

151 switch (¢ = *fmt++) {

152

153 case 'd': /* decimal */

154 case "0"': /™ octal */

155 1if(x < @) {

156 X = -X;

157 if(x<@) { /* - infinity */
158 i1f(c=="0")

159 printf("100000"),
160 else

161 printf("-32767");
162 gotc loop;

163 }

164 putchar('-");

165 }

166
167
168
169
179
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

printn(x, c=='0'78:10):

goto Loop;

case 's': /* string */

S = X,

while(c = ¥*s++)
putchar(c);

goto Loop;

case 'p':
S = X;
putchar('_");
C = namsiz;
while(c--)
if(*s)

goto Loop;
}
putchar('%");
fmt--;
adx--;
goto loop;

outchar(*s++);

https://code.google.com/p/unix-jun72/source/browse/trunk/src/c/c03.c

Due to Steve Johnsons Portable C Compiler,

Fact: from “The Development of the C Language” by Dennis Ritchie

Unix and C could be ported to all kinds of computer architectures.

http://www.computerhistory.org/collections/catalog/ 102691249 http://www.technikum29.de/en/computer/early-computers http://en.wikipedia.org/wiki/IBM_System/370 http://alegion63.tripod.com/bob/id6.html

C became the most successful programming language ever.

Initially K&R and PCC was the only reference for C.

K&R
(1978)

http://blogs.ibmsonline.com/wb-content/uploads/2014/1 1/

With significant contributions from C++ (Bjarne Stroustrup), the C language
got standardized

/ 2
’

1. ZH‘I'-‘O.(')N
1.1 Pusroir

NTER
STap 7:2}("”"‘ lSovea
This Stancare Soecifion the fomwm ng Filablicten thy irterorvtaticy
o Eroirans Wiltter 1y e (N(-)'o-my lt'wou.lf!
1.2 SCeve =
Thie Stancary Srecitieg

* e S eseniat son vrg Erogressy;

* he syetan &0 comy

- Py opvaeaiug
Y rsay chunosy
TIAMS F 1he € lanpage; "ﬂ::-m.,,, e A !
) " - .
. Ihe Sehantic fules fos l“?'ﬂ’(‘l‘) ¢ 0'0"0“.‘ -\‘ ‘
. tha sireswsniat “e ot trgur Aata ta pe Mrocecing by Froprase

("
ARSI
- iy 'cl't*""l on pr iy Wie v"‘\l’c' L ['V[""c

. Ihe Fe1trict ions *»0

INItS Lagosed ty CnTorming (agloses Mtios or C,
niy 5!.‘(.‘(Sory na pec ry:
* Ihe Betharise 8y wiar ¢ Progrims ary traniformee for (se by »
fory r'@t'))!’-))l"?"

* the Seiharisa 2 ik C Programs AT Lwgheg for vie bty »
Ataipinressing Sy Van:

Davelopod by

aincits>

where IT all begie

* he D(‘:"l';)f L] wichy irpegt SNta are l'.’l'ul.n for vae Oy e P Uian
* Ihe meiharise 2y wich toet caty .
17000ced by 4 ¢ Prigrem;

standard
National
American

e 1rees formee eer deing

* Ihe siie cr fomgleaits

ol a Prigrm 4ng it
L N Ty ar

ST it thet w1 cevg
ARy ety s REviacing iyciom e The
fPerticelar Precesar;

it Bisimel u\;.;nunn of » un»;-v:a:nnrq S¥item thet is
et le o1 Hpaerting o N oreing uolmv!l'z:'.

h":*“"w

ANSI/ISO C
(C89/C90)

ol14/11/
http://blogs.ibmsonline.com/wb-content/uploads/2
ttD: .

At Bell Labs. Back In 1969. Ken Thompson wanted to play. He found a
little used PDP-7. Ended up writing a nearly complete operating
system from scratch. In about 4 weeks. In pure assembler of course.
Dennis Ritchie soon joined the effort.While porting Unix to a

PDP-1 1 they invented C, heavily inspired by Martin Richards’ portable
systems programming language BCPL. In 1972 Unix was rewritten in
C. Due to Steve Johnsons Portable C Compiler (PCC), Unix and C
could be ported to all kinds of computer architectures. C became
the most successful programming language ever. Initially the K&R and
PCC was only reference for C.With significant contributions from
C++ (Bjarne Stroustrup), the C language got standardized in

1989/1990, and thereafter updated in 1999 and 201 I.

Ken Thompson, Dennis Ritchie and 20+ more technical staff from Bell Labs
had been working on the very innovative Multics project for several years.

GE-645 SYSTEM

http://web.mit.edu/saltzer/www/multics.html

While working on the Multics projects, Dennis and Ken had also been exposed
to the very portable and efficient systems programming language BCPL.

GET “LIBHDR"”
LET START() BE WRITES(“Hello, World”)

"Both of us were really taken by the language and did a lot of work
with it." (Ken Thompson, 1989 interview)

http://www.princeton.edu/~hos/mike/transcripts/thompson.htm

BCPL (1967) was the brainchild of Martin Richards from the University of
Cambridge

MASSACHREETTS INFTIIUTE 0F TRCHNeLOSY

rrojoct MAC

Rowo rondus—N-J58

July 24, 49R7.

™ Projoct MAC Partdcipants

Vet Nagtin FLaharde

Intjeetr o ACPL Seference Meroal
ARSTLLT

BCFL 13 o siaple vesirsive progriening langsage
dosdzned fow samphleor writing and opsteon yrogramdngs at
waz derdved from e % (Cretdaed Drogremning l_nr-.;uso:
by ToROVAR these featurys of e Tall Lergaege wmich =4Xe
gonpdlatier 44 frisult manely, the type aad zode sataing
rulon and ‘he wr oty of Aafirition st hapren with thely

asecsisted scope rulsas

(Trio is o copy >f the o-iginaal Looament,

BCPL was a very much simplified version of CPL (1963).

function Euler [function Fci, real Eps; integer Tim]= result of
§1 dec §l1.1 real Mn, Ds, Sum
integer i, ¢
index n==0
m = Array [real, (0, 15)] §1.1
i, t, m[0] := 0, 0, Fet[0]
Sum = m[0]/2
§1.27 =i+ 1
Mn = [Fcili]
for k =step(, 1, n do
mlk], Mn := Mn, (Mn + m[k])/2
test Mod[Mn) < Madm[n]] A n < 15
thendo Ds, n, mn-+1] := Mn{2, n+1, Mn
ordo Ds:= Mn
Sum := Sum —+ Ds
t .= (Mod[Ds] < Eps) -t +1,0§..2
repeat while ¢ << Tim
result ;= Sum §l.

CPL was the language initially designed for the Atlas computer to be
installed in Cambridge (ordered in 1961, operational in 1964).

A replacement for EDSAC 2,

EDSAC 2 users in 1960

http://en.wikipedia.org/wiki/EDSAC_2

which was an upgrade of the original EDSAC computer (1949)

p :...' i .

v E : ’ ‘47 ' . l"‘j‘:{li ‘)1 p‘\"';s'i !

oo —
CLILI Lt § | AALALLLLL f-i AL aR il a
RRER .2 - J b i

e) .
LHCE k. T -
.”‘s': a > '?ﬁﬂ'i ; ;
“ay e \ :
o TECRYwY LR RIY T : -
I wary | i
an i

! ‘} . ‘ .u

. 5
-

-
_"‘

——

http://en.wikipedia.org/wiki/Electronic_Delay Storage Automatic_Calculator

EDSAC was arguably, the first electronic digital stored-program
computer. It ran its first program May 6, 1949

..........

LU

9114}
‘L
gy

Maurice Wilkes and Bill Renwick in front of the complete EDSAC

http://en.wikipedia.org/wiki/Electronic_Delay Storage Automatic_Calculator

Maurice Wilkes' himself commenting on the 1951 film about how EDSAC was
used in practice:

https://youtu.be/x-vSOWcJyNM

The EDSAC 1951 film
abridged version

Commentary by
M. V. Wilkes

441 s .

(L] ! |

Tk o W
e s o

- . - -0 18 o
UL (YIYTEETD | AL e ;'.‘.l-‘..!‘.%
ey e m BRI} E

A — it anoranr i | :
pafarinted o

Il
W TR)

1) "
.

.:'L’

i, O"A,".."

:

EDSAC 2 users in 1960

http://en.wikipedia.org/wiki/EDSAC_2

A scaled down version of Atlas (called Titan / Atlas2) was ordered
in 1961, delivered to Cambridge in 1963, but not usable until early 1964

—

“How BCPL evolved from CPL”, Martin Richards

http://en.wikipedia.org/wiki/Titan_(computer)

a programming language was needed!

Many existing programming languages was concidered....

Atlas Autocode

(designed by Tony Brooker and Derrick Morris)

begin

real a, b, ¢, Sx, Sy, Sxx, Sxy, Syy, nextx, nexty
integer n

read (nextx)

Sx = 0; Sy = 0; Sxx = 0; Sxy = 0; Syy = 0

n=20

read (nexty) ; n=n + 1

SX = Sx + nextx; Sy = Sy + nexty

SXX = SxXx + nextx? ; Syy = Syy + nexty?

SXy = S5Xy + nextx*nexty

read (nextx) ; ->1 unless nextx = 999 999

a = (n*Sxy - Sx*Sy)/(n*Sxx - Sx2)

b = (Sy - a*Sx)/n

c = Syy - 2(a*Sxy + b#*Sy) + a2?*Sxx - Z2a*b*Sx + n#*b?
newline

print fl(a,3) ; space ; print £1(b,3) ; space ; print fl(c,3)
read (nextx) ; =->2 unless nextx = 999 999

stop
end of program

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)
http://history.dcs.ed.ac.uk/archive/docs/atlasautocode.html

naonn

ann

Fortran

(appeared 1957, designed by John Backus)

AREA OF A TRIANGLE WITH A STANDARD SQUARE ROOT FUNCTION
INPUT - CARD READER UNIT 5, INTEGER INPUT
OUTPUT - LINE PRINTER UNIT 6, REAL OUTPUT
INPUT ERROR DISPLAY ERROR OUTPUT CODE 1 IN JOB CONTROL LISTING

READ INPUT TAPE 5, 501, IA, IB, IC
501 FORMAT (3I5)
TA, IB, AND IC MAY NOT BE NEGATIVE
FURTHERMORE, THE SUM OF TWO SIDES OF A TRIANGLE
IS GREATER THAN THE THIRD SIDE, SO WE CHECK FOR THAT, TOO

IF [IR) 717, 7711, 701

701 IF (IB) 777, 777, 702
702 IF (IC) 777, 777, 703
703 IF (IA+IB-IC) 777,777,704
704 IF (IA+IC-IB) 777,777,705
705 IF (IB+IC-IA) 777,777,799
777 STOP 1
USING HERON'S FORMULA WE CALCULATE THE
ARFA OF THE TRIANGLE
799 S = FLOATF (IA + IB + IC) / 2.0

AREA = SQORT(S * (S - FLOATF(IA)) * (S - FLOATF(IB)) *

+ (S - FLOATF(IC)))

WRITE OUTPUT TAPE 6, 601, IA, IB, IC, AREA
601 FORMAT (4H A= ,I5,5H B= ,I5,5H C= ,I5,8H AREA= ,F10.2,

+ 13H SQUARE UNITS)

STOP

END

Simple FORTRAN Il program

http://en.wikipedia.org/wiki/Fortran

Algol

(aka IAL, designed by Friedrich L. Bauer, Hermann Bottenbruch, Heinz Rutishauser, Klaus Samelson, John
Backus, Charles Katz, Alan Perlis, Joseph Henry Wegstein)

procedure Simps (F(), a, b, delta, V);
comment a, b are the min and max, resp. of the points def, interval of integ, I'{) 1s the function to
ntegrated,

delta is the permissible difference between two successive Simpsgon sums V' ig greater than
the maximum absgolute value of F on a, b;

begen
Simps: Ibar: =VX(b—a)
n :=1
h :=(h-a)2
J i =h X{F@a)+Fb))
J1: Q=0
Jor k :=1()n
S :=5+F (@+2xk-1) Xh}
I :=J4+4xhXS
if {delta < abs { I —Tbar} } "
hegin Ibar: =1
J o= il+nid
n :=2Xn;h:=h/2
goto Jl end
Simps 1= [/3
return
enteger (k, n}
end Simps

http://en.wikipedia.org/wiki/ALGOL_58
http://www.softwarepreservation.org/projects/ ALGOL/report/Algol58_preliminary_report_ CACM.pdf/

Autocode!? Fortran?! Algol? other languages?

But, hey....

In the early 1960's, it was common to think "we are building a new
computer, so we need a new programming language."

(David Hartley, in 2013 article)

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

P

Cambridge Pregramming Language —
Cambridge Plus London
Combined Programming Language
(Cristophers’ Programming Language)

"anything not explicity allowed should be forbidden ... nothing should be left
undefined"

"It was envisagd that [the language] would be sufficiently general and
versatile to dispense with machine-code programming as far as possible”

From David Hartley 's article "CPL: Failed Venture or Noble Ancestor?" (2013)

Example of CPL

function Euler [function Fci, real Eps; integer Tim]= result of
§1 dec §1.1 real Mn, Ds, Sum
integer i, ¢
index n==0
m = Array [real, (0, 15)] §1.1
i, t, m[0] := 0, 0, Fet[0]
Sum = m[0]/2
§1.27 =i+ 1
Mn = Fculi]
for k =step 0, 1, n do
mlk], Mn := Mn, (Mn + m[k])/2
test Mod[Mn] < Meod[m[n]] A n < 15
thendo Ds, n, mn-+1] := Mn/2, n+1, Mn
ordo Ds:= Mn
Sum := Sum —+ Ds
t .= (Mod[Ds]| < Eps) >t + 1,0§:.2
repeat while ¢t << Tim
result := Sum §l.

http://www.math.bas.bg/~bantchev/place/cpl/features.pdf

CPL as described in 1963

The main features of CPL

By D. W. Barron, J. N. Buxton, D. F. Hartley, E. Nixon and C. Strachey

The paper provides an informal account of CPL, a new programming language currently being
implemented for the Titan at Cambridge and the Atlas at London University. CPL is based on,
and contains the concepts of, ALGOL 60. In addition there are extended data descriptions,
command and expression structures, provision for manipulating non-numerical objects, and
comprehensive input-output facilities. However, CPL is not just another proposal for the
extension of ALGOL 60, but has been designed from first principles and has a logically coherent
structure.

http://comjnl.oxfordjournals.org/content/6/2/134.full.pdf+html

Martin Richards started as a research student in 1963

A5 IVIL. T WOIT 1TIucnocd Doy Lnnmsuopncer s> }acas.

My role in the CPL project was to help with the implementation of the Cambridge
CPL compiler. The task was daunting because we were working with a new language that
included many of the imnovations found in Algol 60 that were Known to be difficult to
implement efficiently. But CPL was larger. It had more datatypes, and it was one of the
first languages to adopt a scheme whereby the types of varnables could be deduced without
the user having to explicitly declare them. In addition to call-by-value and call-by-name,
it had call-by-reference. It had two Kinds of procedures: fixed and free, distinguished by
whether their free vanables were effectively called by value or by reference. It also allowed
label variables and the passing of labels as arguments combined with a goto statement that
not only allowed jumps out of procedures (analogous to the use of long jmp in C), but also
jumps to labels in inner blocks causing the intervening declarations to be obeyed. Later
in the project the language provided structures, unions and pointers, together with runtime
garbage collection.,

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

eciLsion

" N ookt it pr
Martin Richards started as doubte floating P ¥

suWOTE for complex numbers
A5 IVIL. At WoIc mnucnccd oy Lnnstwopncer s Potjmorpkic C}Pe*o&ars |
My role in the CPL project was to help | .c . functions (e, coercion) Cambridge
CPL compiler. The task was daunting becaus . o5 and Llamda colewt®® apoygee that
included many of the innovations found in '___—«mrwcwm difficult to
implement efficiently. But CPL was larger. It had more datatypes, and it was one of the
first languages to adopt a scheme whereby the types of varnables could be deduced without
the user having to explicitly declare them. In addition to call-by-value and call-by-name,
it had call-by-reference. It had two Kinds of procedures: fixed and free, distinguished by
whether their free variables were effectively called by value or by reference. It also allowed
label variables and the passing of labels as arguments combined with a goto statement that
not only allowed jumps out of procedures (analogous to the use of long jmp in C), but also
jumps to labels in inner blocks causing the intervening declarations to be obeyed. Later
in the project the language provided structures, unions and pointers, together with runtime
garbage collection,

763

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

CPL was once compared to the invention of a pill that could
cure every type of ill.

http://s3.amazonaws.com/rapgenius/Blg-Pill.jpg

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

Writing a compiler for CPL was too difficult.
Cambridge never succeeded writing a working CPL comepiler.

Development on CPL ended December |966.

Inspired by his work on CPL, Martin Richards wanted to create a language:

-k @ that was simple to compile

(o e with direct mapping to machine code
® that assumes the programmer know what he is doing

"The philosophy of BCPL is not one of the tyrant who thinks he knows
best and lay down the law on what is and what is not allowed,;

rather, BCPL acts more as a servant offering his services to the

best of his ability without complaint, even when confronted with

apparent nonsense. The programmer is always assumed to know what he
is doing and is not hemmed in by petty restrictions.”

The BCPL Reference

WASSACHUSRITS INSITIUTE OF TECHNOLOGY

Project MAC

Memorandun-¥-352

July 21, 1567-
To: Project NAC Farticipunta
Frons Martin Riohards
Subject: The BCPL Peferance Narual
ABSTRACT

ECPL is n sinple recurmive programping laoguage
assigned for compiler writing and aysten programmingt it
wss derdved from trus CPL (Combdred Erograming Langzs.ge)
by removing theoe reatures of the full language uhich nake
compilation aiffioult manely, the type and mode natohing

rales and the wverlety of definiticn atruciured with thalr

ssgociated zoops TULOS.

(Thia is a copy of the origizal dccument)

Manual, Martin Richards, July 1967

BCPL is a simple recursive programming language
designed for compiler writing and system programming: it
was derived from true CPL (Combined Programming Language)
by removing those features of the full languagelggich make
compilation difficult namely, the type and mode mathhing

rules and the variety of definition structures with their
associated scope rules.

1.4 Iggeduction 1.

ECPL 43 the heert of e 3071 Conpdling Systes; 1t 43 »
languags vhich looke wueh 1ike tree 7% [1) wut is, in fest, & vory
sinple laruage which 13 sasy %o cecydle dnto af flofont code. The
pals A1 feroncea botsecn BCIL and CI ares

(1) A afplified syntax.

type choeking.
(3) BOPL mas n cenifest i o4 genstant facility.

(2) Punotions and reutincs @y caly mve froe varisbles which
are tanifest nawd ecsstants or uhoso Lvalues are nanifest
constents (i.0., n?uu fusetions or routines,
or glebal vardsbles)e

(5) The usor rey manipulate veth L and Rvalues explicitly.

(é) ‘hununumtofwr-nhomh\m«mu
of O Jro ratie

2.0 DFL Sumtax
The ayntactis notaticm used in this canusl 18 basically BO
mth the following extensiona: .
(1) e symbels T, D and C aro used a8 shorthasd for
coxpression> clefinition> =ad armnd>.

(2) The vPtalinguistic brackets 1ot and '>' pay e nested and
s wsed to group together pore than oae conatituent

womu@,mmmuc‘yummn
mtnumcornmyumt.

2.1 Madusre Syatex

The hardware symtax i3 the syntax of an aotual inglocentstion

B - -o
. CPL is the heert of the BCPL Comniling Systen; it is
3 Y ’
nguage which looke uuch like true CPL [1] but is, in fact, a
’

sinple aLe W
larymage which i35 easy to comnile into efficicent cod
nain differences between BCPL and CPL are: o

The

(1) A sinmlified syntax.

2) to
(2) A1) data itcis have Rvalues which are bit patterns of

(3)
(«)

(5)
(6)

th v >
onet;: 1203;::;:11 r;nd the tyne of an Rvalue depends only
iyl s 0 Thits use and not on the declaration of

. 8 sinplifies the compiler and inmproves

the object code effi
tyre ohadking. cicnecy but as a rosult there is no

BCPL has a nanifest rauecd constant facility.

Functions and routi
inns mey only have fre
are nanifest naicd constants or whosc valt‘;::i::ée:az?fzgt

constants (i.c. 1i P
or global variat’)lm X L tions or routines, labels

Th v
e user rey maninulate bLoth L and Rvalues explicitly.

Th
ere is a schcne for secparate coapilation of segnents

~of a prozran.

Martin Richards joined MIT’s Project MAC

and through the MULTICS project the Bell Labs people learned about this beautiful
language called BCPL - a language exactly to the taste of Ken and Dennis.

o B —
. " .

MIT GE Bell Labs

Humble fans meet Martin Richards, the inventor of BCPL

Jon Jagger, Martin Richards, Olve Maudal

Computer Laboratory, Cambridge, December 2014

B was the link between BCPL and C

From an interview with Ken Thompson in 1989
Interviewer: Did you develop B?
Thompson: | did B.
Interviewer: As a subset of BCPL!
Thompson: It wasn't a subset. It was almost exactly the same.

Thompson: It was the same language as BCPL, it looked
completely different, syntactically it was, you
know, a redo. The semantics was exactly the same
as BCPL.And in fact the syntax of it was, if you
looked at, you didn't look too close, you would
say it was C. Because in fact it was C, without

types.

http://www.princeton.edu/~hos/mike/transcripts/thompson.htm

Fr '
om the HOPL article by Dennis Ritchie in 1993

The Development of the C Language™

Dennis M. Ritehie
Boll LedawTawend Technologies

Muwrray Hill, NJ 07974 USA

Avegnebl Lohs . COF
ABSTRACI

The C Progrumming lanEuage Wes devised in the cerly 1970s as a system implementation language
for the nascent Unix operating sysiem. Derived from the typeless language BCPL, it evolved atype
atructare created on a tiny machine a5 2 ool Lo improve 3 meaget nnmraxnming environment, it

has hecome one of the dorminant languages of taday. 1 his paper sudies s evolution.
Introduction

NOTE: sCopyright 1993 Association for Computing Machinery, Inc. This electronic reprint made
available by the pdhor ay @ courey. For further publication rights conlact ACM or the author.
This articie vas presen!ed at Second 1iistory af Programming Languages conference, Cambridge.
Mass., April, I 993.

It was then collected in the conference procsaﬁngs: History oj'?mgrammr‘ng erguages-u ed.
Thomas L. Bergin, Jr.and B ichard G. Gibwan, Jr. ACM Press New York) and Addison Wesley
(Reading, Maxs), 1996: ISEN 020189502 /.

This papes is about the gevelopment of the C pmgmmming. lanpuage, the influences on it, gnd the
conditions urder which it was created. For the <ake of brevity, 1 omit full descriptions of C itself, its

parent B [Johason 73] and iR grandparent RCPL [Richards 791, and instead concentrale on characte fistic
clemears of each lanouaiEe end how they svolved.

C came into being in the yeors 1969-1973, 10 paralle] with the carly development of the Unix operating
svsten: the most crentive period occurred during 1972. Another spute of changes peaked between 1977
ard 1979, when portability of the Unix system Wis being demonsirated. In the middle of this second
period. the first widely avpiloble description of the language appeared: The C Programming Language,
often called the "white book’ oT ‘K&R' |Kemighan 7%). Finelly, 0 the middle 1980s, the language was
aficially grarsdandized by {he ANSI X111 commitiee, which made further changes. Until the early
1980, 2lthough compilers existed fora variety of machine architectures and operating SySLEIms, the
language Was almaost excl usively associated with Uiz more recently, 15 uSe has spread much more
widely, and roday itis amoag {he languages oSt commonly used throughout the computer industry

History: the sctting
The late 1960 were @ arbalent era foe computes Syslems research at Bell relephone [aboratones

[Ritchie 7§] [Ritchic §4). [he company Wis pulling out of the Multics project [Organick 7 5], which had
started as @ joint veamse of MIT, Generul Electric, and Bell Labs: by 1962, Bell Labs management, and

/

The C '
arl I9p7rc(;§rggvg1mg Ianguage was devised in the
e et s.ystem lmplementation language
e o Iamx operating system. Derived from
e peless Zguage ECPL, it evolved a type
orove o ,m e ee on a tiny machine as a tool to
Throve g ger programmmg environment, it has
ne of the dominant languages of today.

R .
CI;L, B.and C differ syntactically in many
etails, but broadly they are similar.

The BCPL Reference Manual, Martin Richards, July 1967 Users’ Reference to B, Ken Thompson, January 1972

SELL e o LABCHATOM Yy

e reree gy

.
k) ‘-.._._.‘-‘ Y
. -y I SNAS e aee——
J TR e mn . N s e

Loy
EN SHeET Fom TECHNMICAL NEMOURANOUW

TiTLe=- v
ITLE= Uger; kE@ference to]

MA=72<1271 -
CASE CHAMGED= 39
19149
8 TUTE CF TECHNOLOGY —
UASSACHUSEITS INSIT FILING CASE~ 19199 « 44 ATE Jamoary 7, 1993
AMuECR - » Thoe
‘Thompgon
Project MAC ALl SUMIECTS- Conpd lers 2004
NJaagen
FO? = 14
Yemorandum-¥-352
. July 21, 1567-
ALSTEADY
LR N B
L tey lanmcun "
RN G e intended fur Fecuraive, Piimazily nun—
To: Project MAC Farticipenta Cione wypified 1y Syatem proge s
Wall, usre : TNEmalng, 1
Riohards VS : frelesive synrax thet 1s . 2Rk
Pront Martin " unueual g Se3y W cumpile, Becauge o
Narm wedon of £
Subjeets The BCPL Peforance al Sipiession arg o 512N ser o

ABSTRACT .
ECPL is n sinple recurmive progreamuing lsoguage

t t
assigned for compiler writing and systeo programmingt i)
wss derived from true CPL (Combined Erogrameing Lnr:g.zsss
py removing thess reatures of the full language which nake
canpilation aiffioult panely, the tyse und wede natohing
rales and the verlety of definiticn atruciured with thelr

rsion cof g,

Text: = 27
sggociated zovps TULOS.

®
nerererceaws .

(Thia is o ocopy of the original dccument)

excerpt from the BCPL reference manual (Richards, 1967), page 6

in RVALUE is = binary bit pattern of a fixed lengzth (vhich is
inplenentation dependent), it is usuallv the size of a conputer word.
Rvealues nay be used to represcnt a variety of different kinds of
objects such as interers, truth valuves, vectors or functionse. The

actual lkind of obj:et represanted is called the TYP2 of the Rvalue.

excerpt from the B reference manual (Thompson, 1972), page 6

An rvalue is a binary bit pattern of a fixed length. On the
PDP-11 it 18 16 bits. ObJjects are rvalues of different kinds

such as integers, labels, vectors and functions, The actual kind

Of object represented is called the type of the rvalue.,

excerpt from the BCPL reference manual (Richards, 1967), page 6

A BCPL expression can be evaluated to yield en Rvalue but its

type remains underined until the Rvalue is used in some definitive
context and it is then assuied to renresent an object of the regquired

tynce Tor exumple, in the folloving function application
(B*[i] » ¢, ¢) [4, 2[1]]

the expression ' (B*(i) » £, g) is ovaluated to yield an Rvalue which

excerpt from the B reference manual (Thompson, 1972), page 6
A B expression can be evaluated to yield an rvalue, but its type

is undefined until th.'rvalue is used in scme context., It is
then assumed to represent an object of the required type. For
example, in the follpwing function call

(bP€:g[1])(1,x>1)
The expression (b?f:g[i]) is eValuatéd ﬁo &1eld an rvalue‘ﬁhich

excerpt from the BCPL reference manual (Richards, 1967), page 6

Sn LVLUE is a bit nattern representing o storage location
containing an Rvalues An Lvalue is the sanc -size as an Rvalue and is
a type in BCPl.. There is one context vhere an Rvalue is interpreted as
an Evalue and thaet is as the opernnd of the jonadic operater rve. ror

exanple, in the exwrossi-n
rv fli]

the expression ¥[i] 4s evaluated to -dield an Rvaluc which is then

excerpt from the B reference manual (Thompson, 1972), page 6

- An lvalue is a bit pattern representing a storage location con-
taining an rvalue, An lvalue is a type in B. The unary operator
* can be used.to interpret an rvalue as an lvalue, Thus

*x

evaluates the expression x to yield an rvalue, which is then

BCPL

e Designed by Martin Richards, appeared in 1966, typeless (everything is a word)

e Influenced by Fortran and Algol

e Intended for writing compilers for other languages

e Simplified version of CPL by "removing those features of the full language which make
compilation difficult”

GET "LIBHDR"

GLOBAL $ (
COUNT: 200
ALL: 201

$)

LET TRY(LD, ROW, RD) BE
TEST ROW = ALL THEN

COUNT := COUNT + 1
ELSE $(
LET POSS = ALL & ~(LD | ROW | RD)
UNTIL POSS = 0 DO $(
LET P = POSS & -POSS
POSS := POSS - P
TRY(LD + P << 1, ROW + P, RD + P >> 1)
$)
$)
LET START() = VALOF $(
ALL := 1
FOR I = 1 TO 12 DO $(
COUNT := 0
TRY(0, 0, 0)
WRITEF ("%I2-QUEENS PROBLEM HAS %I5 SOLUTIONS*N", I, COUNT)
ALL := 2 * ALL + 1
$)
RESULTIS 0

PDP-7

(18-bit computer, introduced 1965)

THIS IS A SAMPLE PROGRAM

£(9

LOOP,

START GO

LAS
SPA!CMA
JMP GO

DAC #CNTSET
LAC (1

DAC #BIT
CLL

LAC CNTSET
DAC CNT
LAC BIT
1ISZ #CNT
JMP -1
RAL

DAC BIT
LAS

SMA

JMP LOOP
JMP GO

B

Designed by Ken Thompson, appeared in ~1969, typeless (everything is a word)
"BCPL squeezed into 8K words of memory and filtered through Thompson's brain"

/* The following program will calculate the constant e-2 to about .
4000 decimal digits, and print it 50 characters to the line in 'I'f:
groups of 5 characters. */

main() { e-l_se

extrn putchar, n, v;

auto i, ¢, col, a; Wh-i -Le

i = col = 0;
while(i<n) 3

V[i++] = 1; SW-I tCh
while(col<2*n) {

a = nt+l ;

sl case

while (i<n) {

c =+ v[i] *10;

AT goto
return

}

putchar(c+'0");
if (! (++cols5))
putchar(col%50?' ': '*n');

;utchar('*n*n'); aUtO
extrn

}

v[2000];
n 2000;

PDP-1 |
e | 6-bit computer
eintroduced 1970
eorthogonal instruction set
ebyte-oriented

C

Designed by Dennis Ritchie and Ken Thompson
Developed during 1969-1972 in parallel with Unix
Data types added to the language to support the PDP-| |

/* Early C example */ if int
. 5.t) else char
mystrcpy(s, .
e S thle float
char *t; switch double
{ case struct
int i; default sizeof
f ' 0 *s++ *t++) 1= '\0'; i++ do
or (1 = 0; S = | = HE
f ()) for
return(1i); goto
}
return
main () break
{ continue
char strl1[10]; entry
char str2[] = "Hello!";
int len = mystrcpy(strl, str2);
int 1i; auto
for (i = 0; 1 < len; i++) extrn-
putchar(strl[i]); extern
) exit(0); static

register

The C Reference Manual, Dennis Ritchie, Jan 1974 (aka C74)

Cover Sheet for Technical Memorandum

Uy ate of eaphagedt of B Lobssavwis s 1w A paddanow. Ser GEJ 11%Ji

«. Janvary 15, 1974
Tuwe: € Referemce Manual Dae- Januw

™ Ta127341 '
Onner Keywondse Complies | C is a new computer language designed for both non-numerical and numerical applications.
. The Tundamental typ=s of objects with which it deals are characters. integers. and single- and
_ S double-precision numbers, but the language also provides multidimeaasional arrays, structures
aanor Loowes ;4 o Fikg Case- AN containing data of mixed type, and poiniers 10 data ol all types.

ABSTRACT C is based on an earlier language B, from whizh it differs mainly in the introduction of the no-
| _ tions of 1vpes and of structures, This paper is a reference manual for the original implemenia-
?-..:;1.-'TILZZE."KZ'.-,";"“L‘:‘.Z{’fﬂf.“h“iJ-“L'h"f-.“.ﬂeﬂf".;‘fl“X‘."Ji—’-}f‘".n?«"u'i";fﬁ'g:fg{{:}?é tion of C on the Digital Equipment Cerporation PDP-11/45 under the UNIX time-sharing sys-

duepecvon auhe, bl Uk Do O e tem. The language is also availabie on the His 6000 and 18M 5/370.

ot , i ilog b
anguags y hirh it differs mainly in 1he introgecuon of
oot on gn earler languags 8. fmen #h ‘ ; [
E :sh"-‘lvlu pes and of SIrociLIes. This paper is a referenie manual for ihe onginal -r;!: g —\\:-
l'.:"l ::l C oa the Digitsl Egupen! Corporation poe- 11745 under the UMY Hme-sharieg 33
Pn s + 3 e o v ' - -
1em. The language s also availabie an 1me WIS &000 and 1BM SATO

Fun fact: The C74 reference manual does not mention BCPL at all.
It does not even mention the B reference manual by Ken Thompson.

K&R C

The seminal book "The C Programming Language" (1978) acted for a long time as the
only formal definition of the language. And PCC was the reference implementation for C.

“C became the most successful language ever.”

in the Computing Laboratory at University of Cambridge.

in the mid/late 70’

Bjarne was working on his PhD thesis

Bjarne

"The Design and Evolution of C++", Bjarne Stroustrup, 1994
Cambridge Computing, The first 75 years, Haroon Ahmed, 2013

http://computersweden.idg.se/polopoly_fs/1.346563!imageManager/132621961 | .jpg

He was working on a simulator to study alternatives for the organization of
system software for distributed systems.
initial version of this simulator was written in Simula

Begin Sinulation Begin
Class Glyph; Class Fit-:ingFocm: Bagim
Virtual: Procedure print Is Procedure print; net “e“,“ _ccor.
Duolean lnlse;
Begin Procedure reguest; Deginm
End; If inUse Then Degin
Wait (door):
Glyph Class Char (c); deox.First,.Out;
End;
Character c¢; iy
2 injga:= Trua;
Begin End:
Procedure print; rrocedure leave; Begin
OutChar(c); inJse:= ralse;
End; Activate duor.Xizst;
End;
2 door:- New Lead;
Glyph Class Line (elements); Erd; =
Ref (Glyph) Array elements;
Bcgin Precadura report (massage): Texk meassace; Ragin
Procedure print; MitFiv (Time, 2, D) itTeaxt (': " & megzagel; CutTmage:
Erd:

Begin

Integer i; Piecess Class Persun |puane); Tex:s poawe; Begin

For i:= 1 Step 1 Until UpperBound (elements, 1) Do While True Du Degin
elements (i).print; Iold (Mcxmal (L2, 4, u));
OutImage; report (pnams & ' dic requostiamg the Eitting xoom®))
End; fitzingxcaml.request)
report (pname & " has entored the fittiag rocm™);
End; Hnld Nerwal (3, ', u)):
fittingrocml. leave:
Ref (Glyph) rg; report (pname & ° has lett the titting room”):
Ref (Glyph) Array rgs (1 : 4); end;
Brd;

! Main program;

Integer a;
rgs (1):- New Char

Rof (PittingRceom) fiztingERcoml)

-~

-

rgs (2):- New Char
fittingRoonl:~ New Fitt:incRoom;
Aotivakn New Ferszon [("Sam™):

Bjern Myrhaug, Sigurd Kubosh, fosed i e i T
Kristen Nygard and Ole Johan Dahl £5i- Now Line (ron) bt i v Tezecn ("o

by the “Simula blackboard” = o

-

b oY >

-~

object oriented programming multitasking

http://en.wikipedia.org/wiki/Simula

and ran on the IBM 360/165 mainframe.

System/370 model 165

https://www-03.ibm.com/ibm/history/exhibits/mainframe/mainframe_PP3165.html

The concepts of Simula and object orientation became increasingly helpful as
the size of the program increased. Unfortunately, the implementation of Simula
did not scale the same way.

Eventually, he was foreced to rewrite the simulator in BCPL and run it on the
experimental CAP computer.

- CAP COMPUTER
‘i'

“The experience of coding and debugging the simulator in BCPL was horrible.”

“Upon leaving Cambridge, | swore never again to attack a problem with tools as
unsuitable as those | had suffered while designing and implementing the simulator.”

After finishing his PhD Thesis in Cambridge,
Bjarne was hired by Bell Labs in April 1979

At Bell Labs, Bjarne started to analyze if the UNIX kernel could be distributed
over a network of computers connected by a local area network. Proper tools
was heeded....

Bjarne started to write a preprocessor
to C that added Simula like classes to C.

“I learned C properly from people like Stu Feldman, Steve Johnson,
Brian Kernighan, and Dennis Ritchie.”

And then Bjarne started to develop “C with Classes”. The main motivation
was to create better support for modularity and concurrency.

“The first demand from development management was that of 100% compatibility with C.”

But without a standard, that requirement did not make much sense: compatible with what
implementation of C!

The success of C++ added to the motivation for a C standard

C++ was the inspiration for the function prototypes and
several other mechanisms stronger type support.

Indeed, while an unusual perspective, it is fair to some extend to
view ANSI| C as a strict subset of C++ at the time.

Fun fact: All the examples in K&R, 2ed, was compiled with CFront 2.0

I. n.'n:m.'_'r:r.
1.7 mmsrss

Itas Slirdiry IPCilles L ‘e asg “a3lik Loy Lhe =nlerzretas gy
0’ pregram: nritten in the ¢ I':ﬂ'!l’l:nﬂ ’.mnusne.il:’

1.2 iy

ST Slirdiry IPieiiies:

tre repressctatize sr* ¢ Pregrase;

* e aWntex wng Serelioiry, of L < luvywy.';

tre icmrtic s rer :ntc':rct:n: C Fragrars;

tre ropn-m-uﬂ:r =¥ irpat Ints 12 he Precesssy y < pmnruu;

e lcmv&;ruh:r &Y selict gotg srfeducey =y L pruym-'.;

= tra rextricrtizes ans lirttn rpress by » envfnrrhg Tpiesentatian a9 <.

Itis Slirdaryg dois ¢t Ipiify:

tre Tectanisg ky which ¢ ifMojrors ire t'-msrc'rcu Tor use iv s
m?n-g-:u-llu.'q ‘yxten;

* e recranisy Ly which ¢ OIS are =fiecked 1o~ U by o
ity ;f:(css&'n ivitlewm;
~ tre Tectaniae By chieh NG dutn “re t-nnnn:-r-n or use Svyar Fragrar;

- e Lt anise Ly which cutgut dgaty q7e ranstorred of ter biimg
Predaces by 5 ¢ Eroyra;

~ 1*e yixp or c:rn.cxﬂ-,- et n Frojrwe weg SN dntn that a:1y L]
tte IApectty =y Ty Apectrie uﬂu-:rn:-um: Xenter ar the ERINc ity ne
DR Tirelyr Erresse s,

= 0. Adnirg. “Tuiretents ge 2 d:ta-;':cesslvg ivstew that .o
COENE n ot Iu:;nﬂl!g . ::r’:r.:ng '..:'.lrnntut'.l:n.

‘N

ANSI/ISO C (C89/C90)

SECOND EDITION

N
KERNIGHA
15 M. RITCHIE

PRENTICE FALL SOFTWAIC CERES
- -

AN
BRIDENN

K&R, ed 2

C99

C99 added a lot of stuff to C89, perhaps too much. Especially a lot of features for scientific
computing was added, but also a few things that made life easier for programmers.

// C99 example, ISO/IEC 9899:1999

/
éﬂﬁgggnoMM_ #include <stdio.h>
c
9899 size t mystrcpy(char *restrict s, const char *restrict t)
- {
- size t i;
. — . = | = 1 LI 0
m for (l OI (*S++ *t++) * \O ’ l++)
s Pages . o ;
. L .

return 1i;

}

int main(void)
{
char strl[lé6];
char str2[] = "Hello, C99!";
size t len = mystrcpy(strl, str2);
for (size t 1 = 0; 1 < len; i++)
putchar(strl[i]);

Cll

The main focus:

- security, eg Anneks K (the bounds checking library, contributed by Microsoft)
- support for multicore systems (threads from WG4, memory model from WG21)

The most interesting features:

* Type-generic expressions using the _Generic keyword.
* Multi-threading support

* Improved Unicode support
* Removal of the gets() function
* Bounds-checking interfaces

* Anonymous structures and unions
e Static assertions

* Misc library improvements

i , , . Programming
Information technology Y

languages — C

Dcvclopcd by

Where IT all begins

American National Standard

Made a few C99 features optional.

WG4 meeting at Lysaker, April 2015

Cisco Systems in Norway

Next version of C - C2x!

Currently working on defect reports

There are some nasty/interesting differences between C| | and C++| |
|IEEE 754 floating point standard updated in 2008
CPLEX - C parallel language extentions (started after CI 1)

Private conversation with David Keaton, April 2015

The Spirit of C

o Trust the programmer.

e Don't prevent the programmer from doing what needs to be done.
o Keep the language small and simple.

* Provide only one way to do an operation.

 Make it fast, even if it is not guaranteed to be portable.

http://www.open-std.org/jtc | /sc22/wgl 4/www/C99RationaleV5.10.pdf

"The philosophy of BCPL is not one of the tyrant who thinks he knows
best and lay down the law on what is and what is not allowed;

rather, BCPL acts more as a servant offering his services to the

best of his ability without complaint, even when confronted with

apparent nonsense. The programmer is always assumed to know what he
is doing and is not hemmed in by petty restrictions.”

s/BCPL/C/g

(The BCPL book, 1979)

"The philosophy of C is not one of the tyrant who thinks he knows

best and lay down the law on what is and what is not allowed;

rather, C acts more as a servant offering his services to the

best of his ability without complaint, even when confronted with

apparent nonsense. The programmer is always assumed to know what he
is doing and is not hemmed in by petty restrictions.”

(a rewrite of perhaps the most important paragraph in the BCPL book, 1979)

